blob: ae17e73d770b963ceeaf2ecf1152d457271040b7 [file] [log] [blame]
/*
* R-Car Gen3 THS thermal sensor driver
* Based on rcar_thermal.c and work from Hien Dang and Khiem Nguyen.
*
* Copyright (C) 2016 Renesas Electronics Corporation.
* Copyright (C) 2016 Sang Engineering
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
*/
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/spinlock.h>
#include <linux/sys_soc.h>
#include <linux/thermal.h>
#include <linux/of.h>
#include "thermal_core.h"
/* Register offsets */
#define REG_GEN3_IRQSTR 0x04
#define REG_GEN3_IRQMSK 0x08
#define REG_GEN3_IRQCTL 0x0C
#define REG_GEN3_IRQEN 0x10
#define REG_GEN3_IRQTEMP1 0x14
#define REG_GEN3_IRQTEMP2 0x18
#define REG_GEN3_IRQTEMP3 0x1C
#define REG_GEN3_CTSR 0x20
#define REG_GEN3_THCTR 0x20
#define REG_GEN3_TEMP 0x28
#define REG_GEN3_THCODE1 0x50
#define REG_GEN3_THCODE2 0x54
#define REG_GEN3_THCODE3 0x58
/* FUSE register base and offsets */
#define PTAT_BASE 0xE6198000
#define REG_GEN3_PTAT1 0x5C
#define REG_GEN3_PTAT2 0x60
#define REG_GEN3_PTAT3 0x64
#define REG_GEN3_THSCP 0x68
#define REG_GEN3_MAX_SIZE (REG_GEN3_THSCP + 0x4)
/* IRQ{STR,MSK,EN} bits */
#define IRQ_TEMP1 BIT(0)
#define IRQ_TEMP2 BIT(1)
#define IRQ_TEMP3 BIT(2)
#define IRQ_TEMPD1 BIT(3)
#define IRQ_TEMPD2 BIT(4)
#define IRQ_TEMPD3 BIT(5)
/* THSCP bit */
#define COR_PARA_VLD (0x3 << 14)
/* CTSR bits */
#define CTSR_PONM BIT(8)
#define CTSR_AOUT BIT(7)
#define CTSR_THBGR BIT(5)
#define CTSR_VMEN BIT(4)
#define CTSR_VMST BIT(1)
#define CTSR_THSST BIT(0)
/* THCTR bits */
#define THCTR_PONM BIT(6)
#define THCTR_THSST BIT(0)
#define CTEMP_MASK 0xFFF
#define MCELSIUS(temp) ((temp) * 1000)
#define GEN3_FUSE_MASK 0xFFF
#define TSC_MAX_NUM 3
/** [ -------- Definition for thermal type b (Chapter B) **/
/* Define thermal device type */
#define RCAR_GEN3_THS_TYPE_A 1
#define RCAR_GEN3_THS_TYPE_B 0
#define is_ths_typeA (ths_type == RCAR_GEN3_THS_TYPE_A)
/* Define registers and values for thermal device type B */
#define REG_GEN3_B_STR 0x000
#define REG_GEN3_B_ENR 0x004
#define REG_GEN3_B_INT_MASK 0x00C
#define REG_GEN3_B_POSNEG 0x120
#define REG_GEN3_B_THSCR 0x12C
#define REG_GEN3_B_THSSR 0x130
#define REG_GEN3_B_INTCTRL 0x134
/* ENR */
#define ENR_Tj00 BIT(0)
#define ENR_Tj01 BIT(1)
/* THSCR */
#define THSCR_CPCTL BIT(12)
/* THSSR */
#define CTEMP_B_MASK GENMASK(5, 0)
/* INTCTRL */
#define CTEMP0_B_MASK GENMASK(5, 0)
#define CTEMP1_B_MASK GENMASK(13, 8)
/* -------------------------------------------------------]*/
static unsigned int ths_type;
static int ths_tj;
static int tj_2;
/* default THCODE values if FUSEs are missing */
static int thcode[TSC_MAX_NUM][3] = {
{ 3397, 2800, 2221 },
{ 3393, 2795, 2216 },
{ 3389, 2805, 2237 },
};
/* Structure for thermal temperature calculation */
struct equation_coefs {
int a1;
int b1;
int a2;
int b2;
};
struct rcar_gen3_thermal_tsc {
void __iomem *base;
struct thermal_zone_device *zone;
struct equation_coefs coef;
bool irq_cap;
int id; /* thermal channel id */
};
struct rcar_gen3_thermal_priv {
struct rcar_gen3_thermal_tsc *tscs[TSC_MAX_NUM];
unsigned int num_tscs;
spinlock_t lock; /* Protect interrupts on and off */
void (*thermal_init)(struct rcar_gen3_thermal_tsc *tsc);
};
static inline u32 rcar_gen3_thermal_read(struct rcar_gen3_thermal_tsc *tsc,
u32 reg)
{
return ioread32(tsc->base + reg);
}
static inline void rcar_gen3_thermal_write(struct rcar_gen3_thermal_tsc *tsc,
u32 reg, u32 data)
{
iowrite32(data, tsc->base + reg);
}
/*
* Linear approximation for temperature
*
* [reg] = [temp] * a + b => [temp] = ([reg] - b) / a
*
* The constants a and b are calculated using two triplets of int values PTAT
* and THCODE. PTAT and THCODE can either be read from hardware or use hard
* coded values from driver. The formula to calculate a and b are taken from
* BSP and sparsely documented and understood.
