blob: 87fe376f38f0c0744a6111195346f5f990daca76 [file] [log] [blame]
/*
* Copyright (c) by Jaroslav Kysela <perex@suse.cz>,
* Hannu Savolainen 1993-1996,
* Rob Hooft
*
* Routines for control of AdLib FM cards (OPL2/OPL3/OPL4 chips)
*
* Most if code is ported from OSS/Lite.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <sound/opl3.h>
#include <asm/io.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/ioport.h>
#include <sound/minors.h>
MODULE_AUTHOR("Jaroslav Kysela <perex@suse.cz>, Hannu Savolainen 1993-1996, Rob Hooft");
MODULE_DESCRIPTION("Routines for control of AdLib FM cards (OPL2/OPL3/OPL4 chips)");
MODULE_LICENSE("GPL");
extern char snd_opl3_regmap[MAX_OPL2_VOICES][4];
static void snd_opl2_command(struct snd_opl3 * opl3, unsigned short cmd, unsigned char val)
{
unsigned long flags;
unsigned long port;
/*
* The original 2-OP synth requires a quite long delay
* after writing to a register.
*/
port = (cmd & OPL3_RIGHT) ? opl3->r_port : opl3->l_port;
spin_lock_irqsave(&opl3->reg_lock, flags);
outb((unsigned char) cmd, port);
udelay(10);
outb((unsigned char) val, port + 1);
udelay(30);
spin_unlock_irqrestore(&opl3->reg_lock, flags);
}
static void snd_opl3_command(struct snd_opl3 * opl3, unsigned short cmd, unsigned char val)
{
unsigned long flags;
unsigned long port;
/*
* The OPL-3 survives with just two INBs
* after writing to a register.
*/
port = (cmd & OPL3_RIGHT) ? opl3->r_port : opl3->l_port;
spin_lock_irqsave(&opl3->reg_lock, flags);
outb((unsigned char) cmd, port);
inb(opl3->l_port);
inb(opl3->l_port);
outb((unsigned char) val, port + 1);
inb(opl3->l_port);
inb(opl3->l_port);
spin_unlock_irqrestore(&opl3->reg_lock, flags);
}
static int snd_opl3_detect(struct snd_opl3 * opl3)
{
/*
* This function returns 1 if the FM chip is present at the given I/O port
* The detection algorithm plays with the timer built in the FM chip and
* looks for a change in the status register.
*
* Note! The timers of the FM chip are not connected to AdLib (and compatible)
* boards.
*
* Note2! The chip is initialized if detected.
*/
unsigned char stat1, stat2, signature;
/* Reset timers 1 and 2 */
opl3->command(opl3, OPL3_LEFT | OPL3_REG_TIMER_CONTROL, OPL3_TIMER1_MASK | OPL3_TIMER2_MASK);
/* Reset the IRQ of the FM chip */
opl3->command(opl3, OPL3_LEFT | OPL3_REG_TIMER_CONTROL, OPL3_IRQ_RESET);
signature = stat1 = inb(opl3->l_port); /* Status register */
if ((stat1 & 0xe0) != 0x00) { /* Should be 0x00 */
snd_printd("OPL3: stat1 = 0x%x\n", stat1);
return -ENODEV;
}
/* Set timer1 to 0xff */
opl3->command(opl3, OPL3_LEFT | OPL3_REG_TIMER1, 0xff);
/* Unmask and start timer 1 */
opl3->command(opl3, OPL3_LEFT | OPL3_REG_TIMER_CONTROL, OPL3_TIMER2_MASK | OPL3_TIMER1_START);
/* Now we have to delay at least 80us */
udelay(200);
/* Read status after timers have expired */
stat2 = inb(opl3->l_port);
/* Stop the timers */
opl3->command(opl3, OPL3_LEFT | OPL3_REG_TIMER_CONTROL, OPL3_TIMER1_MASK | OPL3_TIMER2_MASK);
/* Reset the IRQ of the FM chip */
opl3->command(opl3, OPL3_LEFT | OPL3_REG_TIMER_CONTROL, OPL3_IRQ_RESET);
if ((stat2 & 0xe0) != 0xc0) { /* There is no YM3812 */
snd_printd("OPL3: stat2 = 0x%x\n", stat2);
return -ENODEV;
}
/* If the toplevel code knows exactly the type of chip, don't try
to detect it. */
if (opl3->hardware != OPL3_HW_AUTO)
return 0;
/* There is a FM chip on this address. Detect the type (OPL2 to OPL4) */
if (signature == 0x06) { /* OPL2 */
opl3->hardware = OPL3_HW_OPL2;
} else {
/*
* If we had an OPL4 chip, opl3->hardware would have been set
* by the OPL4 driver; so we can assume OPL3 here.
