blob: e65e3543305568a9ab910057502ba583f656e724 [file] [log] [blame]
/*
* Universal Interface for Intel High Definition Audio Codec
*
* HD audio interface patch for Realtek ALC codecs
*
* Copyright (c) 2004 Kailang Yang <kailang@realtek.com.tw>
* PeiSen Hou <pshou@realtek.com.tw>
* Takashi Iwai <tiwai@suse.de>
* Jonathan Woithe <jwoithe@physics.adelaide.edu.au>
*
* This driver is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This driver is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/module.h>
#include <sound/core.h>
#include <sound/jack.h>
#include "hda_codec.h"
#include "hda_local.h"
#include "hda_beep.h"
#include "hda_jack.h"
/* unsol event tags */
#define ALC_FRONT_EVENT 0x01
#define ALC_DCVOL_EVENT 0x02
#define ALC_HP_EVENT 0x04
#define ALC_MIC_EVENT 0x08
/* for GPIO Poll */
#define GPIO_MASK 0x03
/* extra amp-initialization sequence types */
enum {
ALC_INIT_NONE,
ALC_INIT_DEFAULT,
ALC_INIT_GPIO1,
ALC_INIT_GPIO2,
ALC_INIT_GPIO3,
};
struct alc_customize_define {
unsigned int sku_cfg;
unsigned char port_connectivity;
unsigned char check_sum;
unsigned char customization;
unsigned char external_amp;
unsigned int enable_pcbeep:1;
unsigned int platform_type:1;
unsigned int swap:1;
unsigned int override:1;
unsigned int fixup:1; /* Means that this sku is set by driver, not read from hw */
};
struct alc_fixup;
struct alc_multi_io {
hda_nid_t pin; /* multi-io widget pin NID */
hda_nid_t dac; /* DAC to be connected */
unsigned int ctl_in; /* cached input-pin control value */
};
enum {
ALC_AUTOMUTE_PIN, /* change the pin control */
ALC_AUTOMUTE_AMP, /* mute/unmute the pin AMP */
ALC_AUTOMUTE_MIXER, /* mute/unmute mixer widget AMP */
};
#define MAX_VOL_NIDS 0x40
struct alc_spec {
/* codec parameterization */
const struct snd_kcontrol_new *mixers[5]; /* mixer arrays */
unsigned int num_mixers;
const struct snd_kcontrol_new *cap_mixer; /* capture mixer */
unsigned int beep_amp; /* beep amp value, set via set_beep_amp() */
const struct hda_verb *init_verbs[10]; /* initialization verbs
* don't forget NULL
* termination!
*/
unsigned int num_init_verbs;
char stream_name_analog[32]; /* analog PCM stream */
const struct hda_pcm_stream *stream_analog_playback;
const struct hda_pcm_stream *stream_analog_capture;
const struct hda_pcm_stream *stream_analog_alt_playback;
const struct hda_pcm_stream *stream_analog_alt_capture;
char stream_name_digital[32]; /* digital PCM stream */
const struct hda_pcm_stream *stream_digital_playback;
const struct hda_pcm_stream *stream_digital_capture;
/* playback */
struct hda_multi_out multiout; /* playback set-up
* max_channels, dacs must be set
* dig_out_nid and hp_nid are optional
*/
hda_nid_t alt_dac_nid;
hda_nid_t slave_dig_outs[3]; /* optional - for auto-parsing */
int dig_out_type;
/* capture */
unsigned int num_adc_nids;
const hda_nid_t *adc_nids;
const hda_nid_t *capsrc_nids;
hda_nid_t dig_in_nid; /* digital-in NID; optional */
hda_nid_t mixer_nid; /* analog-mixer NID */
DECLARE_BITMAP(vol_ctls, MAX_VOL_NIDS << 1);
DECLARE_BITMAP(sw_ctls, MAX_VOL_NIDS << 1);
/* capture setup for dynamic dual-adc switch */
hda_nid_t cur_adc;
unsigned int cur_adc_stream_tag;
unsigned int cur_adc_format;
/* capture source */
unsigned int num_mux_defs;
const struct hda_input_mux *input_mux;
unsigned int cur_mux[3];
hda_nid_t ext_mic_pin;
hda_nid_t dock_mic_pin;
hda_nid_t int_mic_pin;
/* channel model */
const struct hda_channel_mode *channel_mode;
int num_channel_mode;
int need_dac_fix;
int const_channel_count;
int ext_channel_count;
/* PCM information */
struct hda_pcm pcm_rec[3]; /* used in alc_build_pcms() */
/* dynamic controls, init_verbs and input_mux */
struct auto_pin_cfg autocfg;
struct alc_customize_define cdefine;
struct snd_array kctls;
struct hda_input_mux private_imux[3];
hda_nid_t private_dac_nids[AUTO_CFG_MAX_OUTS];
hda_nid_t private_adc_nids[AUTO_CFG_MAX_OUTS];
hda_nid_t private_capsrc_nids[AUTO_CFG_MAX_OUTS];
hda_nid_t imux_pins[HDA_MAX_NUM_INPUTS];
unsigned int dyn_adc_idx[HDA_MAX_NUM_INPUTS];
int int_mic_idx, ext_mic_idx, dock_mic_idx; /* for auto-mic */
/* hooks */
void (*init_hook)(struct hda_codec *codec);
void (*unsol_event)(struct hda_codec *codec, unsigned int res);
#ifdef CONFIG_SND_HDA_POWER_SAVE
void (*power_hook)(struct hda_codec *codec);
#endif
void (*shutup)(struct hda_codec *codec);
void (*automute_hook)(struct hda_codec *codec);
/* for pin sensing */
unsigned int hp_jack_present:1;
unsigned int line_jack_present:1;
unsigned int master_mute:1;
unsigned int auto_mic:1;
unsigned int auto_mic_valid_imux:1; /* valid imux for auto-mic */
unsigned int automute_speaker:1; /* automute speaker outputs */
unsigned int automute_lo:1; /* automute LO outputs */
unsigned int detect_hp:1; /* Headphone detection enabled */
unsigned int detect_lo:1; /* Line-out detection enabled */
unsigned int automute_speaker_possible:1; /* there are speakers and either LO or HP */
unsigned int automute_lo_possible:1; /* there are line outs and HP */
unsigned int keep_vref_in_automute:1; /* Don't clear VREF in automute */
/* other flags */
unsigned int no_analog :1; /* digital I/O only */
unsigned int dyn_adc_switch:1; /* switch ADCs (for ALC275) */
unsigned int single_input_src:1;
unsigned int vol_in_capsrc:1; /* use capsrc volume (ADC has no vol) */
unsigned int parse_flags; /* passed to snd_hda_parse_pin_defcfg() */
unsigned int shared_mic_hp:1; /* HP/Mic-in sharing */
/* auto-mute control */
int automute_mode;
hda_nid_t automute_mixer_nid[AUTO_CFG_MAX_OUTS];
int init_amp;
int codec_variant; /* flag for other variants */
/* for virtual master */
hda_nid_t vmaster_nid;
struct hda_vmaster_mute_hook vmaster_mute;
#ifdef CONFIG_SND_HDA_POWER_SAVE
struct hda_loopback_check loopback;
int num_loopbacks;
struct hda_amp_list loopback_list[8];
#endif
/* for PLL fix */
hda_nid_t pll_nid;
unsigned int pll_coef_idx, pll_coef_bit;
unsigned int coef0;
/* fix-up list */
int fixup_id;
const struct alc_fixup *fixup_list;
const char *fixup_name;
/* multi-io */
int multi_ios;
struct alc_multi_io multi_io[4];
/* bind volumes */
struct snd_array bind_ctls;
};
static bool check_amp_caps(struct hda_codec *codec, hda_nid_t nid,
int dir, unsigned int bits)
{
if (!nid)
return false;
if (get_wcaps(codec, nid) & (1 << (dir + 1)))
if (query_amp_caps(codec, nid, dir) & bits)
return true;
return false;
}
#define nid_has_mute(codec, nid, dir) \
check_amp_caps(codec, nid, dir, AC_AMPCAP_MUTE)
#define nid_has_volume(codec, nid, dir) \
check_amp_caps(codec, nid, dir, AC_AMPCAP_NUM_STEPS)
/*
* input MUX handling
*/
static int alc_mux_enum_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct alc_spec *spec = codec->spec;
unsigned int mux_idx = snd_ctl_get_ioffidx(kcontrol, &uinfo->id);
if (mux_idx >= spec->num_mux_defs)
mux_idx = 0;
if (!spec->input_mux[mux_idx].num_items && mux_idx > 0)
mux_idx = 0;
return snd_hda_input_mux_info(&spec->input_mux[mux_idx], uinfo);
}
static int alc_mux_enum_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct alc_spec *spec = codec->spec;
unsigned int adc_idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
ucontrol->value.enumerated.item[0] = spec->cur_mux[adc_idx];
return 0;
}
static bool alc_dyn_adc_pcm_resetup(struct hda_codec *codec, int cur)
{
struct alc_spec *spec = codec->spec;
hda_nid_t new_adc = spec->adc_nids[spec->dyn_adc_idx[cur]];
if (spec->cur_adc && spec->cur_adc != new_adc) {
/* stream is running, let's swap the current ADC */
__snd_hda_codec_cleanup_stream(codec, spec->cur_adc, 1);
spec->cur_adc = new_adc;
snd_hda_codec_setup_stream(codec, new_adc,
spec->cur_adc_stream_tag, 0,
spec->cur_adc_format);
return true;
}
return false;
}
static inline hda_nid_t get_capsrc(struct alc_spec *spec, int idx)
{
return spec->capsrc_nids ?
spec->capsrc_nids[idx] : spec->adc_nids[idx];
}
static void call_update_outputs(struct hda_codec *codec);
/* select the given imux item; either unmute exclusively or select the route */
static int alc_mux_select(struct hda_codec *codec, unsigned int adc_idx,
unsigned int idx, bool force)
{
struct alc_spec *spec = codec->spec;
const struct hda_input_mux *imux;
unsigned int mux_idx;
int i, type, num_conns;
hda_nid_t nid;
if (!spec->input_mux)
return 0;
mux_idx = adc_idx >= spec->num_mux_defs ? 0 : adc_idx;
imux = &spec->input_mux[mux_idx];
if (!imux->num_items && mux_idx > 0)
imux = &spec->input_mux[0];
if (!imux->num_items)
return 0;
if (idx >= imux->num_items)
idx = imux->num_items - 1;
if (spec->cur_mux[adc_idx] == idx && !force)
return 0;
spec->cur_mux[adc_idx] = idx;
/* for shared I/O, change the pin-control accordingly */
if (spec->shared_mic_hp) {
/* NOTE: this assumes that there are only two inputs, the
* first is the real internal mic and the second is HP jack.
*/
snd_hda_codec_write(codec, spec->autocfg.inputs[1].pin, 0,
AC_VERB_SET_PIN_WIDGET_CONTROL,
spec->cur_mux[adc_idx] ?
PIN_VREF80 : PIN_HP);
spec->automute_speaker = !spec->cur_mux[adc_idx];
call_update_outputs(codec);
}
if (spec->dyn_adc_switch) {
alc_dyn_adc_pcm_resetup(codec, idx);
adc_idx = spec->dyn_adc_idx[idx];
}
nid = get_capsrc(spec, adc_idx);
/* no selection? */
num_conns = snd_hda_get_conn_list(codec, nid, NULL);
if (num_conns <= 1)
return 1;
type = get_wcaps_type(get_wcaps(codec, nid));
if (type == AC_WID_AUD_MIX) {
/* Matrix-mixer style (e.g. ALC882) */
int active = imux->items[idx].index;
for (i = 0; i < num_conns; i++) {
unsigned int v = (i == active) ? 0 : HDA_AMP_MUTE;
snd_hda_codec_amp_stereo(codec, nid, HDA_INPUT, i,
HDA_AMP_MUTE, v);
}
} else {
/* MUX style (e.g. ALC880) */
snd_hda_codec_write_cache(codec, nid, 0,
AC_VERB_SET_CONNECT_SEL,
imux->items[idx].index);
}
return 1;
}
static int alc_mux_enum_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
unsigned int adc_idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
return alc_mux_select(codec, adc_idx,
ucontrol->value.enumerated.item[0], false);
}
/*
* set up the input pin config (depending on the given auto-pin type)
*/
static void alc_set_input_pin(struct hda_codec *codec, hda_nid_t nid,
int auto_pin_type)
{
unsigned int val = PIN_IN;
if (auto_pin_type == AUTO_PIN_MIC) {
unsigned int pincap;
unsigned int oldval;
oldval = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_PIN_WIDGET_CONTROL, 0);
pincap = snd_hda_query_pin_caps(codec, nid);
pincap = (pincap & AC_PINCAP_VREF) >> AC_PINCAP_VREF_SHIFT;
/* if the default pin setup is vref50, we give it priority */
if ((pincap & AC_PINCAP_VREF_80) && oldval != PIN_VREF50)
val = PIN_VREF80;
else if (pincap & AC_PINCAP_VREF_50)
val = PIN_VREF50;
else if (pincap & AC_PINCAP_VREF_100)
val = PIN_VREF100;
else if (pincap & AC_PINCAP_VREF_GRD)
val = PIN_VREFGRD;
}
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_PIN_WIDGET_CONTROL, val);
}
/*
* Append the given mixer and verb elements for the later use
* The mixer array is referred in build_controls(), and init_verbs are
* called in init().
*/
static void add_mixer(struct alc_spec *spec, const struct snd_kcontrol_new *mix)
{
if (snd_BUG_ON(spec->num_mixers >= ARRAY_SIZE(spec->mixers)))
return;
spec->mixers[spec->num_mixers++] = mix;
}
static void add_verb(struct alc_spec *spec, const struct hda_verb *verb)
{
if (snd_BUG_ON(spec->num_init_verbs >= ARRAY_SIZE(spec->init_verbs)))
return;
spec->init_verbs[spec->num_init_verbs++] = verb;
}
/*
* GPIO setup tables, used in initialization
*/
/* Enable GPIO mask and set output */
static const struct hda_verb alc_gpio1_init_verbs[] = {
{0x01, AC_VERB_SET_GPIO_MASK, 0x01},
{0x01, AC_VERB_SET_GPIO_DIRECTION, 0x01},
{0x01, AC_VERB_SET_GPIO_DATA, 0x01},
{ }
};
static const struct hda_verb alc_gpio2_init_verbs[] = {
{0x01, AC_VERB_SET_GPIO_MASK, 0x02},
{0x01, AC_VERB_SET_GPIO_DIRECTION, 0x02},
{0x01, AC_VERB_SET_GPIO_DATA, 0x02},
{ }
};
static const struct hda_verb alc_gpio3_init_verbs[] = {
{0x01, AC_VERB_SET_GPIO_MASK, 0x03},
{0x01, AC_VERB_SET_GPIO_DIRECTION, 0x03},
{0x01, AC_VERB_SET_GPIO_DATA, 0x03},
{ }
};
/*
* Fix hardware PLL issue
* On some codecs, the analog PLL gating control must be off while
* the default value is 1.
*/
static void alc_fix_pll(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
unsigned int val;
if (!spec->pll_nid)
return;
snd_hda_codec_write(codec, spec->pll_nid, 0, AC_VERB_SET_COEF_INDEX,
spec->pll_coef_idx);
val = snd_hda_codec_read(codec, spec->pll_nid, 0,
AC_VERB_GET_PROC_COEF, 0);
snd_hda_codec_write(codec, spec->pll_nid, 0, AC_VERB_SET_COEF_INDEX,
spec->pll_coef_idx);
snd_hda_codec_write(codec, spec->pll_nid, 0, AC_VERB_SET_PROC_COEF,
val & ~(1 << spec->pll_coef_bit));
}
static void alc_fix_pll_init(struct hda_codec *codec, hda_nid_t nid,
unsigned int coef_idx, unsigned int coef_bit)
{
struct alc_spec *spec = codec->spec;
spec->pll_nid = nid;
spec->pll_coef_idx = coef_idx;
spec->pll_coef_bit = coef_bit;
alc_fix_pll(codec);
}
/*
* Jack detections for HP auto-mute and mic-switch
*/
/* check each pin in the given array; returns true if any of them is plugged */
static bool detect_jacks(struct hda_codec *codec, int num_pins, hda_nid_t *pins)
{
int i, present = 0;
for (i = 0; i < num_pins; i++) {
hda_nid_t nid = pins[i];
if (!nid)
break;
present |= snd_hda_jack_detect(codec, nid);
}
return present;
}
/* standard HP/line-out auto-mute helper */
static void do_automute(struct hda_codec *codec, int num_pins, hda_nid_t *pins,
bool mute, bool hp_out)
{
struct alc_spec *spec = codec->spec;
unsigned int mute_bits = mute ? HDA_AMP_MUTE : 0;
unsigned int pin_bits = mute ? 0 : (hp_out ? PIN_HP : PIN_OUT);
int i;
for (i = 0; i < num_pins; i++) {
hda_nid_t nid = pins[i];
unsigned int val;
if (!nid)
break;
switch (spec->automute_mode) {
case ALC_AUTOMUTE_PIN:
/* don't reset VREF value in case it's controlling
* the amp (see alc861_fixup_asus_amp_vref_0f())
*/
if (spec->keep_vref_in_automute) {
val = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_PIN_WIDGET_CONTROL, 0);
val &= ~PIN_HP;
} else
val = 0;
val |= pin_bits;
snd_hda_codec_write(codec, nid, 0,
AC_VERB_SET_PIN_WIDGET_CONTROL,
val);
break;
case ALC_AUTOMUTE_AMP:
snd_hda_codec_amp_stereo(codec, nid, HDA_OUTPUT, 0,
HDA_AMP_MUTE, mute_bits);
break;
case ALC_AUTOMUTE_MIXER:
nid = spec->automute_mixer_nid[i];
if (!nid)
break;
snd_hda_codec_amp_stereo(codec, nid, HDA_INPUT, 0,
HDA_AMP_MUTE, mute_bits);
snd_hda_codec_amp_stereo(codec, nid, HDA_INPUT, 1,
HDA_AMP_MUTE, mute_bits);
break;
}
}
}
/* Toggle outputs muting */
static void update_outputs(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
int on;
/* Control HP pins/amps depending on master_mute state;
* in general, HP pins/amps control should be enabled in all cases,
* but currently set only for master_mute, just to be safe
*/
if (!spec->shared_mic_hp) /* don't change HP-pin when shared with mic */
do_automute(codec, ARRAY_SIZE(spec->autocfg.hp_pins),
spec->autocfg.hp_pins, spec->master_mute, true);
if (!spec->automute_speaker)
on = 0;
else
on = spec->hp_jack_present | spec->line_jack_present;
on |= spec->master_mute;
do_automute(codec, ARRAY_SIZE(spec->autocfg.speaker_pins),
spec->autocfg.speaker_pins, on, false);
/* toggle line-out mutes if needed, too */
/* if LO is a copy of either HP or Speaker, don't need to handle it */
if (spec->autocfg.line_out_pins[0] == spec->autocfg.hp_pins[0] ||
spec->autocfg.line_out_pins[0] == spec->autocfg.speaker_pins[0])
return;
if (!spec->automute_lo)
on = 0;
else
on = spec->hp_jack_present;
on |= spec->master_mute;
do_automute(codec, ARRAY_SIZE(spec->autocfg.line_out_pins),
spec->autocfg.line_out_pins, on, false);
}
static void call_update_outputs(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
if (spec->automute_hook)
spec->automute_hook(codec);
else
update_outputs(codec);
}
/* standard HP-automute helper */
static void alc_hp_automute(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
spec->hp_jack_present =
detect_jacks(codec, ARRAY_SIZE(spec->autocfg.hp_pins),
spec->autocfg.hp_pins);
if (!spec->detect_hp || (!spec->automute_speaker && !spec->automute_lo))
return;
call_update_outputs(codec);
}
/* standard line-out-automute helper */
static void alc_line_automute(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
/* check LO jack only when it's different from HP */
if (spec->autocfg.line_out_pins[0] == spec->autocfg.hp_pins[0])
return;
spec->line_jack_present =
detect_jacks(codec, ARRAY_SIZE(spec->autocfg.line_out_pins),
spec->autocfg.line_out_pins);
if (!spec->automute_speaker || !spec->detect_lo)
return;
call_update_outputs(codec);
}
#define get_connection_index(codec, mux, nid) \
snd_hda_get_conn_index(codec, mux, nid, 0)
/* standard mic auto-switch helper */
static void alc_mic_automute(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
hda_nid_t *pins = spec->imux_pins;
if (!spec->auto_mic || !spec->auto_mic_valid_imux)
return;
if (snd_BUG_ON(!spec->adc_nids))
return;
if (snd_BUG_ON(spec->int_mic_idx < 0 || spec->ext_mic_idx < 0))
return;
if (snd_hda_jack_detect(codec, pins[spec->ext_mic_idx]))
alc_mux_select(codec, 0, spec->ext_mic_idx, false);
else if (spec->dock_mic_idx >= 0 &&
snd_hda_jack_detect(codec, pins[spec->dock_mic_idx]))
alc_mux_select(codec, 0, spec->dock_mic_idx, false);
else
alc_mux_select(codec, 0, spec->int_mic_idx, false);
}
/* handle the specified unsol action (ALC_XXX_EVENT) */
static void alc_exec_unsol_event(struct hda_codec *codec, int action)
{
switch (action) {
case ALC_HP_EVENT:
alc_hp_automute(codec);
break;
case ALC_FRONT_EVENT:
alc_line_automute(codec);
break;
case ALC_MIC_EVENT:
alc_mic_automute(codec);
break;
}
snd_hda_jack_report_sync(codec);
}
/* update the master volume per volume-knob's unsol event */
static void alc_update_knob_master(struct hda_codec *codec, hda_nid_t nid)
{
unsigned int val;
struct snd_kcontrol *kctl;
struct snd_ctl_elem_value *uctl;
kctl = snd_hda_find_mixer_ctl(codec, "Master Playback Volume");
if (!kctl)
return;
uctl = kzalloc(sizeof(*uctl), GFP_KERNEL);
if (!uctl)
return;
val = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_VOLUME_KNOB_CONTROL, 0);
val &= HDA_AMP_VOLMASK;
uctl->value.integer.value[0] = val;
uctl->value.integer.value[1] = val;
kctl->put(kctl, uctl);
kfree(uctl);
}
/* unsolicited event for HP jack sensing */
static void alc_sku_unsol_event(struct hda_codec *codec, unsigned int res)
{
int action;
if (codec->vendor_id == 0x10ec0880)
res >>= 28;
else
res >>= 26;
action = snd_hda_jack_get_action(codec, res);
if (action == ALC_DCVOL_EVENT) {
/* Execute the dc-vol event here as it requires the NID
* but we don't pass NID to alc_exec_unsol_event().
* Once when we convert all static quirks to the auto-parser,
* this can be integerated into there.