*
* Examining the linear formula and the formula used to calculate constants a
* and b while knowing that the span for PTAT and THCODE values are between
* 0x000 and 0xfff the largest integer possible is 0xfff * 0xfff == 0xffe001.
* Integer also needs to be signed so that leaves 7 bits for binary
* fixed point scaling.
*/
#define FIXPT_SHIFT 7
#define FIXPT_INT(_x) ((_x) << FIXPT_SHIFT)
#define INT_FIXPT(_x) ((_x) >> FIXPT_SHIFT)
#define FIXPT_DIV(_a, _b) DIV_ROUND_CLOSEST(((_a) << FIXPT_SHIFT), (_b))
#define FIXPT_TO_MCELSIUS(_x) ((_x) * 1000 >> FIXPT_SHIFT)
#define RCAR3_THERMAL_GRAN 500 /* mili Celsius */
/* no idea where these constants come from */
#define THS_TJ_1 126 /* Use for H3 and M3N */
#define THS_TJ_1_M3 116 /* Use for M3 */
#define TJ_1 (ths_tj) /* Tj_H: Contain THS_TJ_1 or THS_TJ_1_M3 */
#define TJ_2 (INT_FIXPT(tj_2)) /* Tj_T */
#define TJ_3 -41 /* Tj_L */
static void rcar_gen3_thermal_calc_coefs(struct equation_coefs *coef,
int *ptat, int *thcode)
{
/* TODO: Find documentation and document constant calculation formula */
/*
* Division is not scaled in BSP and if scaled it might overflow
* the dividend (4095 * 4095 << 14 > INT_MAX) so keep it unscaled
*/
tj_2 = (FIXPT_INT((ptat[1] - ptat[2]) * (TJ_1 - TJ_3))
/ (ptat[0] - ptat[2])) + FIXPT_INT(TJ_3);
coef->a1 = FIXPT_DIV(FIXPT_INT(thcode[1] - thcode[2]),
tj_2 - FIXPT_INT(TJ_3));
coef->b1 = FIXPT_INT(thcode[2]) - coef->a1 * TJ_3;
coef->a2 = FIXPT_DIV(FIXPT_INT(thcode[1] - thcode[0]),
tj_2 - FIXPT_INT(TJ_1));
coef->b2 = FIXPT_INT(thcode[0]) - coef->a2 * TJ_1;
}
static int rcar_gen3_thermal_round(int temp)
{
int result, round_offs;
round_offs = temp >= 0 ? RCAR3_THERMAL_GRAN / 2 :
-RCAR3_THERMAL_GRAN / 2;
result = (temp + round_offs) / RCAR3_THERMAL_GRAN;
return result * RCAR3_THERMAL_GRAN;
}
static int rcar_gen3_thermal_convert_temp(struct rcar_gen3_thermal_tsc *tsc)
{
int mcelsius = 0, val;
long reg;
if (is_ths_typeA) {
/* Read register and convert to mili Celsius */
/* Read register and convert value to signed variable type */
reg = rcar_gen3_thermal_read(tsc, REG_GEN3_TEMP) & CTEMP_MASK;
if (reg <= thcode[tsc->id][1])
val = FIXPT_DIV(FIXPT_INT(reg) - tsc->coef.b1,
tsc->coef.a1);
else
val = FIXPT_DIV(FIXPT_INT(reg) - tsc->coef.b2,
tsc->coef.a2);
mcelsius = rcar_gen3_thermal_round(FIXPT_TO_MCELSIUS(val));
} else {
int i;
u32 old, new;
reg = 0;
old = ~0;
for (i = 0; i < 128; i++) {
/*
* As hardware description, it needs to wait 300us after
* changing comparator offset to get stable temperature.