*/
snd_assert(opl3->r_port != 0, return -ENODEV);
opl3->hardware = OPL3_HW_OPL3;
}
return 0;
}
/*
* AdLib timers
*/
/*
* Timer 1 - 80us
*/
static int snd_opl3_timer1_start(struct snd_timer * timer)
{
unsigned long flags;
unsigned char tmp;
unsigned int ticks;
struct snd_opl3 *opl3;
opl3 = snd_timer_chip(timer);
spin_lock_irqsave(&opl3->timer_lock, flags);
ticks = timer->sticks;
tmp = (opl3->timer_enable | OPL3_TIMER1_START) & ~OPL3_TIMER1_MASK;
opl3->timer_enable = tmp;
opl3->command(opl3, OPL3_LEFT | OPL3_REG_TIMER1, 256 - ticks); /* timer 1 count */
opl3->command(opl3, OPL3_LEFT | OPL3_REG_TIMER_CONTROL, tmp); /* enable timer 1 IRQ */
spin_unlock_irqrestore(&opl3->timer_lock, flags);
return 0;
}
static int snd_opl3_timer1_stop(struct snd_timer * timer)
{
unsigned long flags;
unsigned char tmp;
struct snd_opl3 *opl3;
opl3 = snd_timer_chip(timer);
spin_lock_irqsave(&opl3->timer_lock, flags);
tmp = (opl3->timer_enable | OPL3_TIMER1_MASK) & ~OPL3_TIMER1_START;
opl3->timer_enable = tmp;
opl3->command(opl3, OPL3_LEFT | OPL3_REG_TIMER_CONTROL, tmp); /* disable timer #1 */
spin_unlock_irqrestore(&opl3->timer_lock, flags);
return 0;
}
/*
* Timer 2 - 320us
*/
static int snd_opl3_timer2_start(struct snd_timer * timer)
{
unsigned long flags;
unsigned char tmp;
unsigned int ticks;
struct snd_opl3 *opl3;
opl3 = snd_timer_chip(timer);
spin_lock_irqsave(&opl3->timer_lock, flags);
ticks = timer->sticks;
tmp = (opl3->timer_enable | OPL3_TIMER2_START) & ~OPL3_TIMER2_MASK;
opl3->timer_enable = tmp;
opl3->command(opl3, OPL3_LEFT | OPL3_REG_TIMER2, 256 - ticks); /* timer 1 count */
opl3->command(opl3, OPL3_LEFT | OPL3_REG_TIMER_CONTROL, tmp); /* enable timer 1 IRQ */
spin_unlock_irqrestore(&opl3->timer_lock, flags);
return 0;
}
static int snd_opl3_timer2_stop(struct snd_timer * timer)
{
unsigned long flags;
unsigned char tmp;
struct snd_opl3 *opl3;
opl3 = snd_timer_chip(timer);
spin_lock_irqsave(&opl3->timer_lock, flags);
tmp = (opl3->timer_enable | OPL3_TIMER2_MASK) & ~OPL3_TIMER2_START;
opl3->timer_enable = tmp;
opl3->command(opl3, OPL3_LEFT | OPL3_REG_TIMER_CONTROL, tmp); /* disable timer #1 */
spin_unlock_irqrestore(&opl3->timer_lock, flags);
return 0;
}
/*
*/
static struct snd_timer_hardware snd_opl3_timer1 =
{
.flags = SNDRV_TIMER_HW_STOP,
.resolution = 80000,
.ticks = 256,
.start = snd_opl3_timer1_start,
.stop = snd_opl3_timer1_stop,
};
static struct snd_timer_hardware snd_opl3_timer2 =
{
.flags = SNDRV_TIMER_HW_STOP,
.resolution = 320000,
.ticks = 256,
.start = snd_opl3_timer2_start,
.stop = snd_opl3_timer2_stop,
};
static int snd_opl3_timer1_init(struct snd_opl3 * opl3, int timer_no)
{
struct snd_timer *timer = NULL;
struct snd_timer_id tid;
int err;
tid.dev_class = SNDRV_TIMER_CLASS_CARD;
tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE;
tid.card = opl3->card->number;
tid.device = timer_no;
tid.subdevice = 0;
if ((err = snd_timer_new(opl3->card, "AdLib timer #1", &tid, &timer)) >= 0) {
strcpy(timer->name, "AdLib timer #1");
timer->private_data = opl3;
timer->hw = snd_opl3_timer1;
}