*/
struct hda_jack_tbl *jack;
jack = snd_hda_jack_tbl_get_from_tag(codec, res);
if (jack)
alc_update_knob_master(codec, jack->nid);
return;
}
alc_exec_unsol_event(codec, action);
}
/* call init functions of standard auto-mute helpers */
static void alc_inithook(struct hda_codec *codec)
{
alc_hp_automute(codec);
alc_line_automute(codec);
alc_mic_automute(codec);
}
/* additional initialization for ALC888 variants */
static void alc888_coef_init(struct hda_codec *codec)
{
unsigned int tmp;
snd_hda_codec_write(codec, 0x20, 0, AC_VERB_SET_COEF_INDEX, 0);
tmp = snd_hda_codec_read(codec, 0x20, 0, AC_VERB_GET_PROC_COEF, 0);
snd_hda_codec_write(codec, 0x20, 0, AC_VERB_SET_COEF_INDEX, 7);
if ((tmp & 0xf0) == 0x20)
/* alc888S-VC */
snd_hda_codec_read(codec, 0x20, 0,
AC_VERB_SET_PROC_COEF, 0x830);
else
/* alc888-VB */
snd_hda_codec_read(codec, 0x20, 0,
AC_VERB_SET_PROC_COEF, 0x3030);
}
/* additional initialization for ALC889 variants */
static void alc889_coef_init(struct hda_codec *codec)
{
unsigned int tmp;
snd_hda_codec_write(codec, 0x20, 0, AC_VERB_SET_COEF_INDEX, 7);
tmp = snd_hda_codec_read(codec, 0x20, 0, AC_VERB_GET_PROC_COEF, 0);
snd_hda_codec_write(codec, 0x20, 0, AC_VERB_SET_COEF_INDEX, 7);
snd_hda_codec_write(codec, 0x20, 0, AC_VERB_SET_PROC_COEF, tmp|0x2010);
}
/* turn on/off EAPD control (only if available) */
static void set_eapd(struct hda_codec *codec, hda_nid_t nid, int on)
{
if (get_wcaps_type(get_wcaps(codec, nid)) != AC_WID_PIN)
return;
if (snd_hda_query_pin_caps(codec, nid) & AC_PINCAP_EAPD)
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_EAPD_BTLENABLE,
on ? 2 : 0);
}
/* turn on/off EAPD controls of the codec */
static void alc_auto_setup_eapd(struct hda_codec *codec, bool on)
{
/* We currently only handle front, HP */
static hda_nid_t pins[] = {
0x0f, 0x10, 0x14, 0x15, 0
};
hda_nid_t *p;
for (p = pins; *p; p++)
set_eapd(codec, *p, on);
}
/* generic shutup callback;
* just turning off EPAD and a little pause for avoiding pop-noise
*/
static void alc_eapd_shutup(struct hda_codec *codec)
{
alc_auto_setup_eapd(codec, false);
msleep(200);
}
/* generic EAPD initialization */
static void alc_auto_init_amp(struct hda_codec *codec, int type)
{
unsigned int tmp;
alc_auto_setup_eapd(codec, true);
switch (type) {
case ALC_INIT_GPIO1:
snd_hda_sequence_write(codec, alc_gpio1_init_verbs);
break;
case ALC_INIT_GPIO2:
snd_hda_sequence_write(codec, alc_gpio2_init_verbs);
break;
case ALC_INIT_GPIO3:
snd_hda_sequence_write(codec, alc_gpio3_init_verbs);
break;
case ALC_INIT_DEFAULT:
switch (codec->vendor_id) {
case 0x10ec0260:
snd_hda_codec_write(codec, 0x1a, 0,
AC_VERB_SET_COEF_INDEX, 7);
tmp = snd_hda_codec_read(codec, 0x1a, 0,
AC_VERB_GET_PROC_COEF, 0);
snd_hda_codec_write(codec, 0x1a, 0,
AC_VERB_SET_COEF_INDEX, 7);
snd_hda_codec_write(codec, 0x1a, 0,
AC_VERB_SET_PROC_COEF,
tmp | 0x2010);
break;
case 0x10ec0262:
case 0x10ec0880:
case 0x10ec0882:
case 0x10ec0883:
case 0x10ec0885:
case 0x10ec0887:
/*case 0x10ec0889:*/ /* this causes an SPDIF problem */
alc889_coef_init(codec);
break;
case 0x10ec0888:
alc888_coef_init(codec);
break;
#if 0 /* XXX: This may cause the silent output on speaker on some machines */
case 0x10ec0267:
case 0x10ec0268:
snd_hda_codec_write(codec, 0x20, 0,
AC_VERB_SET_COEF_INDEX, 7);
tmp = snd_hda_codec_read(codec, 0x20, 0,
AC_VERB_GET_PROC_COEF, 0);
snd_hda_codec_write(codec, 0x20, 0,
AC_VERB_SET_COEF_INDEX, 7);
snd_hda_codec_write(codec, 0x20, 0,
AC_VERB_SET_PROC_COEF,
tmp | 0x3000);
break;
#endif /* XXX */
}
break;
}
}
/*
* Auto-Mute mode mixer enum support
*/
static int alc_automute_mode_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct alc_spec *spec = codec->spec;
static const char * const texts2[] = {
"Disabled", "Enabled"
};
static const char * const texts3[] = {
"Disabled", "Speaker Only", "Line Out+Speaker"
};
const char * const *texts;
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
if (spec->automute_speaker_possible && spec->automute_lo_possible) {
uinfo->value.enumerated.items = 3;
texts = texts3;
} else {
uinfo->value.enumerated.items = 2;
texts = texts2;
}
if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
strcpy(uinfo->value.enumerated.name,
texts[uinfo->value.enumerated.item]);
return 0;
}
static int alc_automute_mode_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct alc_spec *spec = codec->spec;
unsigned int val = 0;
if (spec->automute_speaker)
val++;
if (spec->automute_lo)
val++;
ucontrol->value.enumerated.item[0] = val;
return 0;
}
static int alc_automute_mode_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct alc_spec *spec = codec->spec;
switch (ucontrol->value.enumerated.item[0]) {
case 0:
if (!spec->automute_speaker && !spec->automute_lo)
return 0;
spec->automute_speaker = 0;
spec->automute_lo = 0;
break;
case 1:
if (spec->automute_speaker_possible) {
if (!spec->automute_lo && spec->automute_speaker)
return 0;
spec->automute_speaker = 1;
spec->automute_lo = 0;
} else if (spec->automute_lo_possible) {
if (spec->automute_lo)
return 0;
spec->automute_lo = 1;
} else
return -EINVAL;
break;
case 2:
if (!spec->automute_lo_possible || !spec->automute_speaker_possible)
return -EINVAL;
if (spec->automute_speaker && spec->automute_lo)
return 0;
spec->automute_speaker = 1;
spec->automute_lo = 1;
break;
default:
return -EINVAL;
}
call_update_outputs(codec);
return 1;
}
static const struct snd_kcontrol_new alc_automute_mode_enum = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Auto-Mute Mode",
.info = alc_automute_mode_info,
.get = alc_automute_mode_get,
.put = alc_automute_mode_put,
};
static struct snd_kcontrol_new *alc_kcontrol_new(struct alc_spec *spec)
{
snd_array_init(&spec->kctls, sizeof(struct snd_kcontrol_new), 32);
return snd_array_new(&spec->kctls);
}
static int alc_add_automute_mode_enum(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
struct snd_kcontrol_new *knew;
knew = alc_kcontrol_new(spec);
if (!knew)
return -ENOMEM;
*knew = alc_automute_mode_enum;
knew->name = kstrdup("Auto-Mute Mode", GFP_KERNEL);
if (!knew->name)
return -ENOMEM;
return 0;
}
/*
* Check the availability of HP/line-out auto-mute;
* Set up appropriately if really supported
*/
static void alc_init_automute(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
struct auto_pin_cfg *cfg = &spec->autocfg;
int present = 0;
int i;
if (cfg->hp_pins[0])
present++;
if (cfg->line_out_pins[0])
present++;
if (cfg->speaker_pins[0])
present++;
if (present < 2) /* need two different output types */
return;
if (!cfg->speaker_pins[0] &&
cfg->line_out_type == AUTO_PIN_SPEAKER_OUT) {
memcpy(cfg->speaker_pins, cfg->line_out_pins,
sizeof(cfg->speaker_pins));
cfg->speaker_outs = cfg->line_outs;
}
if (!cfg->hp_pins[0] &&
cfg->line_out_type == AUTO_PIN_HP_OUT) {
memcpy(cfg->hp_pins, cfg->line_out_pins,
sizeof(cfg->hp_pins));
cfg->hp_outs = cfg->line_outs;
}
spec->automute_mode = ALC_AUTOMUTE_PIN;
for (i = 0; i < cfg->hp_outs; i++) {
hda_nid_t nid = cfg->hp_pins[i];
if (!is_jack_detectable(codec, nid))
continue;
snd_printdd("realtek: Enable HP auto-muting on NID 0x%x\n",
nid);
snd_hda_jack_detect_enable(codec, nid, ALC_HP_EVENT);
spec->detect_hp = 1;
}
if (cfg->line_out_type == AUTO_PIN_LINE_OUT && cfg->line_outs) {
if (cfg->speaker_outs)
for (i = 0; i < cfg->line_outs; i++) {
hda_nid_t nid = cfg->line_out_pins[i];
if (!is_jack_detectable(codec, nid))
continue;
snd_printdd("realtek: Enable Line-Out "
"auto-muting on NID 0x%x\n", nid);
snd_hda_jack_detect_enable(codec, nid,
ALC_FRONT_EVENT);
spec->detect_lo = 1;
}
spec->automute_lo_possible = spec->detect_hp;
}
spec->automute_speaker_possible = cfg->speaker_outs &&
(spec->detect_hp || spec->detect_lo);
spec->automute_lo = spec->automute_lo_possible;
spec->automute_speaker = spec->automute_speaker_possible;
if (spec->automute_speaker_possible || spec->automute_lo_possible) {
/* create a control for automute mode */
alc_add_automute_mode_enum(codec);
spec->unsol_event = alc_sku_unsol_event;
}
}
/* return the position of NID in the list, or -1 if not found */
static int find_idx_in_nid_list(hda_nid_t nid, const hda_nid_t *list, int nums)
{
int i;
for (i = 0; i < nums; i++)
if (list[i] == nid)
return i;
return -1;
}
/* check whether dynamic ADC-switching is available */
static bool alc_check_dyn_adc_switch(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
struct hda_input_mux *imux = &spec->private_imux[0];
int i, n, idx;
hda_nid_t cap, pin;
if (imux != spec->input_mux) /* no dynamic imux? */
return false;
for (n = 0; n < spec->num_adc_nids; n++) {
cap = spec->private_capsrc_nids[n];
for (i = 0; i < imux->num_items; i++) {
pin = spec->imux_pins[i];
if (!pin)
return false;
if (get_connection_index(codec, cap, pin) < 0)
break;
}
if (i >= imux->num_items)
return true; /* no ADC-switch is needed */
}
for (i = 0; i < imux->num_items; i++) {
pin = spec->imux_pins[i];
for (n = 0; n < spec->num_adc_nids; n++) {
cap = spec->private_capsrc_nids[n];
idx = get_connection_index(codec, cap, pin);
if (idx >= 0) {
imux->items[i].index = idx;
spec->dyn_adc_idx[i] = n;
break;
}
}
}
snd_printdd("realtek: enabling ADC switching\n");
spec->dyn_adc_switch = 1;
return true;
}
/* check whether all auto-mic pins are valid; setup indices if OK */
static bool alc_auto_mic_check_imux(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
const struct hda_input_mux *imux;
if (!spec->auto_mic)
return false;
if (spec->auto_mic_valid_imux)
return true; /* already checked */
/* fill up imux indices */
if (!alc_check_dyn_adc_switch(codec)) {
spec->auto_mic = 0;
return false;
}
imux = spec->input_mux;
spec->ext_mic_idx = find_idx_in_nid_list(spec->ext_mic_pin,
spec->imux_pins, imux->num_items);
spec->int_mic_idx = find_idx_in_nid_list(spec->int_mic_pin,
spec->imux_pins, imux->num_items);
spec->dock_mic_idx = find_idx_in_nid_list(spec->dock_mic_pin,
spec->imux_pins, imux->num_items);
if (spec->ext_mic_idx < 0 || spec->int_mic_idx < 0) {
spec->auto_mic = 0;
return false; /* no corresponding imux */
}
snd_hda_jack_detect_enable(codec, spec->ext_mic_pin, ALC_MIC_EVENT);
if (spec->dock_mic_pin)
snd_hda_jack_detect_enable(codec, spec->dock_mic_pin,
ALC_MIC_EVENT);
spec->auto_mic_valid_imux = 1;
spec->auto_mic = 1;
return true;
}
/*
* Check the availability of auto-mic switch;
* Set up if really supported
*/
static void alc_init_auto_mic(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
struct auto_pin_cfg *cfg = &spec->autocfg;
hda_nid_t fixed, ext, dock;
int i;
if (spec->shared_mic_hp)
return; /* no auto-mic for the shared I/O */
spec->ext_mic_idx = spec->int_mic_idx = spec->dock_mic_idx = -1;
fixed = ext = dock = 0;
for (i = 0; i < cfg->num_inputs; i++) {
hda_nid_t nid = cfg->inputs[i].pin;
unsigned int defcfg;
defcfg = snd_hda_codec_get_pincfg(codec, nid);
switch (snd_hda_get_input_pin_attr(defcfg)) {
case INPUT_PIN_ATTR_INT:
if (fixed)
return; /* already occupied */
if (cfg->inputs[i].type != AUTO_PIN_MIC)
return; /* invalid type */
fixed = nid;
break;
case INPUT_PIN_ATTR_UNUSED:
return; /* invalid entry */
case INPUT_PIN_ATTR_DOCK:
if (dock)
return; /* already occupied */
if (cfg->inputs[i].type > AUTO_PIN_LINE_IN)
return; /* invalid type */
dock = nid;
break;
default:
if (ext)
return; /* already occupied */
if (cfg->inputs[i].type != AUTO_PIN_MIC)
return; /* invalid type */
ext = nid;
break;
}
}
if (!ext && dock) {
ext = dock;
dock = 0;
}
if (!ext || !fixed)
return;
if (!is_jack_detectable(codec, ext))
return; /* no unsol support */
if (dock && !is_jack_detectable(codec, dock))
return; /* no unsol support */
/* check imux indices */
spec->ext_mic_pin = ext;
spec->int_mic_pin = fixed;
spec->dock_mic_pin = dock;
spec->auto_mic = 1;
if (!alc_auto_mic_check_imux(codec))
return;
snd_printdd("realtek: Enable auto-mic switch on NID 0x%x/0x%x/0x%x\n",
ext, fixed, dock);
spec->unsol_event = alc_sku_unsol_event;
}
/* check the availabilities of auto-mute and auto-mic switches */
static void alc_auto_check_switches(struct hda_codec *codec)
{
alc_init_automute(codec);
alc_init_auto_mic(codec);
}
/*
* Realtek SSID verification
*/
/* Could be any non-zero and even value. When used as fixup, tells
* the driver to ignore any present sku defines.
*/
#define ALC_FIXUP_SKU_IGNORE (2)
static int alc_auto_parse_customize_define(struct hda_codec *codec)
{
unsigned int ass, tmp, i;
unsigned nid = 0;
struct alc_spec *spec = codec->spec;
spec->cdefine.enable_pcbeep = 1; /* assume always enabled */
if (spec->cdefine.fixup) {
ass = spec->cdefine.sku_cfg;
if (ass == ALC_FIXUP_SKU_IGNORE)
return -1;
goto do_sku;
}
ass = codec->subsystem_id & 0xffff;
if (ass != codec->bus->pci->subsystem_device && (ass & 1))
goto do_sku;
nid = 0x1d;
if (codec->vendor_id == 0x10ec0260)
nid = 0x17;
ass = snd_hda_codec_get_pincfg(codec, nid);
if (!(ass & 1)) {
printk(KERN_INFO "hda_codec: %s: SKU not ready 0x%08x\n",
codec->chip_name, ass);
return -1;
}
/* check sum */
tmp = 0;
for (i = 1; i < 16; i++) {
if ((ass >> i) & 1)
tmp++;
}
if (((ass >> 16) & 0xf) != tmp)
return -1;
spec->cdefine.port_connectivity = ass >> 30;
spec->cdefine.enable_pcbeep = (ass & 0x100000) >> 20;
spec->cdefine.check_sum = (ass >> 16) & 0xf;
spec->cdefine.customization = ass >> 8;
do_sku:
spec->cdefine.sku_cfg = ass;
spec->cdefine.external_amp = (ass & 0x38) >> 3;
spec->cdefine.platform_type = (ass & 0x4) >> 2;
spec->cdefine.swap = (ass & 0x2) >> 1;
spec->cdefine.override = ass & 0x1;
snd_printd("SKU: Nid=0x%x sku_cfg=0x%08x\n",
nid, spec->cdefine.sku_cfg);
snd_printd("SKU: port_connectivity=0x%x\n",
spec->cdefine.port_connectivity);
snd_printd("SKU: enable_pcbeep=0x%x\n", spec->cdefine.enable_pcbeep);
snd_printd("SKU: check_sum=0x%08x\n", spec->cdefine.check_sum);
snd_printd("SKU: customization=0x%08x\n", spec->cdefine.customization);
snd_printd("SKU: external_amp=0x%x\n", spec->cdefine.external_amp);
snd_printd("SKU: platform_type=0x%x\n", spec->cdefine.platform_type);
snd_printd("SKU: swap=0x%x\n", spec->cdefine.swap);
snd_printd("SKU: override=0x%x\n", spec->cdefine.override);
return 0;
}
/* return true if the given NID is found in the list */
static bool found_in_nid_list(hda_nid_t nid, const hda_nid_t *list, int nums)
{
return find_idx_in_nid_list(nid, list, nums) >= 0;
}
/* check subsystem ID and set up device-specific initialization;
* return 1 if initialized, 0 if invalid SSID
*/
/* 32-bit subsystem ID for BIOS loading in HD Audio codec.
* 31 ~ 16 : Manufacture ID
* 15 ~ 8 : SKU ID
* 7 ~ 0 : Assembly ID
* port-A --> pin 39/41, port-E --> pin 14/15, port-D --> pin 35/36
*/
static int alc_subsystem_id(struct hda_codec *codec,
hda_nid_t porta, hda_nid_t porte,
hda_nid_t portd, hda_nid_t porti)
{
unsigned int ass, tmp, i;
unsigned nid;
struct alc_spec *spec = codec->spec;
if (spec->cdefine.fixup) {
ass = spec->cdefine.sku_cfg;
if (ass == ALC_FIXUP_SKU_IGNORE)
return 0;
goto do_sku;
}
ass = codec->subsystem_id & 0xffff;
if ((ass != codec->bus->pci->subsystem_device) && (ass & 1))
goto do_sku;
/* invalid SSID, check the special NID pin defcfg instead */
/*
* 31~30 : port connectivity
* 29~21 : reserve
* 20 : PCBEEP input
* 19~16 : Check sum (15:1)
* 15~1 : Custom
* 0 : override
*/
nid = 0x1d;
if (codec->vendor_id == 0x10ec0260)
nid = 0x17;
ass = snd_hda_codec_get_pincfg(codec, nid);
snd_printd("realtek: No valid SSID, "
"checking pincfg 0x%08x for NID 0x%x\n",
ass, nid);
if (!(ass & 1))
return 0;
if ((ass >> 30) != 1) /* no physical connection */
return 0;
/* check sum */
tmp = 0;
for (i = 1; i < 16; i++) {
if ((ass >> i) & 1)
tmp++;
}
if (((ass >> 16) & 0xf) != tmp)
return 0;
do_sku:
snd_printd("realtek: Enabling init ASM_ID=0x%04x CODEC_ID=%08x\n",
ass & 0xffff, codec->vendor_id);
/*
* 0 : override
* 1 : Swap Jack
* 2 : 0 --> Desktop, 1 --> Laptop
* 3~5 : External Amplifier control
* 7~6 : Reserved
*/
tmp = (ass & 0x38) >> 3; /* external Amp control */
switch (tmp) {
case 1:
spec->init_amp = ALC_INIT_GPIO1;
break;
case 3:
spec->init_amp = ALC_INIT_GPIO2;
break;
case 7:
spec->init_amp = ALC_INIT_GPIO3;
break;
case 5:
default:
spec->init_amp = ALC_INIT_DEFAULT;
break;
}
/* is laptop or Desktop and enable the function "Mute internal speaker
* when the external headphone out jack is plugged"
*/
if (!(ass & 0x8000))
return 1;
/*
* 10~8 : Jack location
* 12~11: Headphone out -> 00: PortA, 01: PortE, 02: PortD, 03: Resvered
* 14~13: Resvered
* 15 : 1 --> enable the function "Mute internal speaker
* when the external headphone out jack is plugged"
*/
if (!spec->autocfg.hp_pins[0] &&
!(spec->autocfg.line_out_pins[0] &&
spec->autocfg.line_out_type == AUTO_PIN_HP_OUT)) {
hda_nid_t nid;
tmp = (ass >> 11) & 0x3; /* HP to chassis */
if (tmp == 0)
nid = porta;
else if (tmp == 1)
nid = porte;
else if (tmp == 2)
nid = portd;
else if (tmp == 3)
nid = porti;
else
return 1;
if (found_in_nid_list(nid, spec->autocfg.line_out_pins,
spec->autocfg.line_outs))
return 1;
spec->autocfg.hp_pins[0] = nid;
}
return 1;
}
/* Check the validity of ALC subsystem-id
* ports contains an array of 4 pin NIDs for port-A, E, D and I */
static void alc_ssid_check(struct hda_codec *codec, const hda_nid_t *ports)
{
if (!alc_subsystem_id(codec, ports[0], ports[1], ports[2], ports[3])) {
struct alc_spec *spec = codec->spec;
snd_printd("realtek: "
"Enable default setup for auto mode as fallback\n");
spec->init_amp = ALC_INIT_DEFAULT;
}
}
/*
* Fix-up pin default configurations and add default verbs
*/
struct alc_pincfg {
hda_nid_t nid;
u32 val;
};
struct alc_model_fixup {
const int id;
const char *name;
};
struct alc_fixup {
int type;
bool chained;
int chain_id;
union {
unsigned int sku;
const struct alc_pincfg *pins;
const struct hda_verb *verbs;
void (*func)(struct hda_codec *codec,
const struct alc_fixup *fix,
int action);
} v;
};
enum {
ALC_FIXUP_INVALID,
ALC_FIXUP_SKU,
ALC_FIXUP_PINS,
ALC_FIXUP_VERBS,
ALC_FIXUP_FUNC,
};
enum {
ALC_FIXUP_ACT_PRE_PROBE,
ALC_FIXUP_ACT_PROBE,
ALC_FIXUP_ACT_INIT,
ALC_FIXUP_ACT_BUILD,
};
static void alc_apply_pincfgs(struct hda_codec *codec,
const struct alc_pincfg *cfg)
{
for (; cfg->nid; cfg++)
snd_hda_codec_set_pincfg(codec, cfg->nid, cfg->val);
}
static void alc_apply_fixup(struct hda_codec *codec, int action)
{
struct alc_spec *spec = codec->spec;
int id = spec->fixup_id;
#ifdef CONFIG_SND_DEBUG_VERBOSE
const char *modelname = spec->fixup_name;
#endif
int depth = 0;
if (!spec->fixup_list)
return;
while (id >= 0) {
const struct alc_fixup *fix = spec->fixup_list + id;
const struct alc_pincfg *cfg;
switch (fix->type) {
case ALC_FIXUP_SKU:
if (action != ALC_FIXUP_ACT_PRE_PROBE || !fix->v.sku)
break;
snd_printdd(KERN_INFO "hda_codec: %s: "
"Apply sku override for %s\n",
codec->chip_name, modelname);
spec->cdefine.sku_cfg = fix->v.sku;
spec->cdefine.fixup = 1;
break;
case ALC_FIXUP_PINS:
cfg = fix->v.pins;
if (action != ALC_FIXUP_ACT_PRE_PROBE || !cfg)
break;
snd_printdd(KERN_INFO "hda_codec: %s: "
"Apply pincfg for %s\n",
codec->chip_name, modelname);
alc_apply_pincfgs(codec, cfg);
break;
case ALC_FIXUP_VERBS:
if (action != ALC_FIXUP_ACT_PROBE || !fix->v.verbs)
break;
snd_printdd(KERN_INFO "hda_codec: %s: "
"Apply fix-verbs for %s\n",
codec->chip_name, modelname);
add_verb(codec->spec, fix->v.verbs);
break;
case ALC_FIXUP_FUNC:
if (!fix->v.func)
break;
snd_printdd(KERN_INFO "hda_codec: %s: "
"Apply fix-func for %s\n",
codec->chip_name, modelname);
fix->v.func(codec, fix, action);
break;
default:
snd_printk(KERN_ERR "hda_codec: %s: "
"Invalid fixup type %d\n",
codec->chip_name, fix->type);
break;
}
if (!fix->chained)
break;
if (++depth > 10)
break;
id = fix->chain_id;
}
}
static void alc_pick_fixup(struct hda_codec *codec,
const struct alc_model_fixup *models,
const struct snd_pci_quirk *quirk,
const struct alc_fixup *fixlist)
{
struct alc_spec *spec = codec->spec;
const struct snd_pci_quirk *q;
int id = -1;
const char *name = NULL;
/* when model=nofixup is given, don't pick up any fixups */
if (codec->modelname && !strcmp(codec->modelname, "nofixup")) {
spec->fixup_list = NULL;
spec->fixup_id = -1;
return;
}
if (codec->modelname && models) {
while (models->name) {
if (!strcmp(codec->modelname, models->name)) {
id = models->id;
name = models->name;
break;
}
models++;
}
}
if (id < 0) {
q = snd_pci_quirk_lookup(codec->bus->pci, quirk);
if (q) {
id = q->value;
#ifdef CONFIG_SND_DEBUG_VERBOSE