*/
usleep_range(300, 350);
new = rcar_gen3_thermal_read(tsc, REG_GEN3_B_THSSR)
& CTEMP_B_MASK;
if (new == old) {
reg = new;
break;
}
old = new;
}
/*
* As hardware description, there are 2 formulas to
* calculate temperature on E3 when CTEMP[5:0] is less than
* and greater or equal to 24.
*/
if (reg < 24)
mcelsius = MCELSIUS(((reg * 55) - 720) / 10);
/*
* Equal to mcelsius = MCELSIUS((reg * 5.5) - 72)
* to avoid mismatch between float and integer
*/
else
mcelsius = MCELSIUS((reg * 5) - 60);
}
return mcelsius;
}
static int rcar_gen3_thermal_get_temp(void *devdata, int *temp)
{
struct rcar_gen3_thermal_tsc *tsc = devdata;
int mcelsius;
mcelsius = rcar_gen3_thermal_convert_temp(tsc);
/* Make sure we are inside specifications */
if ((mcelsius < MCELSIUS(-40)) || (mcelsius > MCELSIUS(125)))
return -EIO;
*temp = mcelsius;
return 0;
}
static int rcar_gen3_thermal_mcelsius_to_temp(struct rcar_gen3_thermal_tsc *tsc,
int mcelsius)
{
int celsius, val;
int ctemp = 0;
celsius = DIV_ROUND_CLOSEST(mcelsius, 1000);
if (is_ths_typeA) {
if (celsius <= TJ_2)
val = celsius * tsc->coef.a1 + tsc->coef.b1;
else
val = celsius * tsc->coef.a2 + tsc->coef.b2;
ctemp = INT_FIXPT(val);
} else {
/*
* Similarly, to calculate register CTEMP[5:0] for E3
* there are 2 formulas to measure CTEMP[5:0] which is
* depending on temperature changes from less than
* to greater or equal to 60 degrees celsius.
*/
if (celsius < 60)
ctemp = (celsius + 72) * 10 / 55;
/*
* Equal to ctemp = (celsius + 72) / 5.5
* to avoid mismatch between float and integer
*/
else
ctemp = (celsius + 60) / 5;
}
return ctemp;
}
static int rcar_gen3_thermal_set_irq_temp(struct rcar_gen3_thermal_tsc *tsc)
{
int mcelsius, low, high;
if (!tsc->irq_cap)
return 0;
mcelsius = rcar_gen3_thermal_convert_temp(tsc);
low = mcelsius - MCELSIUS(1);
high = mcelsius + MCELSIUS(1);
if (is_ths_typeA) {
rcar_gen3_thermal_write(tsc, REG_GEN3_IRQTEMP1,
rcar_gen3_thermal_mcelsius_to_temp(tsc, low));
rcar_gen3_thermal_write(tsc, REG_GEN3_IRQTEMP2,
rcar_gen3_thermal_mcelsius_to_temp(tsc, high));
} else {
u32 reg;
low = rcar_gen3_thermal_mcelsius_to_temp(tsc, low);
high = rcar_gen3_thermal_mcelsius_to_temp(tsc, high);
reg = rcar_gen3_thermal_read(tsc, REG_GEN3_B_INTCTRL);
reg &= (~CTEMP1_B_MASK & ~CTEMP0_B_MASK);
reg |= (high << __bf_shf(CTEMP1_B_MASK)
| low << __bf_shf(CTEMP0_B_MASK));
rcar_gen3_thermal_write(tsc, REG_GEN3_B_INTCTRL, reg);
}
return 0;
}
static const struct thermal_zone_of_device_ops rcar_gen3_tz_of_ops = {
.get_temp = rcar_gen3_thermal_get_temp,
};
static void rcar_thermal_irq_set(struct rcar_gen3_thermal_priv *priv, bool on)
{
unsigned int i;
u32 val;
if (is_ths_typeA) {
for (i = 0; i < priv->num_tscs; i++) {
val = (on && priv->tscs[i]->irq_cap) ?