opl3->timer1 = timer;
return err;
}
static int snd_opl3_timer2_init(struct snd_opl3 * opl3, int timer_no)
{
struct snd_timer *timer = NULL;
struct snd_timer_id tid;
int err;
tid.dev_class = SNDRV_TIMER_CLASS_CARD;
tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE;
tid.card = opl3->card->number;
tid.device = timer_no;
tid.subdevice = 0;
if ((err = snd_timer_new(opl3->card, "AdLib timer #2", &tid, &timer)) >= 0) {
strcpy(timer->name, "AdLib timer #2");
timer->private_data = opl3;
timer->hw = snd_opl3_timer2;
}
opl3->timer2 = timer;
return err;
}
/*
*/
void snd_opl3_interrupt(struct snd_hwdep * hw)
{
unsigned char status;
struct snd_opl3 *opl3;
struct snd_timer *timer;
if (hw == NULL)
return;
opl3 = hw->private_data;
status = inb(opl3->l_port);
#if 0
snd_printk("AdLib IRQ status = 0x%x\n", status);
#endif
if (!(status & 0x80))
return;
if (status & 0x40) {
timer = opl3->timer1;
snd_timer_interrupt(timer, timer->sticks);
}
if (status & 0x20) {
timer = opl3->timer2;
snd_timer_interrupt(timer, timer->sticks);
}
}
EXPORT_SYMBOL(snd_opl3_interrupt);
/*
*/
static int snd_opl3_free(struct snd_opl3 *opl3)
{
snd_assert(opl3 != NULL, return -ENXIO);
if (opl3->private_free)
opl3->private_free(opl3);
release_and_free_resource(opl3->res_l_port);
release_and_free_resource(opl3->res_r_port);
kfree(opl3);
return 0;
}
static int snd_opl3_dev_free(struct snd_device *device)
{
struct snd_opl3 *opl3 = device->device_data;
return snd_opl3_free(opl3);
}
int snd_opl3_new(struct snd_card *card,
unsigned short hardware,
struct snd_opl3 **ropl3)
{
static struct snd_device_ops ops = {
.dev_free = snd_opl3_dev_free,
};
struct snd_opl3 *opl3;
int err;
*ropl3 = NULL;
opl3 = kzalloc(sizeof(*opl3), GFP_KERNEL);
if (opl3 == NULL) {
snd_printk(KERN_ERR "opl3: cannot allocate\n");
return -ENOMEM;
}
opl3->card = card;
opl3->hardware = hardware;
spin_lock_init(&opl3->reg_lock);
spin_lock_init(&opl3->timer_lock);
mutex_init(&opl3->access_mutex);
if ((err = snd_device_new(card, SNDRV_DEV_CODEC, opl3, &ops)) < 0) {
snd_opl3_free(opl3);
return err;
}
*ropl3 = opl3;
return 0;
}
EXPORT_SYMBOL(snd_opl3_new);
int snd_opl3_init(struct snd_opl3 *opl3)
{
if (! opl3->command) {
printk(KERN_ERR "snd_opl3_init: command not defined!\n");
return -EINVAL;
}
opl3->command(opl3, OPL3_LEFT | OPL3_REG_TEST, OPL3_ENABLE_WAVE_SELECT);
/* Melodic mode */
opl3->command(opl3, OPL3_LEFT | OPL3_REG_PERCUSSION, 0x00);
switch (opl3->hardware & OPL3_HW_MASK) {
case OPL3_HW_OPL2:
opl3->max_voices = MAX_OPL2_VOICES;
break;
case OPL3_HW_OPL3:
case OPL3_HW_OPL4:
opl3->max_voices = MAX_OPL3_VOICES;
/* Enter OPL3 mode */
opl3->command(opl3, OPL3_RIGHT | OPL3_REG_MODE, OPL3_OPL3_ENABLE);
}
return 0;
}
EXPORT_SYMBOL(snd_opl3_init);
int snd_opl3_create(struct snd_card *card,
unsigned long l_port,
unsigned long r_port,
unsigned short hardware,
int integrated,
struct snd_opl3 ** ropl3)
{
struct snd_opl3 *opl3;
int err;
*ropl3 = NULL;
if ((err = snd_opl3_new(card, hardware, &opl3)) < 0)
return err;
if (! integrated) {
if ((opl3->res_l_port = request_region(l_port, 2, "OPL2/3 (left)")) == NULL) {