name = q->name;
#endif
}
}
if (id < 0) {
for (q = quirk; q->subvendor; q++) {
unsigned int vendorid =
q->subdevice | (q->subvendor << 16);
if (vendorid == codec->subsystem_id) {
id = q->value;
#ifdef CONFIG_SND_DEBUG_VERBOSE
name = q->name;
#endif
break;
}
}
}
spec->fixup_id = id;
if (id >= 0) {
spec->fixup_list = fixlist;
spec->fixup_name = name;
}
}
/*
* COEF access helper functions
*/
static int alc_read_coef_idx(struct hda_codec *codec,
unsigned int coef_idx)
{
unsigned int val;
snd_hda_codec_write(codec, 0x20, 0, AC_VERB_SET_COEF_INDEX,
coef_idx);
val = snd_hda_codec_read(codec, 0x20, 0,
AC_VERB_GET_PROC_COEF, 0);
return val;
}
static void alc_write_coef_idx(struct hda_codec *codec, unsigned int coef_idx,
unsigned int coef_val)
{
snd_hda_codec_write(codec, 0x20, 0, AC_VERB_SET_COEF_INDEX,
coef_idx);
snd_hda_codec_write(codec, 0x20, 0, AC_VERB_SET_PROC_COEF,
coef_val);
}
/* a special bypass for COEF 0; read the cached value at the second time */
static unsigned int alc_get_coef0(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
if (!spec->coef0)
spec->coef0 = alc_read_coef_idx(codec, 0);
return spec->coef0;
}
/*
* Digital I/O handling
*/
/* set right pin controls for digital I/O */
static void alc_auto_init_digital(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
int i;
hda_nid_t pin, dac;
for (i = 0; i < spec->autocfg.dig_outs; i++) {
pin = spec->autocfg.dig_out_pins[i];
if (!pin)
continue;
snd_hda_codec_write(codec, pin, 0,
AC_VERB_SET_PIN_WIDGET_CONTROL, PIN_OUT);
if (!i)
dac = spec->multiout.dig_out_nid;
else
dac = spec->slave_dig_outs[i - 1];
if (!dac || !(get_wcaps(codec, dac) & AC_WCAP_OUT_AMP))
continue;
snd_hda_codec_write(codec, dac, 0,
AC_VERB_SET_AMP_GAIN_MUTE,
AMP_OUT_UNMUTE);
}
pin = spec->autocfg.dig_in_pin;
if (pin)
snd_hda_codec_write(codec, pin, 0,
AC_VERB_SET_PIN_WIDGET_CONTROL,
PIN_IN);
}
/* parse digital I/Os and set up NIDs in BIOS auto-parse mode */
static void alc_auto_parse_digital(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
int i, err, nums;
hda_nid_t dig_nid;
/* support multiple SPDIFs; the secondary is set up as a slave */
nums = 0;
for (i = 0; i < spec->autocfg.dig_outs; i++) {
hda_nid_t conn[4];
err = snd_hda_get_connections(codec,
spec->autocfg.dig_out_pins[i],
conn, ARRAY_SIZE(conn));
if (err <= 0)
continue;
dig_nid = conn[0]; /* assume the first element is audio-out */
if (!nums) {
spec->multiout.dig_out_nid = dig_nid;
spec->dig_out_type = spec->autocfg.dig_out_type[0];
} else {
spec->multiout.slave_dig_outs = spec->slave_dig_outs;
if (nums >= ARRAY_SIZE(spec->slave_dig_outs) - 1)
break;
spec->slave_dig_outs[nums - 1] = dig_nid;
}
nums++;
}
if (spec->autocfg.dig_in_pin) {
dig_nid = codec->start_nid;
for (i = 0; i < codec->num_nodes; i++, dig_nid++) {
unsigned int wcaps = get_wcaps(codec, dig_nid);
if (get_wcaps_type(wcaps) != AC_WID_AUD_IN)
continue;
if (!(wcaps & AC_WCAP_DIGITAL))
continue;
if (!(wcaps & AC_WCAP_CONN_LIST))
continue;
err = get_connection_index(codec, dig_nid,
spec->autocfg.dig_in_pin);
if (err >= 0) {
spec->dig_in_nid = dig_nid;
break;
}
}
}
}
/*
* capture mixer elements
*/
static int alc_cap_vol_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct alc_spec *spec = codec->spec;
unsigned long val;
int err;
mutex_lock(&codec->control_mutex);
if (spec->vol_in_capsrc)
val = HDA_COMPOSE_AMP_VAL(spec->capsrc_nids[0], 3, 0, HDA_OUTPUT);
else
val = HDA_COMPOSE_AMP_VAL(spec->adc_nids[0], 3, 0, HDA_INPUT);
kcontrol->private_value = val;
err = snd_hda_mixer_amp_volume_info(kcontrol, uinfo);
mutex_unlock(&codec->control_mutex);
return err;
}
static int alc_cap_vol_tlv(struct snd_kcontrol *kcontrol, int op_flag,
unsigned int size, unsigned int __user *tlv)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct alc_spec *spec = codec->spec;
unsigned long val;
int err;
mutex_lock(&codec->control_mutex);
if (spec->vol_in_capsrc)
val = HDA_COMPOSE_AMP_VAL(spec->capsrc_nids[0], 3, 0, HDA_OUTPUT);
else
val = HDA_COMPOSE_AMP_VAL(spec->adc_nids[0], 3, 0, HDA_INPUT);
kcontrol->private_value = val;
err = snd_hda_mixer_amp_tlv(kcontrol, op_flag, size, tlv);
mutex_unlock(&codec->control_mutex);
return err;
}
typedef int (*getput_call_t)(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol);
static int alc_cap_getput_caller(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol,
getput_call_t func, bool check_adc_switch)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct alc_spec *spec = codec->spec;
int i, err = 0;
mutex_lock(&codec->control_mutex);
if (check_adc_switch && spec->dyn_adc_switch) {
for (i = 0; i < spec->num_adc_nids; i++) {
kcontrol->private_value =
HDA_COMPOSE_AMP_VAL(spec->adc_nids[i],
3, 0, HDA_INPUT);
err = func(kcontrol, ucontrol);
if (err < 0)
goto error;
}
} else {
i = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
if (spec->vol_in_capsrc)
kcontrol->private_value =
HDA_COMPOSE_AMP_VAL(spec->capsrc_nids[i],
3, 0, HDA_OUTPUT);
else
kcontrol->private_value =
HDA_COMPOSE_AMP_VAL(spec->adc_nids[i],
3, 0, HDA_INPUT);
err = func(kcontrol, ucontrol);
}
error:
mutex_unlock(&codec->control_mutex);
return err;
}
static int alc_cap_vol_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
return alc_cap_getput_caller(kcontrol, ucontrol,
snd_hda_mixer_amp_volume_get, false);
}
static int alc_cap_vol_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
return alc_cap_getput_caller(kcontrol, ucontrol,
snd_hda_mixer_amp_volume_put, true);
}
/* capture mixer elements */
#define alc_cap_sw_info snd_ctl_boolean_stereo_info
static int alc_cap_sw_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
return alc_cap_getput_caller(kcontrol, ucontrol,
snd_hda_mixer_amp_switch_get, false);
}
static int alc_cap_sw_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
return alc_cap_getput_caller(kcontrol, ucontrol,
snd_hda_mixer_amp_switch_put, true);
}
#define _DEFINE_CAPMIX(num) \
{ \
.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
.name = "Capture Switch", \
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \
.count = num, \
.info = alc_cap_sw_info, \
.get = alc_cap_sw_get, \
.put = alc_cap_sw_put, \
}, \
{ \
.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
.name = "Capture Volume", \
.access = (SNDRV_CTL_ELEM_ACCESS_READWRITE | \
SNDRV_CTL_ELEM_ACCESS_TLV_READ | \
SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK), \
.count = num, \
.info = alc_cap_vol_info, \
.get = alc_cap_vol_get, \
.put = alc_cap_vol_put, \
.tlv = { .c = alc_cap_vol_tlv }, \
}
#define _DEFINE_CAPSRC(num) \
{ \
.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
/* .name = "Capture Source", */ \
.name = "Input Source", \
.count = num, \
.info = alc_mux_enum_info, \
.get = alc_mux_enum_get, \
.put = alc_mux_enum_put, \
}
#define DEFINE_CAPMIX(num) \
static const struct snd_kcontrol_new alc_capture_mixer ## num[] = { \
_DEFINE_CAPMIX(num), \
_DEFINE_CAPSRC(num), \
{ } /* end */ \
}
#define DEFINE_CAPMIX_NOSRC(num) \
static const struct snd_kcontrol_new alc_capture_mixer_nosrc ## num[] = { \
_DEFINE_CAPMIX(num), \
{ } /* end */ \
}
/* up to three ADCs */
DEFINE_CAPMIX(1);
DEFINE_CAPMIX(2);
DEFINE_CAPMIX(3);
DEFINE_CAPMIX_NOSRC(1);
DEFINE_CAPMIX_NOSRC(2);
DEFINE_CAPMIX_NOSRC(3);
/*
* virtual master controls
*/
/*
* slave controls for virtual master
*/
static const char * const alc_slave_pfxs[] = {
"Front", "Surround", "Center", "LFE", "Side",
"Headphone", "Speaker", "Mono", "Line Out",
"CLFE", "Bass Speaker", "PCM",
NULL,
};
/*
* build control elements
*/
#define NID_MAPPING (-1)
#define SUBDEV_SPEAKER_ (0 << 6)
#define SUBDEV_HP_ (1 << 6)
#define SUBDEV_LINE_ (2 << 6)
#define SUBDEV_SPEAKER(x) (SUBDEV_SPEAKER_ | ((x) & 0x3f))
#define SUBDEV_HP(x) (SUBDEV_HP_ | ((x) & 0x3f))
#define SUBDEV_LINE(x) (SUBDEV_LINE_ | ((x) & 0x3f))
static void alc_free_kctls(struct hda_codec *codec);
#ifdef CONFIG_SND_HDA_INPUT_BEEP
/* additional beep mixers; the actual parameters are overwritten at build */
static const struct snd_kcontrol_new alc_beep_mixer[] = {
HDA_CODEC_VOLUME("Beep Playback Volume", 0, 0, HDA_INPUT),
HDA_CODEC_MUTE_BEEP("Beep Playback Switch", 0, 0, HDA_INPUT),
{ } /* end */
};
#endif
static int __alc_build_controls(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
struct snd_kcontrol *kctl = NULL;
const struct snd_kcontrol_new *knew;
int i, j, err;
unsigned int u;
hda_nid_t nid;
for (i = 0; i < spec->num_mixers; i++) {
err = snd_hda_add_new_ctls(codec, spec->mixers[i]);
if (err < 0)
return err;
}
if (spec->cap_mixer) {
err = snd_hda_add_new_ctls(codec, spec->cap_mixer);
if (err < 0)
return err;
}
if (spec->multiout.dig_out_nid) {
err = snd_hda_create_spdif_out_ctls(codec,
spec->multiout.dig_out_nid,
spec->multiout.dig_out_nid);
if (err < 0)
return err;
if (!spec->no_analog) {
err = snd_hda_create_spdif_share_sw(codec,
&spec->multiout);
if (err < 0)
return err;
spec->multiout.share_spdif = 1;
}
}
if (spec->dig_in_nid) {
err = snd_hda_create_spdif_in_ctls(codec, spec->dig_in_nid);
if (err < 0)
return err;
}
#ifdef CONFIG_SND_HDA_INPUT_BEEP
/* create beep controls if needed */
if (spec->beep_amp) {
const struct snd_kcontrol_new *knew;
for (knew = alc_beep_mixer; knew->name; knew++) {
struct snd_kcontrol *kctl;
kctl = snd_ctl_new1(knew, codec);
if (!kctl)
return -ENOMEM;
kctl->private_value = spec->beep_amp;
err = snd_hda_ctl_add(codec, 0, kctl);
if (err < 0)
return err;
}
}
#endif
/* if we have no master control, let's create it */
if (!spec->no_analog &&
!snd_hda_find_mixer_ctl(codec, "Master Playback Volume")) {
unsigned int vmaster_tlv[4];
snd_hda_set_vmaster_tlv(codec, spec->vmaster_nid,
HDA_OUTPUT, vmaster_tlv);
err = snd_hda_add_vmaster(codec, "Master Playback Volume",
vmaster_tlv, alc_slave_pfxs,
"Playback Volume");
if (err < 0)
return err;
}
if (!spec->no_analog &&
!snd_hda_find_mixer_ctl(codec, "Master Playback Switch")) {
err = __snd_hda_add_vmaster(codec, "Master Playback Switch",
NULL, alc_slave_pfxs,
"Playback Switch",
true, &spec->vmaster_mute.sw_kctl);
if (err < 0)
return err;
}
/* assign Capture Source enums to NID */
if (spec->capsrc_nids || spec->adc_nids) {
kctl = snd_hda_find_mixer_ctl(codec, "Capture Source");
if (!kctl)
kctl = snd_hda_find_mixer_ctl(codec, "Input Source");
for (i = 0; kctl && i < kctl->count; i++) {
err = snd_hda_add_nid(codec, kctl, i,
get_capsrc(spec, i));
if (err < 0)
return err;
}
}
if (spec->cap_mixer && spec->adc_nids) {
const char *kname = kctl ? kctl->id.name : NULL;
for (knew = spec->cap_mixer; knew->name; knew++) {
if (kname && strcmp(knew->name, kname) == 0)
continue;
kctl = snd_hda_find_mixer_ctl(codec, knew->name);
for (i = 0; kctl && i < kctl->count; i++) {
err = snd_hda_add_nid(codec, kctl, i,
spec->adc_nids[i]);
if (err < 0)
return err;
}
}
}
/* other nid->control mapping */
for (i = 0; i < spec->num_mixers; i++) {
for (knew = spec->mixers[i]; knew->name; knew++) {
if (knew->iface != NID_MAPPING)
continue;
kctl = snd_hda_find_mixer_ctl(codec, knew->name);
if (kctl == NULL)
continue;
u = knew->subdevice;
for (j = 0; j < 4; j++, u >>= 8) {
nid = u & 0x3f;
if (nid == 0)
continue;
switch (u & 0xc0) {
case SUBDEV_SPEAKER_:
nid = spec->autocfg.speaker_pins[nid];
break;
case SUBDEV_LINE_:
nid = spec->autocfg.line_out_pins[nid];
break;
case SUBDEV_HP_:
nid = spec->autocfg.hp_pins[nid];
break;
default:
continue;
}
err = snd_hda_add_nid(codec, kctl, 0, nid);
if (err < 0)
return err;
}
u = knew->private_value;
for (j = 0; j < 4; j++, u >>= 8) {
nid = u & 0xff;
if (nid == 0)
continue;
err = snd_hda_add_nid(codec, kctl, 0, nid);
if (err < 0)
return err;
}
}
}
alc_free_kctls(codec); /* no longer needed */
return 0;
}
static int alc_build_controls(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
int err = __alc_build_controls(codec);
if (err < 0)
return err;
err = snd_hda_jack_add_kctls(codec, &spec->autocfg);
if (err < 0)
return err;
alc_apply_fixup(codec, ALC_FIXUP_ACT_BUILD);
return 0;
}
/*
* Common callbacks
*/
static void alc_init_special_input_src(struct hda_codec *codec);
static void alc_auto_init_std(struct hda_codec *codec);
static int alc_init(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
unsigned int i;
if (spec->init_hook)
spec->init_hook(codec);
alc_fix_pll(codec);
alc_auto_init_amp(codec, spec->init_amp);
for (i = 0; i < spec->num_init_verbs; i++)
snd_hda_sequence_write(codec, spec->init_verbs[i]);
alc_init_special_input_src(codec);
alc_auto_init_std(codec);
alc_apply_fixup(codec, ALC_FIXUP_ACT_INIT);
snd_hda_jack_report_sync(codec);
hda_call_check_power_status(codec, 0x01);
return 0;
}
static void alc_unsol_event(struct hda_codec *codec, unsigned int res)
{
struct alc_spec *spec = codec->spec;
if (spec->unsol_event)
spec->unsol_event(codec, res);
}
#ifdef CONFIG_SND_HDA_POWER_SAVE
static int alc_check_power_status(struct hda_codec *codec, hda_nid_t nid)
{
struct alc_spec *spec = codec->spec;
return snd_hda_check_amp_list_power(codec, &spec->loopback, nid);
}
#endif
/*
* Analog playback callbacks
*/
static int alc_playback_pcm_open(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
struct snd_pcm_substream *substream)
{
struct alc_spec *spec = codec->spec;
return snd_hda_multi_out_analog_open(codec, &spec->multiout, substream,
hinfo);
}
static int alc_playback_pcm_prepare(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
unsigned int stream_tag,
unsigned int format,
struct snd_pcm_substream *substream)
{
struct alc_spec *spec = codec->spec;
return snd_hda_multi_out_analog_prepare(codec, &spec->multiout,
stream_tag, format, substream);
}
static int alc_playback_pcm_cleanup(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
struct snd_pcm_substream *substream)
{
struct alc_spec *spec = codec->spec;
return snd_hda_multi_out_analog_cleanup(codec, &spec->multiout);
}
/*
* Digital out
*/
static int alc_dig_playback_pcm_open(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
struct snd_pcm_substream *substream)
{
struct alc_spec *spec = codec->spec;
return snd_hda_multi_out_dig_open(codec, &spec->multiout);
}
static int alc_dig_playback_pcm_prepare(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
unsigned int stream_tag,
unsigned int format,
struct snd_pcm_substream *substream)
{
struct alc_spec *spec = codec->spec;
return snd_hda_multi_out_dig_prepare(codec, &spec->multiout,
stream_tag, format, substream);
}
static int alc_dig_playback_pcm_cleanup(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
struct snd_pcm_substream *substream)
{
struct alc_spec *spec = codec->spec;
return snd_hda_multi_out_dig_cleanup(codec, &spec->multiout);
}
static int alc_dig_playback_pcm_close(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
struct snd_pcm_substream *substream)
{
struct alc_spec *spec = codec->spec;
return snd_hda_multi_out_dig_close(codec, &spec->multiout);
}
/*
* Analog capture
*/
static int alc_alt_capture_pcm_prepare(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
unsigned int stream_tag,
unsigned int format,
struct snd_pcm_substream *substream)
{
struct alc_spec *spec = codec->spec;
snd_hda_codec_setup_stream(codec, spec->adc_nids[substream->number + 1],
stream_tag, 0, format);
return 0;
}
static int alc_alt_capture_pcm_cleanup(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
struct snd_pcm_substream *substream)
{
struct alc_spec *spec = codec->spec;
snd_hda_codec_cleanup_stream(codec,
spec->adc_nids[substream->number + 1]);
return 0;
}
/* analog capture with dynamic dual-adc changes */
static int dyn_adc_capture_pcm_prepare(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
unsigned int stream_tag,
unsigned int format,
struct snd_pcm_substream *substream)
{
struct alc_spec *spec = codec->spec;
spec->cur_adc = spec->adc_nids[spec->dyn_adc_idx[spec->cur_mux[0]]];
spec->cur_adc_stream_tag = stream_tag;
spec->cur_adc_format = format;
snd_hda_codec_setup_stream(codec, spec->cur_adc, stream_tag, 0, format);
return 0;
}
static int dyn_adc_capture_pcm_cleanup(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
struct snd_pcm_substream *substream)
{
struct alc_spec *spec = codec->spec;
snd_hda_codec_cleanup_stream(codec, spec->cur_adc);
spec->cur_adc = 0;
return 0;
}
static const struct hda_pcm_stream dyn_adc_pcm_analog_capture = {
.substreams = 1,
.channels_min = 2,
.channels_max = 2,
.nid = 0, /* fill later */
.ops = {
.prepare = dyn_adc_capture_pcm_prepare,
.cleanup = dyn_adc_capture_pcm_cleanup
},
};
/*
*/
static const struct hda_pcm_stream alc_pcm_analog_playback = {
.substreams = 1,
.channels_min = 2,
.channels_max = 8,
/* NID is set in alc_build_pcms */
.ops = {
.open = alc_playback_pcm_open,
.prepare = alc_playback_pcm_prepare,
.cleanup = alc_playback_pcm_cleanup
},
};
static const struct hda_pcm_stream alc_pcm_analog_capture = {
.substreams = 1,
.channels_min = 2,
.channels_max = 2,
/* NID is set in alc_build_pcms */
};
static const struct hda_pcm_stream alc_pcm_analog_alt_playback = {
.substreams = 1,
.channels_min = 2,
.channels_max = 2,
/* NID is set in alc_build_pcms */
};
static const struct hda_pcm_stream alc_pcm_analog_alt_capture = {
.substreams = 2, /* can be overridden */
.channels_min = 2,
.channels_max = 2,
/* NID is set in alc_build_pcms */
.ops = {
.prepare = alc_alt_capture_pcm_prepare,
.cleanup = alc_alt_capture_pcm_cleanup
},
};
static const struct hda_pcm_stream alc_pcm_digital_playback = {
.substreams = 1,
.channels_min = 2,
.channels_max = 2,
/* NID is set in alc_build_pcms */
.ops = {
.open = alc_dig_playback_pcm_open,
.close = alc_dig_playback_pcm_close,
.prepare = alc_dig_playback_pcm_prepare,
.cleanup = alc_dig_playback_pcm_cleanup
},
};
static const struct hda_pcm_stream alc_pcm_digital_capture = {
.substreams = 1,
.channels_min = 2,
.channels_max = 2,
/* NID is set in alc_build_pcms */
};
/* Used by alc_build_pcms to flag that a PCM has no playback stream */
static const struct hda_pcm_stream alc_pcm_null_stream = {
.substreams = 0,
.channels_min = 0,
.channels_max = 0,
};
static int alc_build_pcms(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
struct hda_pcm *info = spec->pcm_rec;
const struct hda_pcm_stream *p;
bool have_multi_adcs;
int i;
codec->num_pcms = 1;
codec->pcm_info = info;
if (spec->no_analog)
goto skip_analog;
snprintf(spec->stream_name_analog, sizeof(spec->stream_name_analog),
"%s Analog", codec->chip_name);
info->name = spec->stream_name_analog;
if (spec->multiout.num_dacs > 0) {
p = spec->stream_analog_playback;
if (!p)
p = &alc_pcm_analog_playback;
info->stream[SNDRV_PCM_STREAM_PLAYBACK] = *p;
info->stream[SNDRV_PCM_STREAM_PLAYBACK].nid = spec->multiout.dac_nids[0];
}
if (spec->adc_nids) {
p = spec->stream_analog_capture;
if (!p) {
if (spec->dyn_adc_switch)
p = &dyn_adc_pcm_analog_capture;
else
p = &alc_pcm_analog_capture;
}
info->stream[SNDRV_PCM_STREAM_CAPTURE] = *p;
info->stream[SNDRV_PCM_STREAM_CAPTURE].nid = spec->adc_nids[0];
}
if (spec->channel_mode) {
info->stream[SNDRV_PCM_STREAM_PLAYBACK].channels_max = 0;
for (i = 0; i < spec->num_channel_mode; i++) {
if (spec->channel_mode[i].channels > info->stream[SNDRV_PCM_STREAM_PLAYBACK].channels_max) {
info->stream[SNDRV_PCM_STREAM_PLAYBACK].channels_max = spec->channel_mode[i].channels;
}
}
}
skip_analog:
/* SPDIF for stream index #1 */
if (spec->multiout.dig_out_nid || spec->dig_in_nid) {
snprintf(spec->stream_name_digital,
sizeof(spec->stream_name_digital),
"%s Digital", codec->chip_name);
codec->num_pcms = 2;
codec->slave_dig_outs = spec->multiout.slave_dig_outs;
info = spec->pcm_rec + 1;
info->name = spec->stream_name_digital;
if (spec->dig_out_type)
info->pcm_type = spec->dig_out_type;
else
info->pcm_type = HDA_PCM_TYPE_SPDIF;
if (spec->multiout.dig_out_nid) {
p = spec->stream_digital_playback;
if (!p)
p = &alc_pcm_digital_playback;
info->stream[SNDRV_PCM_STREAM_PLAYBACK] = *p;
info->stream[SNDRV_PCM_STREAM_PLAYBACK].nid = spec->multiout.dig_out_nid;
}
if (spec->dig_in_nid) {
p = spec->stream_digital_capture;
if (!p)
p = &alc_pcm_digital_capture;
info->stream[SNDRV_PCM_STREAM_CAPTURE] = *p;
info->stream[SNDRV_PCM_STREAM_CAPTURE].nid = spec->dig_in_nid;
}
/* FIXME: do we need this for all Realtek codec models? */
codec->spdif_status_reset = 1;
}
if (spec->no_analog)
return 0;
/* If the use of more than one ADC is requested for the current
* model, configure a second analog capture-only PCM.