IRQ_TEMPD1 | IRQ_TEMP2 : 0;
rcar_gen3_thermal_write(priv->tscs[i],
REG_GEN3_IRQMSK, val);
}
} else {
for (i = 0; i < priv->num_tscs; i++) {
val = (on && priv->tscs[i]->irq_cap) ?
ENR_Tj00 | ENR_Tj01 : 0;
rcar_gen3_thermal_write(priv->tscs[i],
REG_GEN3_B_ENR, val);
}
}
}
static irqreturn_t rcar_gen3_thermal_irq(int irq, void *data)
{
struct rcar_gen3_thermal_priv *priv = data;
u32 status;
int i, ret = IRQ_HANDLED;
spin_lock(&priv->lock);
if (is_ths_typeA) {
for (i = 0; i < priv->num_tscs; i++) {
status = rcar_gen3_thermal_read(priv->tscs[i],
REG_GEN3_IRQSTR);
rcar_gen3_thermal_write(priv->tscs[i],
REG_GEN3_IRQSTR, 0);
if (status)
ret = IRQ_WAKE_THREAD;
}
} else {
for (i = 0; i < priv->num_tscs; i++) {
status = rcar_gen3_thermal_read(priv->tscs[i],
REG_GEN3_B_STR);
rcar_gen3_thermal_write(priv->tscs[i],
REG_GEN3_B_STR, 0);
if (status)
ret = IRQ_WAKE_THREAD;
}
}
if (ret == IRQ_WAKE_THREAD)
rcar_thermal_irq_set(priv, false);
spin_unlock(&priv->lock);
return ret;
}
static irqreturn_t rcar_gen3_thermal_irq_thread(int irq, void *data)
{
struct rcar_gen3_thermal_priv *priv = data;
unsigned long flags;
int i;
for (i = 0; i < priv->num_tscs; i++) {
rcar_gen3_thermal_set_irq_temp(priv->tscs[i]);
thermal_zone_device_update(priv->tscs[i]->zone,
THERMAL_EVENT_UNSPECIFIED);
}
spin_lock_irqsave(&priv->lock, flags);
rcar_thermal_irq_set(priv, true);
spin_unlock_irqrestore(&priv->lock, flags);
return IRQ_HANDLED;
}
static void rcar_gen3_thermal_init_r8a77990(struct rcar_gen3_thermal_tsc *tsc)
{
/* Using 2 interrupts: Tj00 falling, Tj01 rising */
rcar_gen3_thermal_write(tsc, REG_GEN3_B_POSNEG, 0x1);
rcar_gen3_thermal_write(tsc, REG_GEN3_B_THSCR, THSCR_CPCTL |
rcar_gen3_thermal_read(tsc, REG_GEN3_B_THSCR));
usleep_range(300, 350);
rcar_gen3_thermal_write(tsc, REG_GEN3_B_INT_MASK, 0x4 |
(~0x7 & rcar_gen3_thermal_read(tsc, REG_GEN3_B_INT_MASK)));
}
static const struct soc_device_attribute r8a7795es1[] = {
{ .soc_id = "r8a7795", .revision = "ES1.*" },
{ /* sentinel */ }
};
static void rcar_gen3_thermal_init_r8a7795es1(struct rcar_gen3_thermal_tsc *tsc)
{
rcar_gen3_thermal_write(tsc, REG_GEN3_CTSR, CTSR_THBGR);
rcar_gen3_thermal_write(tsc, REG_GEN3_CTSR, 0x0);
usleep_range(1000, 2000);
rcar_gen3_thermal_write(tsc, REG_GEN3_CTSR, CTSR_PONM);
rcar_gen3_thermal_write(tsc, REG_GEN3_IRQCTL, 0x3F);
rcar_gen3_thermal_write(tsc, REG_GEN3_IRQMSK, 0);
rcar_gen3_thermal_write(tsc, REG_GEN3_IRQEN, IRQ_TEMPD1 | IRQ_TEMP2);
rcar_gen3_thermal_write(tsc, REG_GEN3_CTSR,
CTSR_PONM | CTSR_AOUT | CTSR_THBGR | CTSR_VMEN);
usleep_range(100, 200);
rcar_gen3_thermal_write(tsc, REG_GEN3_CTSR,
CTSR_PONM | CTSR_AOUT | CTSR_THBGR | CTSR_VMEN |
CTSR_VMST | CTSR_THSST);
usleep_range(1000, 2000);
}
static void rcar_gen3_thermal_init(struct rcar_gen3_thermal_tsc *tsc)
{