snd_printk(KERN_ERR "opl3: can't grab left port 0x%lx\n", l_port);
snd_device_free(card, opl3);
return -EBUSY;
}
if (r_port != 0 &&
(opl3->res_r_port = request_region(r_port, 2, "OPL2/3 (right)")) == NULL) {
snd_printk(KERN_ERR "opl3: can't grab right port 0x%lx\n", r_port);
snd_device_free(card, opl3);
return -EBUSY;
}
}
opl3->l_port = l_port;
opl3->r_port = r_port;
switch (opl3->hardware) {
/* some hardware doesn't support timers */
case OPL3_HW_OPL3_SV:
case OPL3_HW_OPL3_CS:
case OPL3_HW_OPL3_FM801:
opl3->command = &snd_opl3_command;
break;
default:
opl3->command = &snd_opl2_command;
if ((err = snd_opl3_detect(opl3)) < 0) {
snd_printd("OPL2/3 chip not detected at 0x%lx/0x%lx\n",
opl3->l_port, opl3->r_port);
snd_device_free(card, opl3);
return err;
}
/* detect routine returns correct hardware type */
switch (opl3->hardware & OPL3_HW_MASK) {
case OPL3_HW_OPL3:
case OPL3_HW_OPL4:
opl3->command = &snd_opl3_command;
}
}
snd_opl3_init(opl3);
*ropl3 = opl3;
return 0;
}
EXPORT_SYMBOL(snd_opl3_create);
int snd_opl3_timer_new(struct snd_opl3 * opl3, int timer1_dev, int timer2_dev)
{
int err;
if (timer1_dev >= 0)
if ((err = snd_opl3_timer1_init(opl3, timer1_dev)) < 0)
return err;
if (timer2_dev >= 0) {
if ((err = snd_opl3_timer2_init(opl3, timer2_dev)) < 0) {
snd_device_free(opl3->card, opl3->timer1);
opl3->timer1 = NULL;
return err;
}
}
return 0;
}
EXPORT_SYMBOL(snd_opl3_timer_new);
int snd_opl3_hwdep_new(struct snd_opl3 * opl3,
int device, int seq_device,
struct snd_hwdep ** rhwdep)
{
struct snd_hwdep *hw;
struct snd_card *card = opl3->card;
int err;
if (rhwdep)
*rhwdep = NULL;
/* create hardware dependent device (direct FM) */
if ((err = snd_hwdep_new(card, "OPL2/OPL3", device, &hw)) < 0) {
snd_device_free(card, opl3);
return err;
}
hw->private_data = opl3;
#ifdef CONFIG_SND_OSSEMUL
if (device == 0) {
hw->oss_type = SNDRV_OSS_DEVICE_TYPE_DMFM;
sprintf(hw->oss_dev, "dmfm%i", card->number);
}
#endif
strcpy(hw->name, hw->id);
switch (opl3->hardware & OPL3_HW_MASK) {
case OPL3_HW_OPL2:
strcpy(hw->name, "OPL2 FM");
hw->iface = SNDRV_HWDEP_IFACE_OPL2;
break;
case OPL3_HW_OPL3:
strcpy(hw->name, "OPL3 FM");
hw->iface = SNDRV_HWDEP_IFACE_OPL3;
break;
case OPL3_HW_OPL4:
strcpy(hw->name, "OPL4 FM");
hw->iface = SNDRV_HWDEP_IFACE_OPL4;
break;
}
/* operators - only ioctl */
hw->ops.open = snd_opl3_open;
hw->ops.ioctl = snd_opl3_ioctl;
hw->ops.release = snd_opl3_release;
opl3->seq_dev_num = seq_device;
#if defined(CONFIG_SND_SEQUENCER) || (defined(MODULE) && defined(CONFIG_SND_SEQUENCER_MODULE))
if (snd_seq_device_new(card, seq_device, SNDRV_SEQ_DEV_ID_OPL3,
sizeof(struct snd_opl3 *), &opl3->seq_dev) >= 0) {
strcpy(opl3->seq_dev->name, hw->name);
*(struct snd_opl3 **)SNDRV_SEQ_DEVICE_ARGPTR(opl3->seq_dev) = opl3;
}
#endif
if (rhwdep)
*rhwdep = hw;
return 0;
}
EXPORT_SYMBOL(snd_opl3_hwdep_new);
/*
* INIT part
*/
static int __init alsa_opl3_init(void)
{
return 0;
}
static void __exit alsa_opl3_exit(void)
{
}
module_init(alsa_opl3_init)
module_exit(alsa_opl3_exit)