*/
have_multi_adcs = (spec->num_adc_nids > 1) &&
!spec->dyn_adc_switch && !spec->auto_mic &&
(!spec->input_mux || spec->input_mux->num_items > 1);
/* Additional Analaog capture for index #2 */
if (spec->alt_dac_nid || have_multi_adcs) {
codec->num_pcms = 3;
info = spec->pcm_rec + 2;
info->name = spec->stream_name_analog;
if (spec->alt_dac_nid) {
p = spec->stream_analog_alt_playback;
if (!p)
p = &alc_pcm_analog_alt_playback;
info->stream[SNDRV_PCM_STREAM_PLAYBACK] = *p;
info->stream[SNDRV_PCM_STREAM_PLAYBACK].nid =
spec->alt_dac_nid;
} else {
info->stream[SNDRV_PCM_STREAM_PLAYBACK] =
alc_pcm_null_stream;
info->stream[SNDRV_PCM_STREAM_PLAYBACK].nid = 0;
}
if (have_multi_adcs) {
p = spec->stream_analog_alt_capture;
if (!p)
p = &alc_pcm_analog_alt_capture;
info->stream[SNDRV_PCM_STREAM_CAPTURE] = *p;
info->stream[SNDRV_PCM_STREAM_CAPTURE].nid =
spec->adc_nids[1];
info->stream[SNDRV_PCM_STREAM_CAPTURE].substreams =
spec->num_adc_nids - 1;
} else {
info->stream[SNDRV_PCM_STREAM_CAPTURE] =
alc_pcm_null_stream;
info->stream[SNDRV_PCM_STREAM_CAPTURE].nid = 0;
}
}
return 0;
}
static inline void alc_shutup(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
if (spec && spec->shutup)
spec->shutup(codec);
snd_hda_shutup_pins(codec);
}
static void alc_free_kctls(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
if (spec->kctls.list) {
struct snd_kcontrol_new *kctl = spec->kctls.list;
int i;
for (i = 0; i < spec->kctls.used; i++)
kfree(kctl[i].name);
}
snd_array_free(&spec->kctls);
}
static void alc_free_bind_ctls(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
if (spec->bind_ctls.list) {
struct hda_bind_ctls **ctl = spec->bind_ctls.list;
int i;
for (i = 0; i < spec->bind_ctls.used; i++)
kfree(ctl[i]);
}
snd_array_free(&spec->bind_ctls);
}
static void alc_free(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
if (!spec)
return;
alc_shutup(codec);
alc_free_kctls(codec);
alc_free_bind_ctls(codec);
kfree(spec);
snd_hda_detach_beep_device(codec);
}
#ifdef CONFIG_SND_HDA_POWER_SAVE
static void alc_power_eapd(struct hda_codec *codec)
{
alc_auto_setup_eapd(codec, false);
}
static int alc_suspend(struct hda_codec *codec, pm_message_t state)
{
struct alc_spec *spec = codec->spec;
alc_shutup(codec);
if (spec && spec->power_hook)
spec->power_hook(codec);
return 0;
}
#endif
#ifdef CONFIG_PM
static int alc_resume(struct hda_codec *codec)
{
msleep(150); /* to avoid pop noise */
codec->patch_ops.init(codec);
snd_hda_codec_resume_amp(codec);
snd_hda_codec_resume_cache(codec);
hda_call_check_power_status(codec, 0x01);
return 0;
}
#endif
/*
*/
static const struct hda_codec_ops alc_patch_ops = {
.build_controls = alc_build_controls,
.build_pcms = alc_build_pcms,
.init = alc_init,
.free = alc_free,
.unsol_event = alc_unsol_event,
#ifdef CONFIG_PM
.resume = alc_resume,
#endif
#ifdef CONFIG_SND_HDA_POWER_SAVE
.suspend = alc_suspend,
.check_power_status = alc_check_power_status,
#endif
.reboot_notify = alc_shutup,
};
/* replace the codec chip_name with the given string */
static int alc_codec_rename(struct hda_codec *codec, const char *name)
{
kfree(codec->chip_name);
codec->chip_name = kstrdup(name, GFP_KERNEL);
if (!codec->chip_name) {
alc_free(codec);
return -ENOMEM;
}
return 0;
}
/*
* Rename codecs appropriately from COEF value
*/
struct alc_codec_rename_table {
unsigned int vendor_id;
unsigned short coef_mask;
unsigned short coef_bits;
const char *name;
};
static struct alc_codec_rename_table rename_tbl[] = {
{ 0x10ec0269, 0xfff0, 0x3010, "ALC277" },
{ 0x10ec0269, 0xf0f0, 0x2010, "ALC259" },
{ 0x10ec0269, 0xf0f0, 0x3010, "ALC258" },
{ 0x10ec0269, 0x00f0, 0x0010, "ALC269VB" },
{ 0x10ec0269, 0xffff, 0xa023, "ALC259" },
{ 0x10ec0269, 0xffff, 0x6023, "ALC281X" },
{ 0x10ec0269, 0x00f0, 0x0020, "ALC269VC" },
{ 0x10ec0887, 0x00f0, 0x0030, "ALC887-VD" },
{ 0x10ec0888, 0x00f0, 0x0030, "ALC888-VD" },
{ 0x10ec0888, 0xf0f0, 0x3020, "ALC886" },
{ 0x10ec0899, 0x2000, 0x2000, "ALC899" },
{ 0x10ec0892, 0xffff, 0x8020, "ALC661" },
{ 0x10ec0892, 0xffff, 0x8011, "ALC661" },
{ 0x10ec0892, 0xffff, 0x4011, "ALC656" },
{ } /* terminator */
};
static int alc_codec_rename_from_preset(struct hda_codec *codec)
{
const struct alc_codec_rename_table *p;
for (p = rename_tbl; p->vendor_id; p++) {
if (p->vendor_id != codec->vendor_id)
continue;
if ((alc_get_coef0(codec) & p->coef_mask) == p->coef_bits)
return alc_codec_rename(codec, p->name);
}
return 0;
}
/*
* Automatic parse of I/O pins from the BIOS configuration
*/
enum {
ALC_CTL_WIDGET_VOL,
ALC_CTL_WIDGET_MUTE,
ALC_CTL_BIND_MUTE,
ALC_CTL_BIND_VOL,
ALC_CTL_BIND_SW,
};
static const struct snd_kcontrol_new alc_control_templates[] = {
HDA_CODEC_VOLUME(NULL, 0, 0, 0),
HDA_CODEC_MUTE(NULL, 0, 0, 0),
HDA_BIND_MUTE(NULL, 0, 0, 0),
HDA_BIND_VOL(NULL, 0),
HDA_BIND_SW(NULL, 0),
};
/* add dynamic controls */
static int add_control(struct alc_spec *spec, int type, const char *name,
int cidx, unsigned long val)
{
struct snd_kcontrol_new *knew;
knew = alc_kcontrol_new(spec);
if (!knew)
return -ENOMEM;
*knew = alc_control_templates[type];
knew->name = kstrdup(name, GFP_KERNEL);
if (!knew->name)
return -ENOMEM;
knew->index = cidx;
if (get_amp_nid_(val))
knew->subdevice = HDA_SUBDEV_AMP_FLAG;
knew->private_value = val;
return 0;
}
static int add_control_with_pfx(struct alc_spec *spec, int type,
const char *pfx, const char *dir,
const char *sfx, int cidx, unsigned long val)
{
char name[32];
snprintf(name, sizeof(name), "%s %s %s", pfx, dir, sfx);
return add_control(spec, type, name, cidx, val);
}
#define add_pb_vol_ctrl(spec, type, pfx, val) \
add_control_with_pfx(spec, type, pfx, "Playback", "Volume", 0, val)
#define add_pb_sw_ctrl(spec, type, pfx, val) \
add_control_with_pfx(spec, type, pfx, "Playback", "Switch", 0, val)
#define __add_pb_vol_ctrl(spec, type, pfx, cidx, val) \
add_control_with_pfx(spec, type, pfx, "Playback", "Volume", cidx, val)
#define __add_pb_sw_ctrl(spec, type, pfx, cidx, val) \
add_control_with_pfx(spec, type, pfx, "Playback", "Switch", cidx, val)
static const char * const channel_name[4] = {
"Front", "Surround", "CLFE", "Side"
};
static const char *alc_get_line_out_pfx(struct alc_spec *spec, int ch,
bool can_be_master, int *index)
{
struct auto_pin_cfg *cfg = &spec->autocfg;
*index = 0;
if (cfg->line_outs == 1 && !spec->multi_ios &&
!cfg->hp_outs && !cfg->speaker_outs && can_be_master)
return "Master";
switch (cfg->line_out_type) {
case AUTO_PIN_SPEAKER_OUT:
if (cfg->line_outs == 1)
return "Speaker";
if (cfg->line_outs == 2)
return ch ? "Bass Speaker" : "Speaker";
break;
case AUTO_PIN_HP_OUT:
/* for multi-io case, only the primary out */
if (ch && spec->multi_ios)
break;
*index = ch;
return "Headphone";
default:
if (cfg->line_outs == 1 && !spec->multi_ios)
return "PCM";
break;
}
if (snd_BUG_ON(ch >= ARRAY_SIZE(channel_name)))
return "PCM";
return channel_name[ch];
}
#ifdef CONFIG_SND_HDA_POWER_SAVE
/* add the powersave loopback-list entry */
static void add_loopback_list(struct alc_spec *spec, hda_nid_t mix, int idx)
{
struct hda_amp_list *list;
if (spec->num_loopbacks >= ARRAY_SIZE(spec->loopback_list) - 1)
return;
list = spec->loopback_list + spec->num_loopbacks;
list->nid = mix;
list->dir = HDA_INPUT;
list->idx = idx;
spec->num_loopbacks++;
spec->loopback.amplist = spec->loopback_list;
}
#else
#define add_loopback_list(spec, mix, idx) /* NOP */
#endif
/* create input playback/capture controls for the given pin */
static int new_analog_input(struct alc_spec *spec, hda_nid_t pin,
const char *ctlname, int ctlidx,
int idx, hda_nid_t mix_nid)
{
int err;
err = __add_pb_vol_ctrl(spec, ALC_CTL_WIDGET_VOL, ctlname, ctlidx,
HDA_COMPOSE_AMP_VAL(mix_nid, 3, idx, HDA_INPUT));
if (err < 0)
return err;
err = __add_pb_sw_ctrl(spec, ALC_CTL_WIDGET_MUTE, ctlname, ctlidx,
HDA_COMPOSE_AMP_VAL(mix_nid, 3, idx, HDA_INPUT));
if (err < 0)
return err;
add_loopback_list(spec, mix_nid, idx);
return 0;
}
static int alc_is_input_pin(struct hda_codec *codec, hda_nid_t nid)
{
unsigned int pincap = snd_hda_query_pin_caps(codec, nid);
return (pincap & AC_PINCAP_IN) != 0;
}
/* Parse the codec tree and retrieve ADCs and corresponding capsrc MUXs */
static int alc_auto_fill_adc_caps(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
hda_nid_t nid;
hda_nid_t *adc_nids = spec->private_adc_nids;
hda_nid_t *cap_nids = spec->private_capsrc_nids;
int max_nums = ARRAY_SIZE(spec->private_adc_nids);
int i, nums = 0;
nid = codec->start_nid;
for (i = 0; i < codec->num_nodes; i++, nid++) {
hda_nid_t src;
const hda_nid_t *list;
unsigned int caps = get_wcaps(codec, nid);
int type = get_wcaps_type(caps);
if (type != AC_WID_AUD_IN || (caps & AC_WCAP_DIGITAL))
continue;
adc_nids[nums] = nid;
cap_nids[nums] = nid;
src = nid;
for (;;) {
int n;
type = get_wcaps_type(get_wcaps(codec, src));
if (type == AC_WID_PIN)
break;
if (type == AC_WID_AUD_SEL) {
cap_nids[nums] = src;
break;
}
n = snd_hda_get_conn_list(codec, src, &list);
if (n > 1) {
cap_nids[nums] = src;
break;
} else if (n != 1)
break;
src = *list;
}
if (++nums >= max_nums)
break;
}
spec->adc_nids = spec->private_adc_nids;
spec->capsrc_nids = spec->private_capsrc_nids;
spec->num_adc_nids = nums;
return nums;
}
/* create playback/capture controls for input pins */
static int alc_auto_create_input_ctls(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
const struct auto_pin_cfg *cfg = &spec->autocfg;
hda_nid_t mixer = spec->mixer_nid;
struct hda_input_mux *imux = &spec->private_imux[0];
int num_adcs;
int i, c, err, idx, type_idx = 0;
const char *prev_label = NULL;
num_adcs = alc_auto_fill_adc_caps(codec);
if (num_adcs < 0)
return 0;
for (i = 0; i < cfg->num_inputs; i++) {
hda_nid_t pin;
const char *label;
pin = cfg->inputs[i].pin;
if (!alc_is_input_pin(codec, pin))
continue;
label = hda_get_autocfg_input_label(codec, cfg, i);
if (spec->shared_mic_hp && !strcmp(label, "Misc"))
label = "Headphone Mic";
if (prev_label && !strcmp(label, prev_label))
type_idx++;
else
type_idx = 0;
prev_label = label;
if (mixer) {
idx = get_connection_index(codec, mixer, pin);
if (idx >= 0) {
err = new_analog_input(spec, pin,
label, type_idx,
idx, mixer);
if (err < 0)
return err;
}
}
for (c = 0; c < num_adcs; c++) {
hda_nid_t cap = get_capsrc(spec, c);
idx = get_connection_index(codec, cap, pin);
if (idx >= 0) {
spec->imux_pins[imux->num_items] = pin;
snd_hda_add_imux_item(imux, label, idx, NULL);
break;
}
}
}
spec->num_mux_defs = 1;
spec->input_mux = imux;
return 0;
}
/* create a shared input with the headphone out */
static int alc_auto_create_shared_input(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
struct auto_pin_cfg *cfg = &spec->autocfg;
unsigned int defcfg;
hda_nid_t nid;
/* only one internal input pin? */
if (cfg->num_inputs != 1)
return 0;
defcfg = snd_hda_codec_get_pincfg(codec, cfg->inputs[0].pin);
if (snd_hda_get_input_pin_attr(defcfg) != INPUT_PIN_ATTR_INT)
return 0;
if (cfg->hp_outs == 1 && cfg->line_out_type == AUTO_PIN_SPEAKER_OUT)
nid = cfg->hp_pins[0]; /* OK, we have a single HP-out */
else if (cfg->line_outs == 1 && cfg->line_out_type == AUTO_PIN_HP_OUT)
nid = cfg->line_out_pins[0]; /* OK, we have a single line-out */
else
return 0; /* both not available */
if (!(snd_hda_query_pin_caps(codec, nid) & AC_PINCAP_IN))
return 0; /* no input */
cfg->inputs[1].pin = nid;
cfg->inputs[1].type = AUTO_PIN_MIC;
cfg->num_inputs = 2;
spec->shared_mic_hp = 1;
snd_printdd("realtek: Enable shared I/O jack on NID 0x%x\n", nid);
return 0;
}
static void alc_set_pin_output(struct hda_codec *codec, hda_nid_t nid,
unsigned int pin_type)
{
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_PIN_WIDGET_CONTROL,
pin_type);
/* unmute pin */
if (nid_has_mute(codec, nid, HDA_OUTPUT))
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE,
AMP_OUT_UNMUTE);
}
static int get_pin_type(int line_out_type)
{
if (line_out_type == AUTO_PIN_HP_OUT)
return PIN_HP;
else
return PIN_OUT;
}
static void alc_auto_init_analog_input(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
struct auto_pin_cfg *cfg = &spec->autocfg;
int i;
for (i = 0; i < cfg->num_inputs; i++) {
hda_nid_t nid = cfg->inputs[i].pin;
if (alc_is_input_pin(codec, nid)) {
alc_set_input_pin(codec, nid, cfg->inputs[i].type);
if (get_wcaps(codec, nid) & AC_WCAP_OUT_AMP)
snd_hda_codec_write(codec, nid, 0,
AC_VERB_SET_AMP_GAIN_MUTE,
AMP_OUT_MUTE);
}
}
/* mute all loopback inputs */
if (spec->mixer_nid) {
int nums = snd_hda_get_conn_list(codec, spec->mixer_nid, NULL);
for (i = 0; i < nums; i++)
snd_hda_codec_write(codec, spec->mixer_nid, 0,
AC_VERB_SET_AMP_GAIN_MUTE,
AMP_IN_MUTE(i));
}
}
/* convert from MIX nid to DAC */
static hda_nid_t alc_auto_mix_to_dac(struct hda_codec *codec, hda_nid_t nid)
{
hda_nid_t list[5];
int i, num;
if (get_wcaps_type(get_wcaps(codec, nid)) == AC_WID_AUD_OUT)
return nid;
num = snd_hda_get_connections(codec, nid, list, ARRAY_SIZE(list));
for (i = 0; i < num; i++) {
if (get_wcaps_type(get_wcaps(codec, list[i])) == AC_WID_AUD_OUT)
return list[i];
}
return 0;
}
/* go down to the selector widget before the mixer */
static hda_nid_t alc_go_down_to_selector(struct hda_codec *codec, hda_nid_t pin)
{
hda_nid_t srcs[5];
int num = snd_hda_get_connections(codec, pin, srcs,
ARRAY_SIZE(srcs));
if (num != 1 ||
get_wcaps_type(get_wcaps(codec, srcs[0])) != AC_WID_AUD_SEL)
return pin;
return srcs[0];
}
/* get MIX nid connected to the given pin targeted to DAC */
static hda_nid_t alc_auto_dac_to_mix(struct hda_codec *codec, hda_nid_t pin,
hda_nid_t dac)
{
hda_nid_t mix[5];
int i, num;
pin = alc_go_down_to_selector(codec, pin);
num = snd_hda_get_connections(codec, pin, mix, ARRAY_SIZE(mix));
for (i = 0; i < num; i++) {
if (alc_auto_mix_to_dac(codec, mix[i]) == dac)
return mix[i];
}
return 0;
}
/* select the connection from pin to DAC if needed */
static int alc_auto_select_dac(struct hda_codec *codec, hda_nid_t pin,
hda_nid_t dac)
{
hda_nid_t mix[5];
int i, num;
pin = alc_go_down_to_selector(codec, pin);
num = snd_hda_get_connections(codec, pin, mix, ARRAY_SIZE(mix));
if (num < 2)
return 0;
for (i = 0; i < num; i++) {
if (alc_auto_mix_to_dac(codec, mix[i]) == dac) {
snd_hda_codec_update_cache(codec, pin, 0,
AC_VERB_SET_CONNECT_SEL, i);
return 0;
}
}
return 0;
}
static bool alc_is_dac_already_used(struct hda_codec *codec, hda_nid_t nid)
{
struct alc_spec *spec = codec->spec;
int i;
if (found_in_nid_list(nid, spec->multiout.dac_nids,
ARRAY_SIZE(spec->private_dac_nids)) ||
found_in_nid_list(nid, spec->multiout.hp_out_nid,
ARRAY_SIZE(spec->multiout.hp_out_nid)) ||
found_in_nid_list(nid, spec->multiout.extra_out_nid,
ARRAY_SIZE(spec->multiout.extra_out_nid)))
return true;
for (i = 0; i < spec->multi_ios; i++) {
if (spec->multi_io[i].dac == nid)
return true;
}
return false;
}
/* look for an empty DAC slot */
static hda_nid_t alc_auto_look_for_dac(struct hda_codec *codec, hda_nid_t pin)
{
hda_nid_t srcs[5];
int i, num;
pin = alc_go_down_to_selector(codec, pin);
num = snd_hda_get_connections(codec, pin, srcs, ARRAY_SIZE(srcs));
for (i = 0; i < num; i++) {
hda_nid_t nid = alc_auto_mix_to_dac(codec, srcs[i]);
if (!nid)
continue;
if (!alc_is_dac_already_used(codec, nid))
return nid;
}
return 0;
}
/* check whether the DAC is reachable from the pin */
static bool alc_auto_is_dac_reachable(struct hda_codec *codec,
hda_nid_t pin, hda_nid_t dac)
{
hda_nid_t srcs[5];
int i, num;
if (!pin || !dac)
return false;
pin = alc_go_down_to_selector(codec, pin);
num = snd_hda_get_connections(codec, pin, srcs, ARRAY_SIZE(srcs));
for (i = 0; i < num; i++) {
hda_nid_t nid = alc_auto_mix_to_dac(codec, srcs[i]);
if (nid == dac)
return true;
}
return false;
}
static hda_nid_t get_dac_if_single(struct hda_codec *codec, hda_nid_t pin)
{
struct alc_spec *spec = codec->spec;
hda_nid_t sel = alc_go_down_to_selector(codec, pin);
hda_nid_t nid, nid_found, srcs[5];
int i, num = snd_hda_get_connections(codec, sel, srcs,
ARRAY_SIZE(srcs));
if (num == 1)
return alc_auto_look_for_dac(codec, pin);
nid_found = 0;
for (i = 0; i < num; i++) {
if (srcs[i] == spec->mixer_nid)
continue;
nid = alc_auto_mix_to_dac(codec, srcs[i]);
if (nid && !alc_is_dac_already_used(codec, nid)) {
if (nid_found)
return 0;
nid_found = nid;
}
}
return nid_found;
}
/* mark up volume and mute control NIDs: used during badness parsing and
* at creating actual controls
*/
static inline unsigned int get_ctl_pos(unsigned int data)
{
hda_nid_t nid = get_amp_nid_(data);
unsigned int dir;
if (snd_BUG_ON(nid >= MAX_VOL_NIDS))
return 0;
dir = get_amp_direction_(data);
return (nid << 1) | dir;
}
#define is_ctl_used(bits, data) \
test_bit(get_ctl_pos(data), bits)
#define mark_ctl_usage(bits, data) \
set_bit(get_ctl_pos(data), bits)
static void clear_vol_marks(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
memset(spec->vol_ctls, 0, sizeof(spec->vol_ctls));
memset(spec->sw_ctls, 0, sizeof(spec->sw_ctls));
}
/* badness definition */
enum {
/* No primary DAC is found for the main output */
BAD_NO_PRIMARY_DAC = 0x10000,
/* No DAC is found for the extra output */
BAD_NO_DAC = 0x4000,
/* No possible multi-ios */
BAD_MULTI_IO = 0x103,
/* No individual DAC for extra output */
BAD_NO_EXTRA_DAC = 0x102,
/* No individual DAC for extra surrounds */
BAD_NO_EXTRA_SURR_DAC = 0x101,
/* Primary DAC shared with main surrounds */
BAD_SHARED_SURROUND = 0x100,
/* Primary DAC shared with main CLFE */
BAD_SHARED_CLFE = 0x10,
/* Primary DAC shared with extra surrounds */
BAD_SHARED_EXTRA_SURROUND = 0x10,
/* Volume widget is shared */
BAD_SHARED_VOL = 0x10,
};
static hda_nid_t alc_look_for_out_mute_nid(struct hda_codec *codec,
hda_nid_t pin, hda_nid_t dac);
static hda_nid_t alc_look_for_out_vol_nid(struct hda_codec *codec,
hda_nid_t pin, hda_nid_t dac);
static int eval_shared_vol_badness(struct hda_codec *codec, hda_nid_t pin,
hda_nid_t dac)
{
struct alc_spec *spec = codec->spec;
hda_nid_t nid;
unsigned int val;
int badness = 0;
nid = alc_look_for_out_vol_nid(codec, pin, dac);
if (nid) {
val = HDA_COMPOSE_AMP_VAL(nid, 3, 0, HDA_OUTPUT);
if (is_ctl_used(spec->vol_ctls, nid))
badness += BAD_SHARED_VOL;
else
mark_ctl_usage(spec->vol_ctls, val);
} else
badness += BAD_SHARED_VOL;
nid = alc_look_for_out_mute_nid(codec, pin, dac);
if (nid) {
unsigned int wid_type = get_wcaps_type(get_wcaps(codec, nid));
if (wid_type == AC_WID_PIN || wid_type == AC_WID_AUD_OUT)
val = HDA_COMPOSE_AMP_VAL(nid, 3, 0, HDA_OUTPUT);
else
val = HDA_COMPOSE_AMP_VAL(nid, 3, 0, HDA_INPUT);
if (is_ctl_used(spec->sw_ctls, val))
badness += BAD_SHARED_VOL;
else
mark_ctl_usage(spec->sw_ctls, val);
} else
badness += BAD_SHARED_VOL;
return badness;
}
struct badness_table {
int no_primary_dac; /* no primary DAC */
int no_dac; /* no secondary DACs */
int shared_primary; /* primary DAC is shared with main output */
int shared_surr; /* secondary DAC shared with main or primary */
int shared_clfe; /* third DAC shared with main or primary */
int shared_surr_main; /* secondary DAC sahred with main/DAC0 */
};
static struct badness_table main_out_badness = {
.no_primary_dac = BAD_NO_PRIMARY_DAC,
.no_dac = BAD_NO_DAC,