u32 reg_val;
reg_val = rcar_gen3_thermal_read(tsc, REG_GEN3_THCTR);
reg_val &= ~THCTR_PONM;
rcar_gen3_thermal_write(tsc, REG_GEN3_THCTR, reg_val);
usleep_range(1000, 2000);
rcar_gen3_thermal_write(tsc, REG_GEN3_IRQCTL, 0x3F);
rcar_gen3_thermal_write(tsc, REG_GEN3_IRQMSK, 0);
rcar_gen3_thermal_write(tsc, REG_GEN3_IRQEN, IRQ_TEMPD1 | IRQ_TEMP2);
reg_val = rcar_gen3_thermal_read(tsc, REG_GEN3_THCTR);
reg_val |= THCTR_THSST;
rcar_gen3_thermal_write(tsc, REG_GEN3_THCTR, reg_val);
usleep_range(1000, 2000);
}
static const struct of_device_id rcar_gen3_thermal_dt_ids[] = {
{ .compatible = "renesas,r8a7795-thermal", },
{ .compatible = "renesas,r8a7796-thermal", },
{ .compatible = "renesas,r8a77965-thermal", },
{ .compatible = "renesas,r8a77990-thermal", },
{ /*sentinel*/ },
};
MODULE_DEVICE_TABLE(of, rcar_gen3_thermal_dt_ids);
static int rcar_gen3_thermal_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
pm_runtime_put(dev);
pm_runtime_disable(dev);
return 0;
}
static int rcar_gen3_thermal_probe(struct platform_device *pdev)
{
struct rcar_gen3_thermal_priv *priv;
struct device *dev = &pdev->dev;
struct resource *res;
struct thermal_zone_device *zone;
int ret, irq, i;
char *irqname;
void __iomem *ptat_base;
unsigned int cor_para_value = 0;
struct device_node *tz_nd;
/* default values if FUSEs are missing */
int ptat[3] = { 2631, 1509, 435 };
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->thermal_init = rcar_gen3_thermal_init;
if (soc_device_match(r8a7795es1))
priv->thermal_init = rcar_gen3_thermal_init_r8a7795es1;
if (!of_device_is_compatible(pdev->dev.of_node,
"renesas,r8a77990-thermal")) {
ths_type = RCAR_GEN3_THS_TYPE_A;
if (!of_device_is_compatible(pdev->dev.of_node,
"renesas,r8a7796-thermal"))
ths_tj = THS_TJ_1;
else
ths_tj = THS_TJ_1_M3;
} else {
ths_type = RCAR_GEN3_THS_TYPE_B;
priv->thermal_init = rcar_gen3_thermal_init_r8a77990;
}
if (is_ths_typeA) {
/* Use FUSE default values if they are missing.
* If not, fetch them from registers.
*/
ptat_base = ioremap_nocache(PTAT_BASE, REG_GEN3_MAX_SIZE);
if (!ptat_base) {
dev_err(dev, "Cannot map FUSE register\n");
return -ENOMEM;
}
cor_para_value = ioread32(ptat_base + REG_GEN3_THSCP)
& COR_PARA_VLD;
if (cor_para_value != COR_PARA_VLD) {
dev_info(dev, "is using pseudo fixed FUSE values\n");
} else {
dev_info(dev, "is using FUSE values\n");
ptat[0] = ioread32(ptat_base + REG_GEN3_PTAT1)
& GEN3_FUSE_MASK;
ptat[1] = ioread32(ptat_base + REG_GEN3_PTAT2)
& GEN3_FUSE_MASK;
ptat[2] = ioread32(ptat_base + REG_GEN3_PTAT3)
& GEN3_FUSE_MASK;
}
iounmap(ptat_base);
}
spin_lock_init(&priv->lock);
platform_set_drvdata(pdev, priv);
/*
* Request 2 (of the 3 possible) IRQs, the driver only needs to
* to trigger on the low and high trip points of the current
* temp window at this point.