.shared_primary = BAD_NO_PRIMARY_DAC,
.shared_surr = BAD_SHARED_SURROUND,
.shared_clfe = BAD_SHARED_CLFE,
.shared_surr_main = BAD_SHARED_SURROUND,
};
static struct badness_table extra_out_badness = {
.no_primary_dac = BAD_NO_DAC,
.no_dac = BAD_NO_DAC,
.shared_primary = BAD_NO_EXTRA_DAC,
.shared_surr = BAD_SHARED_EXTRA_SURROUND,
.shared_clfe = BAD_SHARED_EXTRA_SURROUND,
.shared_surr_main = BAD_NO_EXTRA_SURR_DAC,
};
/* try to assign DACs to pins and return the resultant badness */
static int alc_auto_fill_dacs(struct hda_codec *codec, int num_outs,
const hda_nid_t *pins, hda_nid_t *dacs,
const struct badness_table *bad)
{
struct alc_spec *spec = codec->spec;
struct auto_pin_cfg *cfg = &spec->autocfg;
int i, j;
int badness = 0;
hda_nid_t dac;
if (!num_outs)
return 0;
for (i = 0; i < num_outs; i++) {
hda_nid_t pin = pins[i];
if (!dacs[i])
dacs[i] = alc_auto_look_for_dac(codec, pin);
if (!dacs[i] && !i) {
for (j = 1; j < num_outs; j++) {
if (alc_auto_is_dac_reachable(codec, pin, dacs[j])) {
dacs[0] = dacs[j];
dacs[j] = 0;
break;
}
}
}
dac = dacs[i];
if (!dac) {
if (alc_auto_is_dac_reachable(codec, pin, dacs[0]))
dac = dacs[0];
else if (cfg->line_outs > i &&
alc_auto_is_dac_reachable(codec, pin,
spec->private_dac_nids[i]))
dac = spec->private_dac_nids[i];
if (dac) {
if (!i)
badness += bad->shared_primary;
else if (i == 1)
badness += bad->shared_surr;
else
badness += bad->shared_clfe;
} else if (alc_auto_is_dac_reachable(codec, pin,
spec->private_dac_nids[0])) {
dac = spec->private_dac_nids[0];
badness += bad->shared_surr_main;
} else if (!i)
badness += bad->no_primary_dac;
else
badness += bad->no_dac;
}
if (dac)
badness += eval_shared_vol_badness(codec, pin, dac);
}
return badness;
}
static int alc_auto_fill_multi_ios(struct hda_codec *codec,
hda_nid_t reference_pin,
bool hardwired, int offset);
static bool alc_map_singles(struct hda_codec *codec, int outs,
const hda_nid_t *pins, hda_nid_t *dacs)
{
int i;
bool found = false;
for (i = 0; i < outs; i++) {
if (dacs[i])
continue;
dacs[i] = get_dac_if_single(codec, pins[i]);
if (dacs[i])
found = true;
}
return found;
}
/* fill in the dac_nids table from the parsed pin configuration */
static int fill_and_eval_dacs(struct hda_codec *codec,
bool fill_hardwired,
bool fill_mio_first)
{
struct alc_spec *spec = codec->spec;
struct auto_pin_cfg *cfg = &spec->autocfg;
int i, err, badness;
/* set num_dacs once to full for alc_auto_look_for_dac() */
spec->multiout.num_dacs = cfg->line_outs;
spec->multiout.dac_nids = spec->private_dac_nids;
memset(spec->private_dac_nids, 0, sizeof(spec->private_dac_nids));
memset(spec->multiout.hp_out_nid, 0, sizeof(spec->multiout.hp_out_nid));
memset(spec->multiout.extra_out_nid, 0, sizeof(spec->multiout.extra_out_nid));
spec->multi_ios = 0;
clear_vol_marks(codec);
badness = 0;
/* fill hard-wired DACs first */
if (fill_hardwired) {
bool mapped;
do {
mapped = alc_map_singles(codec, cfg->line_outs,
cfg->line_out_pins,
spec->private_dac_nids);
mapped |= alc_map_singles(codec, cfg->hp_outs,
cfg->hp_pins,
spec->multiout.hp_out_nid);
mapped |= alc_map_singles(codec, cfg->speaker_outs,
cfg->speaker_pins,
spec->multiout.extra_out_nid);
if (fill_mio_first && cfg->line_outs == 1 &&
cfg->line_out_type != AUTO_PIN_SPEAKER_OUT) {
err = alc_auto_fill_multi_ios(codec, cfg->line_out_pins[0], true, 0);
if (!err)
mapped = true;
}
} while (mapped);
}
badness += alc_auto_fill_dacs(codec, cfg->line_outs, cfg->line_out_pins,
spec->private_dac_nids,
&main_out_badness);
/* re-count num_dacs and squash invalid entries */
spec->multiout.num_dacs = 0;
for (i = 0; i < cfg->line_outs; i++) {
if (spec->private_dac_nids[i])
spec->multiout.num_dacs++;
else {
memmove(spec->private_dac_nids + i,
spec->private_dac_nids + i + 1,
sizeof(hda_nid_t) * (cfg->line_outs - i - 1));
spec->private_dac_nids[cfg->line_outs - 1] = 0;
}
}
if (fill_mio_first &&
cfg->line_outs == 1 && cfg->line_out_type != AUTO_PIN_SPEAKER_OUT) {
/* try to fill multi-io first */
err = alc_auto_fill_multi_ios(codec, cfg->line_out_pins[0], false, 0);
if (err < 0)
return err;
/* we don't count badness at this stage yet */
}
if (cfg->line_out_type != AUTO_PIN_HP_OUT) {
err = alc_auto_fill_dacs(codec, cfg->hp_outs, cfg->hp_pins,
spec->multiout.hp_out_nid,
&extra_out_badness);
if (err < 0)
return err;
badness += err;
}
if (cfg->line_out_type != AUTO_PIN_SPEAKER_OUT) {
err = alc_auto_fill_dacs(codec, cfg->speaker_outs,
cfg->speaker_pins,
spec->multiout.extra_out_nid,
&extra_out_badness);
if (err < 0)
return err;
badness += err;
}
if (cfg->line_outs == 1 && cfg->line_out_type != AUTO_PIN_SPEAKER_OUT) {
err = alc_auto_fill_multi_ios(codec, cfg->line_out_pins[0], false, 0);
if (err < 0)
return err;
badness += err;
}
if (cfg->hp_outs && cfg->line_out_type == AUTO_PIN_SPEAKER_OUT) {
/* try multi-ios with HP + inputs */
int offset = 0;
if (cfg->line_outs >= 3)
offset = 1;
err = alc_auto_fill_multi_ios(codec, cfg->hp_pins[0], false,
offset);
if (err < 0)
return err;
badness += err;
}
if (spec->multi_ios == 2) {
for (i = 0; i < 2; i++)
spec->private_dac_nids[spec->multiout.num_dacs++] =
spec->multi_io[i].dac;
spec->ext_channel_count = 2;
} else if (spec->multi_ios) {
spec->multi_ios = 0;
badness += BAD_MULTI_IO;
}
return badness;
}
#define DEBUG_BADNESS
#ifdef DEBUG_BADNESS
#define debug_badness snd_printdd
#else
#define debug_badness(...)
#endif
static void debug_show_configs(struct alc_spec *spec, struct auto_pin_cfg *cfg)
{
debug_badness("multi_outs = %x/%x/%x/%x : %x/%x/%x/%x\n",
cfg->line_out_pins[0], cfg->line_out_pins[1],
cfg->line_out_pins[2], cfg->line_out_pins[2],
spec->multiout.dac_nids[0],
spec->multiout.dac_nids[1],
spec->multiout.dac_nids[2],
spec->multiout.dac_nids[3]);
if (spec->multi_ios > 0)
debug_badness("multi_ios(%d) = %x/%x : %x/%x\n",
spec->multi_ios,
spec->multi_io[0].pin, spec->multi_io[1].pin,
spec->multi_io[0].dac, spec->multi_io[1].dac);
debug_badness("hp_outs = %x/%x/%x/%x : %x/%x/%x/%x\n",
cfg->hp_pins[0], cfg->hp_pins[1],
cfg->hp_pins[2], cfg->hp_pins[2],
spec->multiout.hp_out_nid[0],
spec->multiout.hp_out_nid[1],
spec->multiout.hp_out_nid[2],
spec->multiout.hp_out_nid[3]);
debug_badness("spk_outs = %x/%x/%x/%x : %x/%x/%x/%x\n",
cfg->speaker_pins[0], cfg->speaker_pins[1],
cfg->speaker_pins[2], cfg->speaker_pins[3],
spec->multiout.extra_out_nid[0],
spec->multiout.extra_out_nid[1],
spec->multiout.extra_out_nid[2],
spec->multiout.extra_out_nid[3]);
}
static int alc_auto_fill_dac_nids(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
struct auto_pin_cfg *cfg = &spec->autocfg;
struct auto_pin_cfg *best_cfg;
int best_badness = INT_MAX;
int badness;
bool fill_hardwired = true, fill_mio_first = true;
bool best_wired = true, best_mio = true;
bool hp_spk_swapped = false;
best_cfg = kmalloc(sizeof(*best_cfg), GFP_KERNEL);
if (!best_cfg)
return -ENOMEM;
*best_cfg = *cfg;
for (;;) {
badness = fill_and_eval_dacs(codec, fill_hardwired,
fill_mio_first);
if (badness < 0) {
kfree(best_cfg);
return badness;
}
debug_badness("==> lo_type=%d, wired=%d, mio=%d, badness=0x%x\n",
cfg->line_out_type, fill_hardwired, fill_mio_first,
badness);
debug_show_configs(spec, cfg);
if (badness < best_badness) {
best_badness = badness;
*best_cfg = *cfg;
best_wired = fill_hardwired;
best_mio = fill_mio_first;
}
if (!badness)
break;
fill_mio_first = !fill_mio_first;
if (!fill_mio_first)
continue;
fill_hardwired = !fill_hardwired;
if (!fill_hardwired)
continue;
if (hp_spk_swapped)
break;
hp_spk_swapped = true;
if (cfg->speaker_outs > 0 &&
cfg->line_out_type == AUTO_PIN_HP_OUT) {
cfg->hp_outs = cfg->line_outs;
memcpy(cfg->hp_pins, cfg->line_out_pins,
sizeof(cfg->hp_pins));
cfg->line_outs = cfg->speaker_outs;
memcpy(cfg->line_out_pins, cfg->speaker_pins,
sizeof(cfg->speaker_pins));
cfg->speaker_outs = 0;
memset(cfg->speaker_pins, 0, sizeof(cfg->speaker_pins));
cfg->line_out_type = AUTO_PIN_SPEAKER_OUT;
fill_hardwired = true;
continue;
}
if (cfg->hp_outs > 0 &&
cfg->line_out_type == AUTO_PIN_SPEAKER_OUT) {
cfg->speaker_outs = cfg->line_outs;
memcpy(cfg->speaker_pins, cfg->line_out_pins,
sizeof(cfg->speaker_pins));
cfg->line_outs = cfg->hp_outs;
memcpy(cfg->line_out_pins, cfg->hp_pins,
sizeof(cfg->hp_pins));
cfg->hp_outs = 0;
memset(cfg->hp_pins, 0, sizeof(cfg->hp_pins));
cfg->line_out_type = AUTO_PIN_HP_OUT;
fill_hardwired = true;
continue;
}
break;
}
if (badness) {
*cfg = *best_cfg;
fill_and_eval_dacs(codec, best_wired, best_mio);
}
debug_badness("==> Best config: lo_type=%d, wired=%d, mio=%d\n",
cfg->line_out_type, best_wired, best_mio);
debug_show_configs(spec, cfg);
if (cfg->line_out_pins[0])
spec->vmaster_nid =
alc_look_for_out_vol_nid(codec, cfg->line_out_pins[0],
spec->multiout.dac_nids[0]);
/* clear the bitmap flags for creating controls */
clear_vol_marks(codec);
kfree(best_cfg);
return 0;
}
static int alc_auto_add_vol_ctl(struct hda_codec *codec,
const char *pfx, int cidx,
hda_nid_t nid, unsigned int chs)
{
struct alc_spec *spec = codec->spec;
unsigned int val;
if (!nid)
return 0;
val = HDA_COMPOSE_AMP_VAL(nid, chs, 0, HDA_OUTPUT);
if (is_ctl_used(spec->vol_ctls, val) && chs != 2) /* exclude LFE */
return 0;
mark_ctl_usage(spec->vol_ctls, val);
return __add_pb_vol_ctrl(codec->spec, ALC_CTL_WIDGET_VOL, pfx, cidx,
val);
}
static int alc_auto_add_stereo_vol(struct hda_codec *codec,
const char *pfx, int cidx,
hda_nid_t nid)
{
int chs = 1;
if (get_wcaps(codec, nid) & AC_WCAP_STEREO)
chs = 3;
return alc_auto_add_vol_ctl(codec, pfx, cidx, nid, chs);
}
/* create a mute-switch for the given mixer widget;
* if it has multiple sources (e.g. DAC and loopback), create a bind-mute
*/
static int alc_auto_add_sw_ctl(struct hda_codec *codec,
const char *pfx, int cidx,
hda_nid_t nid, unsigned int chs)
{
struct alc_spec *spec = codec->spec;
int wid_type;
int type;
unsigned long val;
if (!nid)
return 0;
wid_type = get_wcaps_type(get_wcaps(codec, nid));
if (wid_type == AC_WID_PIN || wid_type == AC_WID_AUD_OUT) {
type = ALC_CTL_WIDGET_MUTE;
val = HDA_COMPOSE_AMP_VAL(nid, chs, 0, HDA_OUTPUT);
} else if (snd_hda_get_conn_list(codec, nid, NULL) == 1) {
type = ALC_CTL_WIDGET_MUTE;
val = HDA_COMPOSE_AMP_VAL(nid, chs, 0, HDA_INPUT);
} else {
type = ALC_CTL_BIND_MUTE;
val = HDA_COMPOSE_AMP_VAL(nid, chs, 2, HDA_INPUT);
}
if (is_ctl_used(spec->sw_ctls, val) && chs != 2) /* exclude LFE */
return 0;
mark_ctl_usage(spec->sw_ctls, val);
return __add_pb_sw_ctrl(codec->spec, type, pfx, cidx, val);
}
static int alc_auto_add_stereo_sw(struct hda_codec *codec, const char *pfx,
int cidx, hda_nid_t nid)
{
int chs = 1;
if (get_wcaps(codec, nid) & AC_WCAP_STEREO)
chs = 3;
return alc_auto_add_sw_ctl(codec, pfx, cidx, nid, chs);
}
static hda_nid_t alc_look_for_out_mute_nid(struct hda_codec *codec,
hda_nid_t pin, hda_nid_t dac)
{
hda_nid_t mix = alc_auto_dac_to_mix(codec, pin, dac);
if (nid_has_mute(codec, pin, HDA_OUTPUT))
return pin;
else if (mix && nid_has_mute(codec, mix, HDA_INPUT))
return mix;
else if (nid_has_mute(codec, dac, HDA_OUTPUT))
return dac;
return 0;
}
static hda_nid_t alc_look_for_out_vol_nid(struct hda_codec *codec,
hda_nid_t pin, hda_nid_t dac)
{
hda_nid_t mix = alc_auto_dac_to_mix(codec, pin, dac);
if (nid_has_volume(codec, dac, HDA_OUTPUT))
return dac;
else if (nid_has_volume(codec, mix, HDA_OUTPUT))
return mix;
else if (nid_has_volume(codec, pin, HDA_OUTPUT))
return pin;
return 0;
}
/* add playback controls from the parsed DAC table */
static int alc_auto_create_multi_out_ctls(struct hda_codec *codec,
const struct auto_pin_cfg *cfg)
{
struct alc_spec *spec = codec->spec;
int i, err, noutputs;
noutputs = cfg->line_outs;
if (spec->multi_ios > 0 && cfg->line_outs < 3)
noutputs += spec->multi_ios;
for (i = 0; i < noutputs; i++) {
const char *name;
int index;
hda_nid_t dac, pin;
hda_nid_t sw, vol;
dac = spec->multiout.dac_nids[i];
if (!dac)
continue;
if (i >= cfg->line_outs) {
pin = spec->multi_io[i - 1].pin;
index = 0;
name = channel_name[i];
} else {
pin = cfg->line_out_pins[i];
name = alc_get_line_out_pfx(spec, i, true, &index);
}
sw = alc_look_for_out_mute_nid(codec, pin, dac);
vol = alc_look_for_out_vol_nid(codec, pin, dac);
if (!name || !strcmp(name, "CLFE")) {
/* Center/LFE */
err = alc_auto_add_vol_ctl(codec, "Center", 0, vol, 1);
if (err < 0)
return err;
err = alc_auto_add_vol_ctl(codec, "LFE", 0, vol, 2);
if (err < 0)
return err;
err = alc_auto_add_sw_ctl(codec, "Center", 0, sw, 1);
if (err < 0)
return err;
err = alc_auto_add_sw_ctl(codec, "LFE", 0, sw, 2);
if (err < 0)
return err;
} else {
err = alc_auto_add_stereo_vol(codec, name, index, vol);
if (err < 0)
return err;
err = alc_auto_add_stereo_sw(codec, name, index, sw);
if (err < 0)
return err;
}
}
return 0;
}
static int alc_auto_create_extra_out(struct hda_codec *codec, hda_nid_t pin,
hda_nid_t dac, const char *pfx,
int cidx)
{
struct alc_spec *spec = codec->spec;
hda_nid_t sw, vol;
int err;
if (!dac) {
unsigned int val;
/* the corresponding DAC is already occupied */
if (!(get_wcaps(codec, pin) & AC_WCAP_OUT_AMP))
return 0; /* no way */
/* create a switch only */
val = HDA_COMPOSE_AMP_VAL(pin, 3, 0, HDA_OUTPUT);
if (is_ctl_used(spec->sw_ctls, val))
return 0; /* already created */
mark_ctl_usage(spec->sw_ctls, val);
return __add_pb_sw_ctrl(spec, ALC_CTL_WIDGET_MUTE, pfx, cidx, val);
}
sw = alc_look_for_out_mute_nid(codec, pin, dac);
vol = alc_look_for_out_vol_nid(codec, pin, dac);
err = alc_auto_add_stereo_vol(codec, pfx, cidx, vol);
if (err < 0)
return err;
err = alc_auto_add_stereo_sw(codec, pfx, cidx, sw);
if (err < 0)
return err;
return 0;
}
static struct hda_bind_ctls *new_bind_ctl(struct hda_codec *codec,
unsigned int nums,
struct hda_ctl_ops *ops)
{
struct alc_spec *spec = codec->spec;
struct hda_bind_ctls **ctlp, *ctl;
snd_array_init(&spec->bind_ctls, sizeof(ctl), 8);
ctlp = snd_array_new(&spec->bind_ctls);
if (!ctlp)
return NULL;
ctl = kzalloc(sizeof(*ctl) + sizeof(long) * (nums + 1), GFP_KERNEL);
*ctlp = ctl;
if (ctl)
ctl->ops = ops;
return ctl;
}
/* add playback controls for speaker and HP outputs */
static int alc_auto_create_extra_outs(struct hda_codec *codec, int num_pins,
const hda_nid_t *pins,
const hda_nid_t *dacs,
const char *pfx)
{
struct alc_spec *spec = codec->spec;
struct hda_bind_ctls *ctl;
char name[32];
int i, n, err;
if (!num_pins || !pins[0])
return 0;
if (num_pins == 1) {
hda_nid_t dac = *dacs;
if (!dac)
dac = spec->multiout.dac_nids[0];
return alc_auto_create_extra_out(codec, *pins, dac, pfx, 0);
}
for (i = 0; i < num_pins; i++) {
hda_nid_t dac;
if (dacs[num_pins - 1])
dac = dacs[i]; /* with individual volumes */
else
dac = 0;
if (num_pins == 2 && i == 1 && !strcmp(pfx, "Speaker")) {
err = alc_auto_create_extra_out(codec, pins[i], dac,
"Bass Speaker", 0);
} else if (num_pins >= 3) {
snprintf(name, sizeof(name), "%s %s",
pfx, channel_name[i]);
err = alc_auto_create_extra_out(codec, pins[i], dac,
name, 0);
} else {
err = alc_auto_create_extra_out(codec, pins[i], dac,
pfx, i);
}
if (err < 0)
return err;
}
if (dacs[num_pins - 1])
return 0;
/* Let's create a bind-controls for volumes */
ctl = new_bind_ctl(codec, num_pins, &snd_hda_bind_vol);
if (!ctl)
return -ENOMEM;
n = 0;
for (i = 0; i < num_pins; i++) {
hda_nid_t vol;
if (!pins[i] || !dacs[i])
continue;
vol = alc_look_for_out_vol_nid(codec, pins[i], dacs[i]);
if (vol)
ctl->values[n++] =
HDA_COMPOSE_AMP_VAL(vol, 3, 0, HDA_OUTPUT);
}
if (n) {
snprintf(name, sizeof(name), "%s Playback Volume", pfx);
err = add_control(spec, ALC_CTL_BIND_VOL, name, 0, (long)ctl);
if (err < 0)
return err;
}
return 0;
}
static int alc_auto_create_hp_out(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
return alc_auto_create_extra_outs(codec, spec->autocfg.hp_outs,
spec->autocfg.hp_pins,
spec->multiout.hp_out_nid,
"Headphone");
}
static int alc_auto_create_speaker_out(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
return alc_auto_create_extra_outs(codec, spec->autocfg.speaker_outs,
spec->autocfg.speaker_pins,
spec->multiout.extra_out_nid,
"Speaker");
}
static void alc_auto_set_output_and_unmute(struct hda_codec *codec,
hda_nid_t pin, int pin_type,
hda_nid_t dac)
{
int i, num;
hda_nid_t nid, mix = 0;
hda_nid_t srcs[HDA_MAX_CONNECTIONS];
alc_set_pin_output(codec, pin, pin_type);
nid = alc_go_down_to_selector(codec, pin);
num = snd_hda_get_connections(codec, nid, srcs, ARRAY_SIZE(srcs));
for (i = 0; i < num; i++) {
if (alc_auto_mix_to_dac(codec, srcs[i]) != dac)
continue;
mix = srcs[i];
break;
}
if (!mix)
return;
/* need the manual connection? */
if (num > 1)
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CONNECT_SEL, i);
/* unmute mixer widget inputs */
if (nid_has_mute(codec, mix, HDA_INPUT)) {
snd_hda_codec_write(codec, mix, 0, AC_VERB_SET_AMP_GAIN_MUTE,
AMP_IN_UNMUTE(0));
snd_hda_codec_write(codec, mix, 0, AC_VERB_SET_AMP_GAIN_MUTE,
AMP_IN_UNMUTE(1));
}
/* initialize volume */
nid = alc_look_for_out_vol_nid(codec, pin, dac);
if (nid)
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE,
AMP_OUT_ZERO);
/* unmute DAC if it's not assigned to a mixer */
nid = alc_look_for_out_mute_nid(codec, pin, dac);
if (nid == mix && nid_has_mute(codec, dac, HDA_OUTPUT))
snd_hda_codec_write(codec, dac, 0, AC_VERB_SET_AMP_GAIN_MUTE,
AMP_OUT_ZERO);
}
static void alc_auto_init_multi_out(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
int pin_type = get_pin_type(spec->autocfg.line_out_type);
int i;
for (i = 0; i <= HDA_SIDE; i++) {
hda_nid_t nid = spec->autocfg.line_out_pins[i];
if (nid)
alc_auto_set_output_and_unmute(codec, nid, pin_type,
spec->multiout.dac_nids[i]);
}
}
static void alc_auto_init_extra_out(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
int i;
hda_nid_t pin, dac;
for (i = 0; i < spec->autocfg.hp_outs; i++) {
if (spec->autocfg.line_out_type == AUTO_PIN_HP_OUT)
break;
pin = spec->autocfg.hp_pins[i];
if (!pin)
break;
dac = spec->multiout.hp_out_nid[i];
if (!dac) {
if (i > 0 && spec->multiout.hp_out_nid[0])
dac = spec->multiout.hp_out_nid[0];
else
dac = spec->multiout.dac_nids[0];
}
alc_auto_set_output_and_unmute(codec, pin, PIN_HP, dac);
}
for (i = 0; i < spec->autocfg.speaker_outs; i++) {
if (spec->autocfg.line_out_type == AUTO_PIN_SPEAKER_OUT)
break;
pin = spec->autocfg.speaker_pins[i];
if (!pin)
break;
dac = spec->multiout.extra_out_nid[i];
if (!dac) {
if (i > 0 && spec->multiout.extra_out_nid[0])
dac = spec->multiout.extra_out_nid[0];
else
dac = spec->multiout.dac_nids[0];
}
alc_auto_set_output_and_unmute(codec, pin, PIN_OUT, dac);
}
}
/* check whether the given pin can be a multi-io pin */
static bool can_be_multiio_pin(struct hda_codec *codec,
unsigned int location, hda_nid_t nid)
{
unsigned int defcfg, caps;
defcfg = snd_hda_codec_get_pincfg(codec, nid);
if (get_defcfg_connect(defcfg) != AC_JACK_PORT_COMPLEX)
return false;
if (location && get_defcfg_location(defcfg) != location)
return false;
caps = snd_hda_query_pin_caps(codec, nid);
if (!(caps & AC_PINCAP_OUT))
return false;
return true;
}
/*
* multi-io helper
*
* When hardwired is set, try to fill ony hardwired pins, and returns
* zero if any pins are filled, non-zero if nothing found.
* When hardwired is off, try to fill possible input pins, and returns
* the badness value.
*/
static int alc_auto_fill_multi_ios(struct hda_codec *codec,
hda_nid_t reference_pin,
bool hardwired, int offset)
{
struct alc_spec *spec = codec->spec;
struct auto_pin_cfg *cfg = &spec->autocfg;
int type, i, j, dacs, num_pins, old_pins;
unsigned int defcfg = snd_hda_codec_get_pincfg(codec, reference_pin);
unsigned int location = get_defcfg_location(defcfg);
int badness = 0;
old_pins = spec->multi_ios;
if (old_pins >= 2)
goto end_fill;
num_pins = 0;
for (type = AUTO_PIN_LINE_IN; type >= AUTO_PIN_MIC; type--) {
for (i = 0; i < cfg->num_inputs; i++) {
if (cfg->inputs[i].type != type)
continue;
if (can_be_multiio_pin(codec, location,
cfg->inputs[i].pin))
num_pins++;
}
}
if (num_pins < 2)
goto end_fill;
dacs = spec->multiout.num_dacs;
for (type = AUTO_PIN_LINE_IN; type >= AUTO_PIN_MIC; type--) {
for (i = 0; i < cfg->num_inputs; i++) {
hda_nid_t nid = cfg->inputs[i].pin;
hda_nid_t dac = 0;
if (cfg->inputs[i].type != type)
continue;
if (!can_be_multiio_pin(codec, location, nid))
continue;
for (j = 0; j < spec->multi_ios; j++) {
if (nid == spec->multi_io[j].pin)
break;
}
if (j < spec->multi_ios)
continue;
if (offset && offset + spec->multi_ios < dacs) {
dac = spec->private_dac_nids[offset + spec->multi_ios];
if (!alc_auto_is_dac_reachable(codec, nid, dac))
dac = 0;
}
if (hardwired)
dac = get_dac_if_single(codec, nid);
else if (!dac)
dac = alc_auto_look_for_dac(codec, nid);
if (!dac) {
badness++;
continue;
}
spec->multi_io[spec->multi_ios].pin = nid;
spec->multi_io[spec->multi_ios].dac = dac;
spec->multi_ios++;
if (spec->multi_ios >= 2)
break;
}
}
end_fill:
if (badness)
badness = BAD_MULTI_IO;
if (old_pins == spec->multi_ios) {
if (hardwired)
return 1; /* nothing found */
else
return badness; /* no badness if nothing found */
}
if (!hardwired && spec->multi_ios < 2) {
spec->multi_ios = old_pins;
return badness;
}
return 0;
}
static int alc_auto_ch_mode_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct alc_spec *spec = codec->spec;
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = spec->multi_ios + 1;
if (uinfo->value.enumerated.item > spec->multi_ios)
uinfo->value.enumerated.item = spec->multi_ios;
sprintf(uinfo->value.enumerated.name, "%dch",
(uinfo->value.enumerated.item + 1) * 2);
return 0;
}
static int alc_auto_ch_mode_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct alc_spec *spec = codec->spec;
ucontrol->value.enumerated.item[0] = (spec->ext_channel_count - 1) / 2;
return 0;
}
static int alc_set_multi_io(struct hda_codec *codec, int idx, bool output)
{
struct alc_spec *spec = codec->spec;
hda_nid_t nid = spec->multi_io[idx].pin;
if (!spec->multi_io[idx].ctl_in)
spec->multi_io[idx].ctl_in =
snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_PIN_WIDGET_CONTROL, 0);
if (output) {
snd_hda_codec_update_cache(codec, nid, 0,
AC_VERB_SET_PIN_WIDGET_CONTROL,
PIN_OUT);
if (get_wcaps(codec, nid) & AC_WCAP_OUT_AMP)
snd_hda_codec_amp_stereo(codec, nid, HDA_OUTPUT, 0,
HDA_AMP_MUTE, 0);
alc_auto_select_dac(codec, nid, spec->multi_io[idx].dac);
} else {
if (get_wcaps(codec, nid) & AC_WCAP_OUT_AMP)
snd_hda_codec_amp_stereo(codec, nid, HDA_OUTPUT, 0,
HDA_AMP_MUTE, HDA_AMP_MUTE);
snd_hda_codec_update_cache(codec, nid, 0,
AC_VERB_SET_PIN_WIDGET_CONTROL,
spec->multi_io[idx].ctl_in);
}
return 0;
}
static int alc_auto_ch_mode_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct alc_spec *spec = codec->spec;
int i, ch;
ch = ucontrol->value.enumerated.item[0];
if (ch < 0 || ch > spec->multi_ios)
return -EINVAL;
if (ch == (spec->ext_channel_count - 1) / 2)
return 0;
spec->ext_channel_count = (ch + 1) * 2;
for (i = 0; i < spec->multi_ios; i++)
alc_set_multi_io(codec, i, i < ch);
spec->multiout.max_channels = spec->ext_channel_count;
if (spec->need_dac_fix && !spec->const_channel_count)
spec->multiout.num_dacs = spec->multiout.max_channels / 2;
return 1;
}
static const struct snd_kcontrol_new alc_auto_channel_mode_enum = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Channel Mode",
.info = alc_auto_ch_mode_info,
.get = alc_auto_ch_mode_get,
.put = alc_auto_ch_mode_put,
};
static int alc_auto_add_multi_channel_mode(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
if (spec->multi_ios > 0) {
struct snd_kcontrol_new *knew;
knew = alc_kcontrol_new(spec);
if (!knew)
return -ENOMEM;
*knew = alc_auto_channel_mode_enum;
knew->name = kstrdup("Channel Mode", GFP_KERNEL);
if (!knew->name)
return -ENOMEM;
}
return 0;
}
/* filter out invalid adc_nids (and capsrc_nids) that don't give all
* active input pins
*/
static void alc_remove_invalid_adc_nids(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
const struct hda_input_mux *imux;
hda_nid_t adc_nids[ARRAY_SIZE(spec->private_adc_nids)];
hda_nid_t capsrc_nids[ARRAY_SIZE(spec->private_adc_nids)];
int i, n, nums;
imux = spec->input_mux;
if (!imux)
return;
if (spec->dyn_adc_switch)
return;
again:
nums = 0;
for (n = 0; n < spec->num_adc_nids; n++) {
hda_nid_t cap = spec->private_capsrc_nids[n];
int num_conns = snd_hda_get_conn_list(codec, cap, NULL);
for (i = 0; i < imux->num_items; i++) {
hda_nid_t pin = spec->imux_pins[i];
if (pin) {
if (get_connection_index(codec, cap, pin) < 0)
break;
} else if (num_conns <= imux->items[i].index)
break;
}
if (i >= imux->num_items) {
adc_nids[nums] = spec->private_adc_nids[n];
capsrc_nids[nums++] = cap;
}
}
if (!nums) {
/* check whether ADC-switch is possible */
if (!alc_check_dyn_adc_switch(codec)) {
if (spec->shared_mic_hp) {
spec->shared_mic_hp = 0;
spec->private_imux[0].num_items = 1;
goto again;
}
printk(KERN_WARNING "hda_codec: %s: no valid ADC found;"
" using fallback 0x%x\n",
codec->chip_name, spec->private_adc_nids[0]);
spec->num_adc_nids = 1;
spec->auto_mic = 0;
return;
}
} else if (nums != spec->num_adc_nids) {
memcpy(spec->private_adc_nids, adc_nids,
nums * sizeof(hda_nid_t));
memcpy(spec->private_capsrc_nids, capsrc_nids,
nums * sizeof(hda_nid_t));
spec->num_adc_nids = nums;
}
if (spec->auto_mic)
alc_auto_mic_check_imux(codec); /* check auto-mic setups */
else if (spec->input_mux->num_items == 1 || spec->shared_mic_hp)
spec->num_adc_nids = 1; /* reduce to a single ADC */
}
/*
* initialize ADC paths
*/
static void alc_auto_init_adc(struct hda_codec *codec, int adc_idx)
{
struct alc_spec *spec = codec->spec;
hda_nid_t nid;
nid = spec->adc_nids[adc_idx];
/* mute ADC */
if (nid_has_mute(codec, nid, HDA_INPUT)) {
snd_hda_codec_write(codec, nid, 0,
AC_VERB_SET_AMP_GAIN_MUTE,
AMP_IN_MUTE(0));
return;
}
if (!spec->capsrc_nids)
return;
nid = spec->capsrc_nids[adc_idx];
if (nid_has_mute(codec, nid, HDA_OUTPUT))
snd_hda_codec_write(codec, nid, 0,
AC_VERB_SET_AMP_GAIN_MUTE,
AMP_OUT_MUTE);
}
static void alc_auto_init_input_src(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
int c, nums;
for (c = 0; c < spec->num_adc_nids; c++)
alc_auto_init_adc(codec, c);
if (spec->dyn_adc_switch)
nums = 1;
else
nums = spec->num_adc_nids;
for (c = 0; c < nums; c++)
alc_mux_select(codec, c, spec->cur_mux[c], true);
}
/* add mic boosts if needed */
static int alc_auto_add_mic_boost(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
struct auto_pin_cfg *cfg = &spec->autocfg;
int i, err;
int type_idx = 0;
hda_nid_t nid;
const char *prev_label = NULL;
for (i = 0; i < cfg->num_inputs; i++) {
if (cfg->inputs[i].type > AUTO_PIN_MIC)
break;
nid = cfg->inputs[i].pin;
if (get_wcaps(codec, nid) & AC_WCAP_IN_AMP) {
const char *label;
char boost_label[32];
label = hda_get_autocfg_input_label(codec, cfg, i);
if (spec->shared_mic_hp && !strcmp(label, "Misc"))
label = "Headphone Mic";
if (prev_label && !strcmp(label, prev_label))
type_idx++;
else
type_idx = 0;
prev_label = label;
snprintf(boost_label, sizeof(boost_label),
"%s Boost Volume", label);
err = add_control(spec, ALC_CTL_WIDGET_VOL,
boost_label, type_idx,
HDA_COMPOSE_AMP_VAL(nid, 3, 0, HDA_INPUT));
if (err < 0)
return err;
}
}
return 0;
}
/* select or unmute the given capsrc route */
static void select_or_unmute_capsrc(struct hda_codec *codec, hda_nid_t cap,
int idx)
{
if (get_wcaps_type(get_wcaps(codec, cap)) == AC_WID_AUD_MIX) {
snd_hda_codec_amp_stereo(codec, cap, HDA_INPUT, idx,
HDA_AMP_MUTE, 0);
} else if (snd_hda_get_conn_list(codec, cap, NULL) > 1) {
snd_hda_codec_write_cache(codec, cap, 0,
AC_VERB_SET_CONNECT_SEL, idx);
}
}
/* set the default connection to that pin */
static int init_capsrc_for_pin(struct hda_codec *codec, hda_nid_t pin)
{
struct alc_spec *spec = codec->spec;
int i;
if (!pin)
return 0;
for (i = 0; i < spec->num_adc_nids; i++) {
hda_nid_t cap = get_capsrc(spec, i);
int idx;
idx = get_connection_index(codec, cap, pin);
if (idx < 0)
continue;
select_or_unmute_capsrc(codec, cap, idx);
return i; /* return the found index */
}
return -1; /* not found */
}
/* initialize some special cases for input sources */
static void alc_init_special_input_src(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
int i;
for (i = 0; i < spec->autocfg.num_inputs; i++)
init_capsrc_for_pin(codec, spec->autocfg.inputs[i].pin);
}
/* assign appropriate capture mixers */
static void set_capture_mixer(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
static const struct snd_kcontrol_new *caps[2][3] = {
{ alc_capture_mixer_nosrc1,
alc_capture_mixer_nosrc2,
alc_capture_mixer_nosrc3 },
{ alc_capture_mixer1,
alc_capture_mixer2,
alc_capture_mixer3 },
};
/* check whether either of ADC or MUX has a volume control */
if (!nid_has_volume(codec, spec->adc_nids[0], HDA_INPUT)) {
if (!spec->capsrc_nids)
return; /* no volume */
if (!nid_has_volume(codec, spec->capsrc_nids[0], HDA_OUTPUT))
return; /* no volume in capsrc, too */
spec->vol_in_capsrc = 1;
}
if (spec->num_adc_nids > 0) {
int mux = 0;
int num_adcs = 0;
if (spec->input_mux && spec->input_mux->num_items > 1)
mux = 1;
if (spec->auto_mic) {
num_adcs = 1;
mux = 0;
} else if (spec->dyn_adc_switch)
num_adcs = 1;
if (!num_adcs) {
if (spec->num_adc_nids > 3)
spec->num_adc_nids = 3;
else if (!spec->num_adc_nids)
return;
num_adcs = spec->num_adc_nids;
}
spec->cap_mixer = caps[mux][num_adcs - 1];
}
}
/*
* standard auto-parser initializations
*/
static void alc_auto_init_std(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
alc_auto_init_multi_out(codec);
alc_auto_init_extra_out(codec);
alc_auto_init_analog_input(codec);
alc_auto_init_input_src(codec);
alc_auto_init_digital(codec);
if (spec->unsol_event)
alc_inithook(codec);
}
/*
* Digital-beep handlers
*/
#ifdef CONFIG_SND_HDA_INPUT_BEEP
#define set_beep_amp(spec, nid, idx, dir) \
((spec)->beep_amp = HDA_COMPOSE_AMP_VAL(nid, 3, idx, dir))
static const struct snd_pci_quirk beep_white_list[] = {
SND_PCI_QUIRK(0x1043, 0x829f, "ASUS", 1),
SND_PCI_QUIRK(0x1043, 0x83ce, "EeePC", 1),
SND_PCI_QUIRK(0x1043, 0x831a, "EeePC", 1),
SND_PCI_QUIRK(0x1043, 0x834a, "EeePC", 1),
SND_PCI_QUIRK(0x1458, 0xa002, "GA-MA790X", 1),
SND_PCI_QUIRK(0x8086, 0xd613, "Intel", 1),
{}
};
static inline int has_cdefine_beep(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
const struct snd_pci_quirk *q;
q = snd_pci_quirk_lookup(codec->bus->pci, beep_white_list);
if (q)
return q->value;
return spec->cdefine.enable_pcbeep;
}
#else
#define set_beep_amp(spec, nid, idx, dir) /* NOP */
#define has_cdefine_beep(codec) 0
#endif
/* parse the BIOS configuration and set up the alc_spec */
/* return 1 if successful, 0 if the proper config is not found,
* or a negative error code
*/
static int alc_parse_auto_config(struct hda_codec *codec,
const hda_nid_t *ignore_nids,
const hda_nid_t *ssid_nids)
{
struct alc_spec *spec = codec->spec;
struct auto_pin_cfg *cfg = &spec->autocfg;
int err;
err = snd_hda_parse_pin_defcfg(codec, cfg, ignore_nids,
spec->parse_flags);
if (err < 0)
return err;
if (!cfg->line_outs) {
if (cfg->dig_outs || cfg->dig_in_pin) {
spec->multiout.max_channels = 2;
spec->no_analog = 1;
goto dig_only;
}
return 0; /* can't find valid BIOS pin config */
}
if (cfg->line_out_type == AUTO_PIN_SPEAKER_OUT &&
cfg->line_outs <= cfg->hp_outs) {
/* use HP as primary out */
cfg->speaker_outs = cfg->line_outs;
memcpy(cfg->speaker_pins, cfg->line_out_pins,
sizeof(cfg->speaker_pins));
cfg->line_outs = cfg->hp_outs;
memcpy(cfg->line_out_pins, cfg->hp_pins, sizeof(cfg->hp_pins));
cfg->hp_outs = 0;
memset(cfg->hp_pins, 0, sizeof(cfg->hp_pins));
cfg->line_out_type = AUTO_PIN_HP_OUT;
}
err = alc_auto_fill_dac_nids(codec);
if (err < 0)
return err;
err = alc_auto_add_multi_channel_mode(codec);
if (err < 0)
return err;
err = alc_auto_create_multi_out_ctls(codec, cfg);
if (err < 0)
return err;
err = alc_auto_create_hp_out(codec);
if (err < 0)
return err;
err = alc_auto_create_speaker_out(codec);
if (err < 0)
return err;
err = alc_auto_create_shared_input(codec);
if (err < 0)
return err;
err = alc_auto_create_input_ctls(codec);
if (err < 0)
return err;
spec->multiout.max_channels = spec->multiout.num_dacs * 2;
dig_only:
alc_auto_parse_digital(codec);
if (!spec->no_analog)
alc_remove_invalid_adc_nids(codec);
if (ssid_nids)
alc_ssid_check(codec, ssid_nids);
if (!spec->no_analog) {
alc_auto_check_switches(codec);
err = alc_auto_add_mic_boost(codec);
if (err < 0)
return err;
}
if (spec->kctls.list)
add_mixer(spec, spec->kctls.list);
if (!spec->no_analog && !spec->cap_mixer)
set_capture_mixer(codec);
return 1;
}
static int alc880_parse_auto_config(struct hda_codec *codec)
{
static const hda_nid_t alc880_ignore[] = { 0x1d, 0 };
static const hda_nid_t alc880_ssids[] = { 0x15, 0x1b, 0x14, 0 };
return alc_parse_auto_config(codec, alc880_ignore, alc880_ssids);
}
/*
* ALC880 fix-ups
*/
enum {
ALC880_FIXUP_GPIO1,
ALC880_FIXUP_GPIO2,
ALC880_FIXUP_MEDION_RIM,
ALC880_FIXUP_LG,
ALC880_FIXUP_W810,
ALC880_FIXUP_EAPD_COEF,
ALC880_FIXUP_TCL_S700,
ALC880_FIXUP_VOL_KNOB,
ALC880_FIXUP_FUJITSU,
ALC880_FIXUP_F1734,
ALC880_FIXUP_UNIWILL,
ALC880_FIXUP_UNIWILL_DIG,
ALC880_FIXUP_Z71V,
ALC880_FIXUP_3ST_BASE,
ALC880_FIXUP_3ST,
ALC880_FIXUP_3ST_DIG,
ALC880_FIXUP_5ST_BASE,
ALC880_FIXUP_5ST,
ALC880_FIXUP_5ST_DIG,
ALC880_FIXUP_6ST_BASE,
ALC880_FIXUP_6ST,
ALC880_FIXUP_6ST_DIG,
};
/* enable the volume-knob widget support on NID 0x21 */
static void alc880_fixup_vol_knob(struct hda_codec *codec,
const struct alc_fixup *fix, int action)
{
if (action == ALC_FIXUP_ACT_PROBE)
snd_hda_jack_detect_enable(codec, 0x21, ALC_DCVOL_EVENT);
}
static const struct alc_fixup alc880_fixups[] = {
[ALC880_FIXUP_GPIO1] = {
.type = ALC_FIXUP_VERBS,
.v.verbs = alc_gpio1_init_verbs,
},
[ALC880_FIXUP_GPIO2] = {
.type = ALC_FIXUP_VERBS,
.v.verbs = alc_gpio2_init_verbs,
},
[ALC880_FIXUP_MEDION_RIM] = {
.type = ALC_FIXUP_VERBS,
.v.verbs = (const struct hda_verb[]) {
{ 0x20, AC_VERB_SET_COEF_INDEX, 0x07 },
{ 0x20, AC_VERB_SET_PROC_COEF, 0x3060 },
{ }
},
.chained = true,
.chain_id = ALC880_FIXUP_GPIO2,
},
[ALC880_FIXUP_LG] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
/* disable bogus unused pins */
{ 0x16, 0x411111f0 },
{ 0x18, 0x411111f0 },
{ 0x1a, 0x411111f0 },
{ }
}
},
[ALC880_FIXUP_W810] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
/* disable bogus unused pins */
{ 0x17, 0x411111f0 },
{ }
},
.chained = true,
.chain_id = ALC880_FIXUP_GPIO2,
},
[ALC880_FIXUP_EAPD_COEF] = {
.type = ALC_FIXUP_VERBS,
.v.verbs = (const struct hda_verb[]) {
/* change to EAPD mode */
{ 0x20, AC_VERB_SET_COEF_INDEX, 0x07 },
{ 0x20, AC_VERB_SET_PROC_COEF, 0x3060 },
{}
},
},
[ALC880_FIXUP_TCL_S700] = {
.type = ALC_FIXUP_VERBS,
.v.verbs = (const struct hda_verb[]) {
/* change to EAPD mode */
{ 0x20, AC_VERB_SET_COEF_INDEX, 0x07 },
{ 0x20, AC_VERB_SET_PROC_COEF, 0x3070 },
{}
},
.chained = true,
.chain_id = ALC880_FIXUP_GPIO2,
},
[ALC880_FIXUP_VOL_KNOB] = {
.type = ALC_FIXUP_FUNC,
.v.func = alc880_fixup_vol_knob,
},
[ALC880_FIXUP_FUJITSU] = {
/* override all pins as BIOS on old Amilo is broken */
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x14, 0x0121411f }, /* HP */
{ 0x15, 0x99030120 }, /* speaker */
{ 0x16, 0x99030130 }, /* bass speaker */
{ 0x17, 0x411111f0 }, /* N/A */
{ 0x18, 0x411111f0 }, /* N/A */
{ 0x19, 0x01a19950 }, /* mic-in */
{ 0x1a, 0x411111f0 }, /* N/A */
{ 0x1b, 0x411111f0 }, /* N/A */
{ 0x1c, 0x411111f0 }, /* N/A */
{ 0x1d, 0x411111f0 }, /* N/A */
{ 0x1e, 0x01454140 }, /* SPDIF out */
{ }
},
.chained = true,
.chain_id = ALC880_FIXUP_VOL_KNOB,
},
[ALC880_FIXUP_F1734] = {
/* almost compatible with FUJITSU, but no bass and SPDIF */
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x14, 0x0121411f }, /* HP */
{ 0x15, 0x99030120 }, /* speaker */
{ 0x16, 0x411111f0 }, /* N/A */
{ 0x17, 0x411111f0 }, /* N/A */
{ 0x18, 0x411111f0 }, /* N/A */
{ 0x19, 0x01a19950 }, /* mic-in */
{ 0x1a, 0x411111f0 }, /* N/A */
{ 0x1b, 0x411111f0 }, /* N/A */
{ 0x1c, 0x411111f0 }, /* N/A */
{ 0x1d, 0x411111f0 }, /* N/A */
{ 0x1e, 0x411111f0 }, /* N/A */
{ }
},
.chained = true,
.chain_id = ALC880_FIXUP_VOL_KNOB,
},
[ALC880_FIXUP_UNIWILL] = {
/* need to fix HP and speaker pins to be parsed correctly */
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x14, 0x0121411f }, /* HP */
{ 0x15, 0x99030120 }, /* speaker */
{ 0x16, 0x99030130 }, /* bass speaker */
{ }
},
},
[ALC880_FIXUP_UNIWILL_DIG] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
/* disable bogus unused pins */
{ 0x17, 0x411111f0 },
{ 0x19, 0x411111f0 },
{ 0x1b, 0x411111f0 },
{ 0x1f, 0x411111f0 },
{ }
}
},
[ALC880_FIXUP_Z71V] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
/* set up the whole pins as BIOS is utterly broken */
{ 0x14, 0x99030120 }, /* speaker */
{ 0x15, 0x0121411f }, /* HP */
{ 0x16, 0x411111f0 }, /* N/A */
{ 0x17, 0x411111f0 }, /* N/A */
{ 0x18, 0x01a19950 }, /* mic-in */
{ 0x19, 0x411111f0 }, /* N/A */
{ 0x1a, 0x01813031 }, /* line-in */
{ 0x1b, 0x411111f0 }, /* N/A */
{ 0x1c, 0x411111f0 }, /* N/A */
{ 0x1d, 0x411111f0 }, /* N/A */
{ 0x1e, 0x0144111e }, /* SPDIF */
{ }
}
},
[ALC880_FIXUP_3ST_BASE] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x14, 0x01014010 }, /* line-out */
{ 0x15, 0x411111f0 }, /* N/A */
{ 0x16, 0x411111f0 }, /* N/A */
{ 0x17, 0x411111f0 }, /* N/A */
{ 0x18, 0x01a19c30 }, /* mic-in */
{ 0x19, 0x0121411f }, /* HP */
{ 0x1a, 0x01813031 }, /* line-in */
{ 0x1b, 0x02a19c40 }, /* front-mic */
{ 0x1c, 0x411111f0 }, /* N/A */
{ 0x1d, 0x411111f0 }, /* N/A */
/* 0x1e is filled in below */
{ 0x1f, 0x411111f0 }, /* N/A */
{ }
}
},
[ALC880_FIXUP_3ST] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x1e, 0x411111f0 }, /* N/A */
{ }
},
.chained = true,
.chain_id = ALC880_FIXUP_3ST_BASE,
},
[ALC880_FIXUP_3ST_DIG] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x1e, 0x0144111e }, /* SPDIF */
{ }
},
.chained = true,
.chain_id = ALC880_FIXUP_3ST_BASE,
},
[ALC880_FIXUP_5ST_BASE] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x14, 0x01014010 }, /* front */
{ 0x15, 0x411111f0 }, /* N/A */
{ 0x16, 0x01011411 }, /* CLFE */
{ 0x17, 0x01016412 }, /* surr */
{ 0x18, 0x01a19c30 }, /* mic-in */
{ 0x19, 0x0121411f }, /* HP */
{ 0x1a, 0x01813031 }, /* line-in */
{ 0x1b, 0x02a19c40 }, /* front-mic */
{ 0x1c, 0x411111f0 }, /* N/A */
{ 0x1d, 0x411111f0 }, /* N/A */
/* 0x1e is filled in below */
{ 0x1f, 0x411111f0 }, /* N/A */
{ }
}
},
[ALC880_FIXUP_5ST] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x1e, 0x411111f0 }, /* N/A */
{ }
},
.chained = true,
.chain_id = ALC880_FIXUP_5ST_BASE,
},
[ALC880_FIXUP_5ST_DIG] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x1e, 0x0144111e }, /* SPDIF */
{ }
},
.chained = true,
.chain_id = ALC880_FIXUP_5ST_BASE,
},
[ALC880_FIXUP_6ST_BASE] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x14, 0x01014010 }, /* front */
{ 0x15, 0x01016412 }, /* surr */
{ 0x16, 0x01011411 }, /* CLFE */
{ 0x17, 0x01012414 }, /* side */
{ 0x18, 0x01a19c30 }, /* mic-in */
{ 0x19, 0x02a19c40 }, /* front-mic */
{ 0x1a, 0x01813031 }, /* line-in */
{ 0x1b, 0x0121411f }, /* HP */
{ 0x1c, 0x411111f0 }, /* N/A */
{ 0x1d, 0x411111f0 }, /* N/A */
/* 0x1e is filled in below */
{ 0x1f, 0x411111f0 }, /* N/A */
{ }
}
},
[ALC880_FIXUP_6ST] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x1e, 0x411111f0 }, /* N/A */
{ }
},
.chained = true,
.chain_id = ALC880_FIXUP_6ST_BASE,
},
[ALC880_FIXUP_6ST_DIG] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x1e, 0x0144111e }, /* SPDIF */
{ }
},
.chained = true,
.chain_id = ALC880_FIXUP_6ST_BASE,
},
};
static const struct snd_pci_quirk alc880_fixup_tbl[] = {
SND_PCI_QUIRK(0x1019, 0x0f69, "Coeus G610P", ALC880_FIXUP_W810),
SND_PCI_QUIRK(0x1043, 0x1964, "ASUS Z71V", ALC880_FIXUP_Z71V),
SND_PCI_QUIRK_VENDOR(0x1043, "ASUS", ALC880_FIXUP_GPIO1),
SND_PCI_QUIRK(0x1558, 0x5401, "Clevo GPIO2", ALC880_FIXUP_GPIO2),
SND_PCI_QUIRK_VENDOR(0x1558, "Clevo", ALC880_FIXUP_EAPD_COEF),
SND_PCI_QUIRK(0x1584, 0x9050, "Uniwill", ALC880_FIXUP_UNIWILL_DIG),
SND_PCI_QUIRK(0x1584, 0x9054, "Uniwill", ALC880_FIXUP_F1734),
SND_PCI_QUIRK(0x1584, 0x9070, "Uniwill", ALC880_FIXUP_UNIWILL),
SND_PCI_QUIRK(0x1584, 0x9077, "Uniwill P53", ALC880_FIXUP_VOL_KNOB),
SND_PCI_QUIRK(0x161f, 0x203d, "W810", ALC880_FIXUP_W810),
SND_PCI_QUIRK(0x161f, 0x205d, "Medion Rim 2150", ALC880_FIXUP_MEDION_RIM),
SND_PCI_QUIRK(0x1734, 0x107c, "FSC F1734", ALC880_FIXUP_F1734),
SND_PCI_QUIRK(0x1734, 0x1094, "FSC Amilo M1451G", ALC880_FIXUP_FUJITSU),
SND_PCI_QUIRK(0x1734, 0x10ac, "FSC AMILO Xi 1526", ALC880_FIXUP_F1734),
SND_PCI_QUIRK(0x1734, 0x10b0, "FSC Amilo Pi1556", ALC880_FIXUP_FUJITSU),
SND_PCI_QUIRK(0x1854, 0x003b, "LG", ALC880_FIXUP_LG),
SND_PCI_QUIRK(0x1854, 0x005f, "LG P1 Express", ALC880_FIXUP_LG),
SND_PCI_QUIRK(0x1854, 0x0068, "LG w1", ALC880_FIXUP_LG),
SND_PCI_QUIRK(0x19db, 0x4188, "TCL S700", ALC880_FIXUP_TCL_S700),
/* Below is the copied entries from alc880_quirks.c.