*/
for (i = 0; i < 2; i++) {
irq = platform_get_irq(pdev, i);
if (irq < 0)
return irq;
irqname = devm_kasprintf(dev, GFP_KERNEL, "%s:ch%d",
dev_name(dev), i);
if (!irqname)
return -ENOMEM;
ret = devm_request_threaded_irq(dev, irq, rcar_gen3_thermal_irq,
rcar_gen3_thermal_irq_thread,
IRQF_SHARED, irqname, priv);
if (ret)
return ret;
}
pm_runtime_enable(dev);
pm_runtime_get_sync(dev);
for (i = 0; i < TSC_MAX_NUM; i++) {
struct rcar_gen3_thermal_tsc *tsc;
res = platform_get_resource(pdev, IORESOURCE_MEM, i);
if (!res)
break;
tsc = devm_kzalloc(dev, sizeof(*tsc), GFP_KERNEL);
if (!tsc) {
ret = -ENOMEM;
goto error_unregister;
}
tsc->base = devm_ioremap_resource(dev, res);
if (IS_ERR(tsc->base)) {
ret = PTR_ERR(tsc->base);
goto error_unregister;
}
tsc->id = i;
priv->tscs[i] = tsc;
priv->thermal_init(tsc);
if (is_ths_typeA) {
if (cor_para_value == COR_PARA_VLD) {
thcode[i][0] = rcar_gen3_thermal_read(tsc,
REG_GEN3_THCODE1) & GEN3_FUSE_MASK;
thcode[i][1] = rcar_gen3_thermal_read(tsc,
REG_GEN3_THCODE2) & GEN3_FUSE_MASK;
thcode[i][2] = rcar_gen3_thermal_read(tsc,
REG_GEN3_THCODE3) & GEN3_FUSE_MASK;
}
rcar_gen3_thermal_calc_coefs(&tsc->coef,
ptat, thcode[i]);
}
for_each_node_with_property(tz_nd, "polling-delay") {
u32 zone_id, idle;
if (of_parse_phandle(tz_nd, "thermal-sensors", 0)) {
of_property_read_u32_index(tz_nd,
"thermal-sensors",
1, &zone_id);
if (zone_id == i) {
of_property_read_u32(tz_nd,
"polling-delay",
&idle);
tsc->irq_cap = idle ? 0 : 1;
}
}
}
rcar_gen3_thermal_set_irq_temp(tsc);
zone = devm_thermal_zone_of_sensor_register(dev, i, tsc,
&rcar_gen3_tz_of_ops);
if (IS_ERR(zone)) {
dev_err(dev, "Can't register thermal zone\n");
ret = PTR_ERR(zone);
goto error_unregister;
}
tsc->zone = zone;
ret = of_thermal_get_ntrips(tsc->zone);
if (ret < 0)
goto error_unregister;
dev_info(dev, "TSC%d: Loaded %d trip points\n", i, ret);
}
priv->num_tscs = i;
if (!priv->num_tscs) {
ret = -ENODEV;
goto error_unregister;
}
rcar_thermal_irq_set(priv, true);
return 0;
error_unregister:
rcar_gen3_thermal_remove(pdev);
return ret;
}
static int __maybe_unused rcar_gen3_thermal_suspend(struct device *dev)
{
struct rcar_gen3_thermal_priv *priv = dev_get_drvdata(dev);
rcar_thermal_irq_set(priv, false);
return 0;
}
static int __maybe_unused rcar_gen3_thermal_resume(struct device *dev)
{
struct rcar_gen3_thermal_priv *priv = dev_get_drvdata(dev);
unsigned int i;
for (i = 0; i < priv->num_tscs; i++) {
struct rcar_gen3_thermal_tsc *tsc = priv->tscs[i];
priv->thermal_init(tsc);
rcar_gen3_thermal_set_irq_temp(tsc);
}
rcar_thermal_irq_set(priv, true);
return 0;
}
static SIMPLE_DEV_PM_OPS(rcar_gen3_thermal_pm_ops, rcar_gen3_thermal_suspend,
rcar_gen3_thermal_resume);
static struct platform_driver rcar_gen3_thermal_driver = {
.driver = {
.name = "rcar_gen3_thermal",
.pm = &rcar_gen3_thermal_pm_ops,
.of_match_table = rcar_gen3_thermal_dt_ids,
},
.probe = rcar_gen3_thermal_probe,
.remove = rcar_gen3_thermal_remove,
};
module_platform_driver(rcar_gen3_thermal_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("R-Car Gen3 THS thermal sensor driver");
MODULE_AUTHOR("Wolfram Sang <wsa+renesas@sang-engineering.com>");