* It's not quite sure whether BIOS sets the correct pin-config table
* on these machines, thus they are kept to be compatible with
* the old static quirks. Once when it's confirmed to work without
* these overrides, it'd be better to remove.
*/
SND_PCI_QUIRK(0x1019, 0xa880, "ECS", ALC880_FIXUP_5ST_DIG),
SND_PCI_QUIRK(0x1019, 0xa884, "Acer APFV", ALC880_FIXUP_6ST),
SND_PCI_QUIRK(0x1025, 0x0070, "ULI", ALC880_FIXUP_3ST_DIG),
SND_PCI_QUIRK(0x1025, 0x0077, "ULI", ALC880_FIXUP_6ST_DIG),
SND_PCI_QUIRK(0x1025, 0x0078, "ULI", ALC880_FIXUP_6ST_DIG),
SND_PCI_QUIRK(0x1025, 0x0087, "ULI", ALC880_FIXUP_6ST_DIG),
SND_PCI_QUIRK(0x1025, 0xe309, "ULI", ALC880_FIXUP_3ST_DIG),
SND_PCI_QUIRK(0x1025, 0xe310, "ULI", ALC880_FIXUP_3ST),
SND_PCI_QUIRK(0x1039, 0x1234, NULL, ALC880_FIXUP_6ST_DIG),
SND_PCI_QUIRK(0x104d, 0x81a0, "Sony", ALC880_FIXUP_3ST),
SND_PCI_QUIRK(0x104d, 0x81d6, "Sony", ALC880_FIXUP_3ST),
SND_PCI_QUIRK(0x107b, 0x3032, "Gateway", ALC880_FIXUP_5ST),
SND_PCI_QUIRK(0x107b, 0x3033, "Gateway", ALC880_FIXUP_5ST),
SND_PCI_QUIRK(0x107b, 0x4039, "Gateway", ALC880_FIXUP_5ST),
SND_PCI_QUIRK(0x1297, 0xc790, "Shuttle ST20G5", ALC880_FIXUP_6ST_DIG),
SND_PCI_QUIRK(0x1458, 0xa102, "Gigabyte K8", ALC880_FIXUP_6ST_DIG),
SND_PCI_QUIRK(0x1462, 0x1150, "MSI", ALC880_FIXUP_6ST_DIG),
SND_PCI_QUIRK(0x1509, 0x925d, "FIC P4M", ALC880_FIXUP_6ST_DIG),
SND_PCI_QUIRK(0x1565, 0x8202, "Biostar", ALC880_FIXUP_5ST_DIG),
SND_PCI_QUIRK(0x1695, 0x400d, "EPoX", ALC880_FIXUP_5ST_DIG),
SND_PCI_QUIRK(0x1695, 0x4012, "EPox EP-5LDA", ALC880_FIXUP_5ST_DIG),
SND_PCI_QUIRK(0x2668, 0x8086, NULL, ALC880_FIXUP_6ST_DIG), /* broken BIOS */
SND_PCI_QUIRK(0x8086, 0x2668, NULL, ALC880_FIXUP_6ST_DIG),
SND_PCI_QUIRK(0x8086, 0xa100, "Intel mobo", ALC880_FIXUP_5ST_DIG),
SND_PCI_QUIRK(0x8086, 0xd400, "Intel mobo", ALC880_FIXUP_5ST_DIG),
SND_PCI_QUIRK(0x8086, 0xd401, "Intel mobo", ALC880_FIXUP_5ST_DIG),
SND_PCI_QUIRK(0x8086, 0xd402, "Intel mobo", ALC880_FIXUP_3ST_DIG),
SND_PCI_QUIRK(0x8086, 0xe224, "Intel mobo", ALC880_FIXUP_5ST_DIG),
SND_PCI_QUIRK(0x8086, 0xe305, "Intel mobo", ALC880_FIXUP_3ST_DIG),
SND_PCI_QUIRK(0x8086, 0xe308, "Intel mobo", ALC880_FIXUP_3ST_DIG),
SND_PCI_QUIRK(0x8086, 0xe400, "Intel mobo", ALC880_FIXUP_5ST_DIG),
SND_PCI_QUIRK(0x8086, 0xe401, "Intel mobo", ALC880_FIXUP_5ST_DIG),
SND_PCI_QUIRK(0x8086, 0xe402, "Intel mobo", ALC880_FIXUP_5ST_DIG),
/* default Intel */
SND_PCI_QUIRK_VENDOR(0x8086, "Intel mobo", ALC880_FIXUP_3ST),
SND_PCI_QUIRK(0xa0a0, 0x0560, "AOpen i915GMm-HFS", ALC880_FIXUP_5ST_DIG),
SND_PCI_QUIRK(0xe803, 0x1019, NULL, ALC880_FIXUP_6ST_DIG),
{}
};
static const struct alc_model_fixup alc880_fixup_models[] = {
{.id = ALC880_FIXUP_3ST, .name = "3stack"},
{.id = ALC880_FIXUP_3ST_DIG, .name = "3stack-digout"},
{.id = ALC880_FIXUP_5ST, .name = "5stack"},
{.id = ALC880_FIXUP_5ST_DIG, .name = "5stack-digout"},
{.id = ALC880_FIXUP_6ST, .name = "6stack"},
{.id = ALC880_FIXUP_6ST_DIG, .name = "6stack-digout"},
{}
};
/*
* OK, here we have finally the patch for ALC880
*/
static int patch_alc880(struct hda_codec *codec)
{
struct alc_spec *spec;
int err;
spec = kzalloc(sizeof(*spec), GFP_KERNEL);
if (spec == NULL)
return -ENOMEM;
codec->spec = spec;
spec->mixer_nid = 0x0b;
spec->need_dac_fix = 1;
alc_pick_fixup(codec, alc880_fixup_models, alc880_fixup_tbl,
alc880_fixups);
alc_apply_fixup(codec, ALC_FIXUP_ACT_PRE_PROBE);
/* automatic parse from the BIOS config */
err = alc880_parse_auto_config(codec);
if (err < 0)
goto error;
if (!spec->no_analog) {
err = snd_hda_attach_beep_device(codec, 0x1);
if (err < 0)
goto error;
set_beep_amp(spec, 0x0b, 0x05, HDA_INPUT);
}
codec->patch_ops = alc_patch_ops;
alc_apply_fixup(codec, ALC_FIXUP_ACT_PROBE);
return 0;
error:
alc_free(codec);
return err;
}
/*
* ALC260 support
*/
static int alc260_parse_auto_config(struct hda_codec *codec)
{
static const hda_nid_t alc260_ignore[] = { 0x17, 0 };
static const hda_nid_t alc260_ssids[] = { 0x10, 0x15, 0x0f, 0 };
return alc_parse_auto_config(codec, alc260_ignore, alc260_ssids);
}
/*
* Pin config fixes
*/
enum {
ALC260_FIXUP_HP_DC5750,
ALC260_FIXUP_HP_PIN_0F,
ALC260_FIXUP_COEF,
ALC260_FIXUP_GPIO1,
ALC260_FIXUP_GPIO1_TOGGLE,
ALC260_FIXUP_REPLACER,
ALC260_FIXUP_HP_B1900,
ALC260_FIXUP_KN1,
};
static void alc260_gpio1_automute(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
snd_hda_codec_write(codec, 0x01, 0, AC_VERB_SET_GPIO_DATA,
spec->hp_jack_present);
}
static void alc260_fixup_gpio1_toggle(struct hda_codec *codec,
const struct alc_fixup *fix, int action)
{
struct alc_spec *spec = codec->spec;
if (action == ALC_FIXUP_ACT_PROBE) {
/* although the machine has only one output pin, we need to
* toggle GPIO1 according to the jack state
*/
spec->automute_hook = alc260_gpio1_automute;
spec->detect_hp = 1;
spec->automute_speaker = 1;
spec->autocfg.hp_pins[0] = 0x0f; /* copy it for automute */
snd_hda_jack_detect_enable(codec, 0x0f, ALC_HP_EVENT);
spec->unsol_event = alc_sku_unsol_event;
add_verb(codec->spec, alc_gpio1_init_verbs);
}
}
static void alc260_fixup_kn1(struct hda_codec *codec,
const struct alc_fixup *fix, int action)
{
struct alc_spec *spec = codec->spec;
static const struct alc_pincfg pincfgs[] = {
{ 0x0f, 0x02214000 }, /* HP/speaker */
{ 0x12, 0x90a60160 }, /* int mic */
{ 0x13, 0x02a19000 }, /* ext mic */
{ 0x18, 0x01446000 }, /* SPDIF out */
/* disable bogus I/O pins */
{ 0x10, 0x411111f0 },
{ 0x11, 0x411111f0 },
{ 0x14, 0x411111f0 },
{ 0x15, 0x411111f0 },
{ 0x16, 0x411111f0 },
{ 0x17, 0x411111f0 },
{ 0x19, 0x411111f0 },
{ }
};
switch (action) {
case ALC_FIXUP_ACT_PRE_PROBE:
alc_apply_pincfgs(codec, pincfgs);
break;
case ALC_FIXUP_ACT_PROBE:
spec->init_amp = ALC_INIT_NONE;
break;
}
}
static const struct alc_fixup alc260_fixups[] = {
[ALC260_FIXUP_HP_DC5750] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x11, 0x90130110 }, /* speaker */
{ }
}
},
[ALC260_FIXUP_HP_PIN_0F] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x0f, 0x01214000 }, /* HP */
{ }
}
},
[ALC260_FIXUP_COEF] = {
.type = ALC_FIXUP_VERBS,
.v.verbs = (const struct hda_verb[]) {
{ 0x20, AC_VERB_SET_COEF_INDEX, 0x07 },
{ 0x20, AC_VERB_SET_PROC_COEF, 0x3040 },
{ }
},
.chained = true,
.chain_id = ALC260_FIXUP_HP_PIN_0F,
},
[ALC260_FIXUP_GPIO1] = {
.type = ALC_FIXUP_VERBS,
.v.verbs = alc_gpio1_init_verbs,
},
[ALC260_FIXUP_GPIO1_TOGGLE] = {
.type = ALC_FIXUP_FUNC,
.v.func = alc260_fixup_gpio1_toggle,
.chained = true,
.chain_id = ALC260_FIXUP_HP_PIN_0F,
},
[ALC260_FIXUP_REPLACER] = {
.type = ALC_FIXUP_VERBS,
.v.verbs = (const struct hda_verb[]) {
{ 0x20, AC_VERB_SET_COEF_INDEX, 0x07 },
{ 0x20, AC_VERB_SET_PROC_COEF, 0x3050 },
{ }
},
.chained = true,
.chain_id = ALC260_FIXUP_GPIO1_TOGGLE,
},
[ALC260_FIXUP_HP_B1900] = {
.type = ALC_FIXUP_FUNC,
.v.func = alc260_fixup_gpio1_toggle,
.chained = true,
.chain_id = ALC260_FIXUP_COEF,
},
[ALC260_FIXUP_KN1] = {
.type = ALC_FIXUP_FUNC,
.v.func = alc260_fixup_kn1,
},
};
static const struct snd_pci_quirk alc260_fixup_tbl[] = {
SND_PCI_QUIRK(0x1025, 0x007b, "Acer C20x", ALC260_FIXUP_GPIO1),
SND_PCI_QUIRK(0x1025, 0x007f, "Acer Aspire 9500", ALC260_FIXUP_COEF),
SND_PCI_QUIRK(0x1025, 0x008f, "Acer", ALC260_FIXUP_GPIO1),
SND_PCI_QUIRK(0x103c, 0x280a, "HP dc5750", ALC260_FIXUP_HP_DC5750),
SND_PCI_QUIRK(0x103c, 0x30ba, "HP Presario B1900", ALC260_FIXUP_HP_B1900),
SND_PCI_QUIRK(0x1509, 0x4540, "Favorit 100XS", ALC260_FIXUP_GPIO1),
SND_PCI_QUIRK(0x152d, 0x0729, "Quanta KN1", ALC260_FIXUP_KN1),
SND_PCI_QUIRK(0x161f, 0x2057, "Replacer 672V", ALC260_FIXUP_REPLACER),
SND_PCI_QUIRK(0x1631, 0xc017, "PB V7900", ALC260_FIXUP_COEF),
{}
};
/*
*/
static int patch_alc260(struct hda_codec *codec)
{
struct alc_spec *spec;
int err;
spec = kzalloc(sizeof(*spec), GFP_KERNEL);
if (spec == NULL)
return -ENOMEM;
codec->spec = spec;
spec->mixer_nid = 0x07;
alc_pick_fixup(codec, NULL, alc260_fixup_tbl, alc260_fixups);
alc_apply_fixup(codec, ALC_FIXUP_ACT_PRE_PROBE);
/* automatic parse from the BIOS config */
err = alc260_parse_auto_config(codec);
if (err < 0)
goto error;
if (!spec->no_analog) {
err = snd_hda_attach_beep_device(codec, 0x1);
if (err < 0)
goto error;
set_beep_amp(spec, 0x07, 0x05, HDA_INPUT);
}
codec->patch_ops = alc_patch_ops;
spec->shutup = alc_eapd_shutup;
alc_apply_fixup(codec, ALC_FIXUP_ACT_PROBE);
return 0;
error:
alc_free(codec);
return err;
}
/*
* ALC882/883/885/888/889 support
*
* ALC882 is almost identical with ALC880 but has cleaner and more flexible
* configuration. Each pin widget can choose any input DACs and a mixer.
* Each ADC is connected from a mixer of all inputs. This makes possible
* 6-channel independent captures.
*
* In addition, an independent DAC for the multi-playback (not used in this
* driver yet).
*/
/*
* Pin config fixes
*/
enum {
ALC882_FIXUP_ABIT_AW9D_MAX,
ALC882_FIXUP_LENOVO_Y530,
ALC882_FIXUP_PB_M5210,
ALC882_FIXUP_ACER_ASPIRE_7736,
ALC882_FIXUP_ASUS_W90V,
ALC889_FIXUP_CD,
ALC889_FIXUP_VAIO_TT,
ALC888_FIXUP_EEE1601,
ALC882_FIXUP_EAPD,
ALC883_FIXUP_EAPD,
ALC883_FIXUP_ACER_EAPD,
ALC882_FIXUP_GPIO1,
ALC882_FIXUP_GPIO2,
ALC882_FIXUP_GPIO3,
ALC889_FIXUP_COEF,
ALC882_FIXUP_ASUS_W2JC,
ALC882_FIXUP_ACER_ASPIRE_4930G,
ALC882_FIXUP_ACER_ASPIRE_8930G,
ALC882_FIXUP_ASPIRE_8930G_VERBS,
ALC885_FIXUP_MACPRO_GPIO,
ALC889_FIXUP_DAC_ROUTE,
ALC889_FIXUP_MBP_VREF,
ALC889_FIXUP_IMAC91_VREF,
};
static void alc889_fixup_coef(struct hda_codec *codec,
const struct alc_fixup *fix, int action)
{
if (action != ALC_FIXUP_ACT_INIT)
return;
alc889_coef_init(codec);
}
/* toggle speaker-output according to the hp-jack state */
static void alc882_gpio_mute(struct hda_codec *codec, int pin, int muted)
{
unsigned int gpiostate, gpiomask, gpiodir;
gpiostate = snd_hda_codec_read(codec, codec->afg, 0,
AC_VERB_GET_GPIO_DATA, 0);
if (!muted)
gpiostate |= (1 << pin);
else
gpiostate &= ~(1 << pin);
gpiomask = snd_hda_codec_read(codec, codec->afg, 0,
AC_VERB_GET_GPIO_MASK, 0);
gpiomask |= (1 << pin);
gpiodir = snd_hda_codec_read(codec, codec->afg, 0,
AC_VERB_GET_GPIO_DIRECTION, 0);
gpiodir |= (1 << pin);
snd_hda_codec_write(codec, codec->afg, 0,
AC_VERB_SET_GPIO_MASK, gpiomask);
snd_hda_codec_write(codec, codec->afg, 0,
AC_VERB_SET_GPIO_DIRECTION, gpiodir);
msleep(1);
snd_hda_codec_write(codec, codec->afg, 0,
AC_VERB_SET_GPIO_DATA, gpiostate);
}
/* set up GPIO at initialization */
static void alc885_fixup_macpro_gpio(struct hda_codec *codec,
const struct alc_fixup *fix, int action)
{
if (action != ALC_FIXUP_ACT_INIT)
return;
alc882_gpio_mute(codec, 0, 0);
alc882_gpio_mute(codec, 1, 0);
}
/* Fix the connection of some pins for ALC889:
* At least, Acer Aspire 5935 shows the connections to DAC3/4 don't
* work correctly (bko#42740)
*/
static void alc889_fixup_dac_route(struct hda_codec *codec,
const struct alc_fixup *fix, int action)
{
if (action == ALC_FIXUP_ACT_PRE_PROBE) {
/* fake the connections during parsing the tree */
hda_nid_t conn1[2] = { 0x0c, 0x0d };
hda_nid_t conn2[2] = { 0x0e, 0x0f };
snd_hda_override_conn_list(codec, 0x14, 2, conn1);
snd_hda_override_conn_list(codec, 0x15, 2, conn1);
snd_hda_override_conn_list(codec, 0x18, 2, conn2);
snd_hda_override_conn_list(codec, 0x1a, 2, conn2);
} else if (action == ALC_FIXUP_ACT_PROBE) {
/* restore the connections */
hda_nid_t conn[5] = { 0x0c, 0x0d, 0x0e, 0x0f, 0x26 };
snd_hda_override_conn_list(codec, 0x14, 5, conn);
snd_hda_override_conn_list(codec, 0x15, 5, conn);
snd_hda_override_conn_list(codec, 0x18, 5, conn);
snd_hda_override_conn_list(codec, 0x1a, 5, conn);
}
}
/* Set VREF on HP pin */
static void alc889_fixup_mbp_vref(struct hda_codec *codec,
const struct alc_fixup *fix, int action)
{
struct alc_spec *spec = codec->spec;
static hda_nid_t nids[2] = { 0x14, 0x15 };
int i;
if (action != ALC_FIXUP_ACT_INIT)
return;
for (i = 0; i < ARRAY_SIZE(nids); i++) {
unsigned int val = snd_hda_codec_get_pincfg(codec, nids[i]);
if (get_defcfg_device(val) != AC_JACK_HP_OUT)
continue;
val = snd_hda_codec_read(codec, nids[i], 0,
AC_VERB_GET_PIN_WIDGET_CONTROL, 0);
val |= AC_PINCTL_VREF_80;
snd_hda_codec_write(codec, nids[i], 0,
AC_VERB_SET_PIN_WIDGET_CONTROL, val);
spec->keep_vref_in_automute = 1;
break;
}
}
/* Set VREF on speaker pins on imac91 */
static void alc889_fixup_imac91_vref(struct hda_codec *codec,
const struct alc_fixup *fix, int action)
{
struct alc_spec *spec = codec->spec;
static hda_nid_t nids[2] = { 0x18, 0x1a };
int i;
if (action != ALC_FIXUP_ACT_INIT)
return;
for (i = 0; i < ARRAY_SIZE(nids); i++) {
unsigned int val;
val = snd_hda_codec_read(codec, nids[i], 0,
AC_VERB_GET_PIN_WIDGET_CONTROL, 0);
val |= AC_PINCTL_VREF_50;
snd_hda_codec_write(codec, nids[i], 0,
AC_VERB_SET_PIN_WIDGET_CONTROL, val);
}
spec->keep_vref_in_automute = 1;
}
static const struct alc_fixup alc882_fixups[] = {
[ALC882_FIXUP_ABIT_AW9D_MAX] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x15, 0x01080104 }, /* side */
{ 0x16, 0x01011012 }, /* rear */
{ 0x17, 0x01016011 }, /* clfe */
{ }
}
},
[ALC882_FIXUP_LENOVO_Y530] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x15, 0x99130112 }, /* rear int speakers */
{ 0x16, 0x99130111 }, /* subwoofer */
{ }
}
},
[ALC882_FIXUP_PB_M5210] = {
.type = ALC_FIXUP_VERBS,
.v.verbs = (const struct hda_verb[]) {
{ 0x19, AC_VERB_SET_PIN_WIDGET_CONTROL, PIN_VREF50 },
{}
}
},
[ALC882_FIXUP_ACER_ASPIRE_7736] = {
.type = ALC_FIXUP_SKU,
.v.sku = ALC_FIXUP_SKU_IGNORE,
},
[ALC882_FIXUP_ASUS_W90V] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x16, 0x99130110 }, /* fix sequence for CLFE */
{ }
}
},
[ALC889_FIXUP_CD] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x1c, 0x993301f0 }, /* CD */
{ }
}
},
[ALC889_FIXUP_VAIO_TT] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x17, 0x90170111 }, /* hidden surround speaker */
{ }
}
},
[ALC888_FIXUP_EEE1601] = {
.type = ALC_FIXUP_VERBS,
.v.verbs = (const struct hda_verb[]) {
{ 0x20, AC_VERB_SET_COEF_INDEX, 0x0b },
{ 0x20, AC_VERB_SET_PROC_COEF, 0x0838 },
{ }
}
},
[ALC882_FIXUP_EAPD] = {
.type = ALC_FIXUP_VERBS,
.v.verbs = (const struct hda_verb[]) {
/* change to EAPD mode */
{ 0x20, AC_VERB_SET_COEF_INDEX, 0x07 },
{ 0x20, AC_VERB_SET_PROC_COEF, 0x3060 },
{ }
}
},
[ALC883_FIXUP_EAPD] = {
.type = ALC_FIXUP_VERBS,
.v.verbs = (const struct hda_verb[]) {
/* change to EAPD mode */
{ 0x20, AC_VERB_SET_COEF_INDEX, 0x07 },
{ 0x20, AC_VERB_SET_PROC_COEF, 0x3070 },
{ }
}
},
[ALC883_FIXUP_ACER_EAPD] = {
.type = ALC_FIXUP_VERBS,
.v.verbs = (const struct hda_verb[]) {
/* eanable EAPD on Acer laptops */
{ 0x20, AC_VERB_SET_COEF_INDEX, 0x07 },
{ 0x20, AC_VERB_SET_PROC_COEF, 0x3050 },
{ }
}
},
[ALC882_FIXUP_GPIO1] = {
.type = ALC_FIXUP_VERBS,
.v.verbs = alc_gpio1_init_verbs,
},
[ALC882_FIXUP_GPIO2] = {
.type = ALC_FIXUP_VERBS,
.v.verbs = alc_gpio2_init_verbs,
},
[ALC882_FIXUP_GPIO3] = {
.type = ALC_FIXUP_VERBS,
.v.verbs = alc_gpio3_init_verbs,
},
[ALC882_FIXUP_ASUS_W2JC] = {
.type = ALC_FIXUP_VERBS,
.v.verbs = alc_gpio1_init_verbs,
.chained = true,
.chain_id = ALC882_FIXUP_EAPD,
},
[ALC889_FIXUP_COEF] = {
.type = ALC_FIXUP_FUNC,
.v.func = alc889_fixup_coef,
},
[ALC882_FIXUP_ACER_ASPIRE_4930G] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x16, 0x99130111 }, /* CLFE speaker */
{ 0x17, 0x99130112 }, /* surround speaker */
{ }
},
.chained = true,
.chain_id = ALC882_FIXUP_GPIO1,
},
[ALC882_FIXUP_ACER_ASPIRE_8930G] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x16, 0x99130111 }, /* CLFE speaker */
{ 0x1b, 0x99130112 }, /* surround speaker */
{ }
},
.chained = true,
.chain_id = ALC882_FIXUP_ASPIRE_8930G_VERBS,
},
[ALC882_FIXUP_ASPIRE_8930G_VERBS] = {
/* additional init verbs for Acer Aspire 8930G */
.type = ALC_FIXUP_VERBS,
.v.verbs = (const struct hda_verb[]) {
/* Enable all DACs */
/* DAC DISABLE/MUTE 1? */
/* setting bits 1-5 disables DAC nids 0x02-0x06
* apparently. Init=0x38 */
{ 0x20, AC_VERB_SET_COEF_INDEX, 0x03 },
{ 0x20, AC_VERB_SET_PROC_COEF, 0x0000 },
/* DAC DISABLE/MUTE 2? */
/* some bit here disables the other DACs.
* Init=0x4900 */
{ 0x20, AC_VERB_SET_COEF_INDEX, 0x08 },
{ 0x20, AC_VERB_SET_PROC_COEF, 0x0000 },
/* DMIC fix
* This laptop has a stereo digital microphone.
* The mics are only 1cm apart which makes the stereo
* useless. However, either the mic or the ALC889
* makes the signal become a difference/sum signal
* instead of standard stereo, which is annoying.
* So instead we flip this bit which makes the
* codec replicate the sum signal to both channels,
* turning it into a normal mono mic.
*/
/* DMIC_CONTROL? Init value = 0x0001 */
{ 0x20, AC_VERB_SET_COEF_INDEX, 0x0b },
{ 0x20, AC_VERB_SET_PROC_COEF, 0x0003 },
{ 0x20, AC_VERB_SET_COEF_INDEX, 0x07 },
{ 0x20, AC_VERB_SET_PROC_COEF, 0x3050 },
{ }
},
.chained = true,
.chain_id = ALC882_FIXUP_GPIO1,
},
[ALC885_FIXUP_MACPRO_GPIO] = {
.type = ALC_FIXUP_FUNC,
.v.func = alc885_fixup_macpro_gpio,
},
[ALC889_FIXUP_DAC_ROUTE] = {
.type = ALC_FIXUP_FUNC,
.v.func = alc889_fixup_dac_route,
},
[ALC889_FIXUP_MBP_VREF] = {
.type = ALC_FIXUP_FUNC,
.v.func = alc889_fixup_mbp_vref,
.chained = true,
.chain_id = ALC882_FIXUP_GPIO1,
},
[ALC889_FIXUP_IMAC91_VREF] = {
.type = ALC_FIXUP_FUNC,
.v.func = alc889_fixup_imac91_vref,
.chained = true,
.chain_id = ALC882_FIXUP_GPIO1,
},
};
static const struct snd_pci_quirk alc882_fixup_tbl[] = {
SND_PCI_QUIRK(0x1025, 0x006c, "Acer Aspire 9810", ALC883_FIXUP_ACER_EAPD),
SND_PCI_QUIRK(0x1025, 0x0090, "Acer Aspire", ALC883_FIXUP_ACER_EAPD),
SND_PCI_QUIRK(0x1025, 0x010a, "Acer Ferrari 5000", ALC883_FIXUP_ACER_EAPD),
SND_PCI_QUIRK(0x1025, 0x0110, "Acer Aspire", ALC883_FIXUP_ACER_EAPD),
SND_PCI_QUIRK(0x1025, 0x0112, "Acer Aspire 9303", ALC883_FIXUP_ACER_EAPD),
SND_PCI_QUIRK(0x1025, 0x0121, "Acer Aspire 5920G", ALC883_FIXUP_ACER_EAPD),
SND_PCI_QUIRK(0x1025, 0x013e, "Acer Aspire 4930G",
ALC882_FIXUP_ACER_ASPIRE_4930G),
SND_PCI_QUIRK(0x1025, 0x013f, "Acer Aspire 5930G",
ALC882_FIXUP_ACER_ASPIRE_4930G),
SND_PCI_QUIRK(0x1025, 0x0145, "Acer Aspire 8930G",
ALC882_FIXUP_ACER_ASPIRE_8930G),
SND_PCI_QUIRK(0x1025, 0x0146, "Acer Aspire 6935G",
ALC882_FIXUP_ACER_ASPIRE_8930G),
SND_PCI_QUIRK(0x1025, 0x015e, "Acer Aspire 6930G",
ALC882_FIXUP_ACER_ASPIRE_4930G),
SND_PCI_QUIRK(0x1025, 0x0166, "Acer Aspire 6530G",
ALC882_FIXUP_ACER_ASPIRE_4930G),
SND_PCI_QUIRK(0x1025, 0x0142, "Acer Aspire 7730G",
ALC882_FIXUP_ACER_ASPIRE_4930G),
SND_PCI_QUIRK(0x1025, 0x0155, "Packard-Bell M5120", ALC882_FIXUP_PB_M5210),
SND_PCI_QUIRK(0x1025, 0x0259, "Acer Aspire 5935", ALC889_FIXUP_DAC_ROUTE),
SND_PCI_QUIRK(0x1025, 0x026b, "Acer Aspire 8940G", ALC882_FIXUP_ACER_ASPIRE_8930G),
SND_PCI_QUIRK(0x1025, 0x0296, "Acer Aspire 7736z", ALC882_FIXUP_ACER_ASPIRE_7736),
SND_PCI_QUIRK(0x1043, 0x13c2, "Asus A7M", ALC882_FIXUP_EAPD),
SND_PCI_QUIRK(0x1043, 0x1873, "ASUS W90V", ALC882_FIXUP_ASUS_W90V),
SND_PCI_QUIRK(0x1043, 0x1971, "Asus W2JC", ALC882_FIXUP_ASUS_W2JC),
SND_PCI_QUIRK(0x1043, 0x835f, "Asus Eee 1601", ALC888_FIXUP_EEE1601),
SND_PCI_QUIRK(0x104d, 0x9047, "Sony Vaio TT", ALC889_FIXUP_VAIO_TT),
/* All Apple entries are in codec SSIDs */
SND_PCI_QUIRK(0x106b, 0x00a0, "MacBookPro 3,1", ALC889_FIXUP_MBP_VREF),
SND_PCI_QUIRK(0x106b, 0x00a1, "Macbook", ALC889_FIXUP_MBP_VREF),
SND_PCI_QUIRK(0x106b, 0x00a4, "MacbookPro 4,1", ALC889_FIXUP_MBP_VREF),
SND_PCI_QUIRK(0x106b, 0x0c00, "Mac Pro", ALC885_FIXUP_MACPRO_GPIO),
SND_PCI_QUIRK(0x106b, 0x1000, "iMac 24", ALC885_FIXUP_MACPRO_GPIO),
SND_PCI_QUIRK(0x106b, 0x2800, "AppleTV", ALC885_FIXUP_MACPRO_GPIO),
SND_PCI_QUIRK(0x106b, 0x2c00, "MacbookPro rev3", ALC889_FIXUP_MBP_VREF),
SND_PCI_QUIRK(0x106b, 0x3000, "iMac", ALC889_FIXUP_MBP_VREF),
SND_PCI_QUIRK(0x106b, 0x3200, "iMac 7,1 Aluminum", ALC882_FIXUP_EAPD),
SND_PCI_QUIRK(0x106b, 0x3400, "MacBookAir 1,1", ALC889_FIXUP_MBP_VREF),
SND_PCI_QUIRK(0x106b, 0x3500, "MacBookAir 2,1", ALC889_FIXUP_MBP_VREF),
SND_PCI_QUIRK(0x106b, 0x3600, "Macbook 3,1", ALC889_FIXUP_MBP_VREF),
SND_PCI_QUIRK(0x106b, 0x3800, "MacbookPro 4,1", ALC889_FIXUP_MBP_VREF),
SND_PCI_QUIRK(0x106b, 0x3e00, "iMac 24 Aluminum", ALC885_FIXUP_MACPRO_GPIO),
SND_PCI_QUIRK(0x106b, 0x3f00, "Macbook 5,1", ALC889_FIXUP_IMAC91_VREF),
SND_PCI_QUIRK(0x106b, 0x4000, "MacbookPro 5,1", ALC889_FIXUP_IMAC91_VREF),
SND_PCI_QUIRK(0x106b, 0x4100, "Macmini 3,1", ALC889_FIXUP_IMAC91_VREF),
SND_PCI_QUIRK(0x106b, 0x4200, "Mac Pro 5,1", ALC885_FIXUP_MACPRO_GPIO),
SND_PCI_QUIRK(0x106b, 0x4600, "MacbookPro 5,2", ALC889_FIXUP_IMAC91_VREF),
SND_PCI_QUIRK(0x106b, 0x4900, "iMac 9,1 Aluminum", ALC889_FIXUP_IMAC91_VREF),
SND_PCI_QUIRK(0x106b, 0x4a00, "Macbook 5,2", ALC889_FIXUP_IMAC91_VREF),
SND_PCI_QUIRK(0x1071, 0x8258, "Evesham Voyaeger", ALC882_FIXUP_EAPD),
SND_PCI_QUIRK_VENDOR(0x1462, "MSI", ALC882_FIXUP_GPIO3),
SND_PCI_QUIRK(0x1458, 0xa002, "Gigabyte EP45-DS3", ALC889_FIXUP_CD),
SND_PCI_QUIRK(0x147b, 0x107a, "Abit AW9D-MAX", ALC882_FIXUP_ABIT_AW9D_MAX),
SND_PCI_QUIRK_VENDOR(0x1558, "Clevo laptop", ALC882_FIXUP_EAPD),
SND_PCI_QUIRK(0x161f, 0x2054, "Medion laptop", ALC883_FIXUP_EAPD),
SND_PCI_QUIRK(0x17aa, 0x3a0d, "Lenovo Y530", ALC882_FIXUP_LENOVO_Y530),
SND_PCI_QUIRK(0x8086, 0x0022, "DX58SO", ALC889_FIXUP_COEF),
{}
};
static const struct alc_model_fixup alc882_fixup_models[] = {
{.id = ALC882_FIXUP_ACER_ASPIRE_4930G, .name = "acer-aspire-4930g"},
{.id = ALC882_FIXUP_ACER_ASPIRE_8930G, .name = "acer-aspire-8930g"},
{.id = ALC883_FIXUP_ACER_EAPD, .name = "acer-aspire"},
{}
};
/*
* BIOS auto configuration
*/
/* almost identical with ALC880 parser... */
static int alc882_parse_auto_config(struct hda_codec *codec)
{
static const hda_nid_t alc882_ignore[] = { 0x1d, 0 };
static const hda_nid_t alc882_ssids[] = { 0x15, 0x1b, 0x14, 0 };
return alc_parse_auto_config(codec, alc882_ignore, alc882_ssids);
}
/*
*/
static int patch_alc882(struct hda_codec *codec)
{
struct alc_spec *spec;
int err;
spec = kzalloc(sizeof(*spec), GFP_KERNEL);
if (spec == NULL)
return -ENOMEM;
codec->spec = spec;
spec->mixer_nid = 0x0b;
switch (codec->vendor_id) {
case 0x10ec0882:
case 0x10ec0885:
break;
default:
/* ALC883 and variants */
alc_fix_pll_init(codec, 0x20, 0x0a, 10);
break;
}
err = alc_codec_rename_from_preset(codec);
if (err < 0)
goto error;
alc_pick_fixup(codec, alc882_fixup_models, alc882_fixup_tbl,
alc882_fixups);
alc_apply_fixup(codec, ALC_FIXUP_ACT_PRE_PROBE);
alc_auto_parse_customize_define(codec);
/* automatic parse from the BIOS config */
err = alc882_parse_auto_config(codec);
if (err < 0)
goto error;
if (!spec->no_analog && has_cdefine_beep(codec)) {
err = snd_hda_attach_beep_device(codec, 0x1);
if (err < 0)
goto error;
set_beep_amp(spec, 0x0b, 0x05, HDA_INPUT);
}
codec->patch_ops = alc_patch_ops;
alc_apply_fixup(codec, ALC_FIXUP_ACT_PROBE);
return 0;
error:
alc_free(codec);
return err;
}
/*
* ALC262 support
*/
static int alc262_parse_auto_config(struct hda_codec *codec)
{
static const hda_nid_t alc262_ignore[] = { 0x1d, 0 };
static const hda_nid_t alc262_ssids[] = { 0x15, 0x1b, 0x14, 0 };
return alc_parse_auto_config(codec, alc262_ignore, alc262_ssids);
}
/*
* Pin config fixes
*/
enum {
ALC262_FIXUP_FSC_H270,
ALC262_FIXUP_HP_Z200,
ALC262_FIXUP_TYAN,
ALC262_FIXUP_LENOVO_3000,
ALC262_FIXUP_BENQ,
ALC262_FIXUP_BENQ_T31,
};
static const struct alc_fixup alc262_fixups[] = {
[ALC262_FIXUP_FSC_H270] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x14, 0x99130110 }, /* speaker */
{ 0x15, 0x0221142f }, /* front HP */
{ 0x1b, 0x0121141f }, /* rear HP */
{ }
}
},
[ALC262_FIXUP_HP_Z200] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x16, 0x99130120 }, /* internal speaker */
{ }
}
},
[ALC262_FIXUP_TYAN] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x14, 0x1993e1f0 }, /* int AUX */
{ }
}
},
[ALC262_FIXUP_LENOVO_3000] = {
.type = ALC_FIXUP_VERBS,
.v.verbs = (const struct hda_verb[]) {
{ 0x19, AC_VERB_SET_PIN_WIDGET_CONTROL, PIN_VREF50 },
{}
},
.chained = true,
.chain_id = ALC262_FIXUP_BENQ,
},
[ALC262_FIXUP_BENQ] = {
.type = ALC_FIXUP_VERBS,
.v.verbs = (const struct hda_verb[]) {
{ 0x20, AC_VERB_SET_COEF_INDEX, 0x07 },
{ 0x20, AC_VERB_SET_PROC_COEF, 0x3070 },
{}
}
},
[ALC262_FIXUP_BENQ_T31] = {
.type = ALC_FIXUP_VERBS,
.v.verbs = (const struct hda_verb[]) {
{ 0x20, AC_VERB_SET_COEF_INDEX, 0x07 },
{ 0x20, AC_VERB_SET_PROC_COEF, 0x3050 },
{}
}
},
};
static const struct snd_pci_quirk alc262_fixup_tbl[] = {
SND_PCI_QUIRK(0x103c, 0x170b, "HP Z200", ALC262_FIXUP_HP_Z200),
SND_PCI_QUIRK(0x10cf, 0x1397, "Fujitsu", ALC262_FIXUP_BENQ),
SND_PCI_QUIRK(0x10cf, 0x142d, "Fujitsu Lifebook E8410", ALC262_FIXUP_BENQ),
SND_PCI_QUIRK(0x10f1, 0x2915, "Tyan Thunder n6650W", ALC262_FIXUP_TYAN),
SND_PCI_QUIRK(0x1734, 0x1147, "FSC Celsius H270", ALC262_FIXUP_FSC_H270),
SND_PCI_QUIRK(0x17aa, 0x384e, "Lenovo 3000", ALC262_FIXUP_LENOVO_3000),
SND_PCI_QUIRK(0x17ff, 0x0560, "Benq ED8", ALC262_FIXUP_BENQ),
SND_PCI_QUIRK(0x17ff, 0x058d, "Benq T31-16", ALC262_FIXUP_BENQ_T31),
{}
};
/*
*/
static int patch_alc262(struct hda_codec *codec)
{
struct alc_spec *spec;
int err;
spec = kzalloc(sizeof(*spec), GFP_KERNEL);
if (spec == NULL)
return -ENOMEM;
codec->spec = spec;
spec->mixer_nid = 0x0b;
#if 0
/* pshou 07/11/05 set a zero PCM sample to DAC when FIFO is
* under-run
*/
{
int tmp;
snd_hda_codec_write(codec, 0x1a, 0, AC_VERB_SET_COEF_INDEX, 7);
tmp = snd_hda_codec_read(codec, 0x20, 0, AC_VERB_GET_PROC_COEF, 0);
snd_hda_codec_write(codec, 0x1a, 0, AC_VERB_SET_COEF_INDEX, 7);
snd_hda_codec_write(codec, 0x1a, 0, AC_VERB_SET_PROC_COEF, tmp | 0x80);
}
#endif
alc_auto_parse_customize_define(codec);
alc_fix_pll_init(codec, 0x20, 0x0a, 10);
alc_pick_fixup(codec, NULL, alc262_fixup_tbl, alc262_fixups);
alc_apply_fixup(codec, ALC_FIXUP_ACT_PRE_PROBE);
/* automatic parse from the BIOS config */
err = alc262_parse_auto_config(codec);
if (err < 0)
goto error;
if (!spec->no_analog && has_cdefine_beep(codec)) {
err = snd_hda_attach_beep_device(codec, 0x1);
if (err < 0)
goto error;
set_beep_amp(spec, 0x0b, 0x05, HDA_INPUT);
}
codec->patch_ops = alc_patch_ops;
spec->shutup = alc_eapd_shutup;
alc_apply_fixup(codec, ALC_FIXUP_ACT_PROBE);
return 0;
error:
alc_free(codec);
return err;
}
/*
* ALC268
*/
/* bind Beep switches of both NID 0x0f and 0x10 */
static const struct hda_bind_ctls alc268_bind_beep_sw = {
.ops = &snd_hda_bind_sw,
.values = {
HDA_COMPOSE_AMP_VAL(0x0f, 3, 1, HDA_INPUT),
HDA_COMPOSE_AMP_VAL(0x10, 3, 1, HDA_INPUT),
0
},
};
static const struct snd_kcontrol_new alc268_beep_mixer[] = {
HDA_CODEC_VOLUME("Beep Playback Volume", 0x1d, 0x0, HDA_INPUT),
HDA_BIND_SW("Beep Playback Switch", &alc268_bind_beep_sw),
{ }
};
/* set PCBEEP vol = 0, mute connections */
static const struct hda_verb alc268_beep_init_verbs[] = {
{0x1d, AC_VERB_SET_AMP_GAIN_MUTE, AMP_IN_UNMUTE(0)},
{0x0f, AC_VERB_SET_AMP_GAIN_MUTE, AMP_IN_MUTE(1)},
{0x10, AC_VERB_SET_AMP_GAIN_MUTE, AMP_IN_MUTE(1)},
{ }
};
/*
* BIOS auto configuration
*/
static int alc268_parse_auto_config(struct hda_codec *codec)
{
static const hda_nid_t alc268_ssids[] = { 0x15, 0x1b, 0x14, 0 };
struct alc_spec *spec = codec->spec;
int err = alc_parse_auto_config(codec, NULL, alc268_ssids);
if (err > 0) {
if (!spec->no_analog && spec->autocfg.speaker_pins[0] != 0x1d) {
add_mixer(spec, alc268_beep_mixer);
add_verb(spec, alc268_beep_init_verbs);
}
}
return err;
}
/*
*/
static int patch_alc268(struct hda_codec *codec)
{
struct alc_spec *spec;
int i, has_beep, err;
spec = kzalloc(sizeof(*spec), GFP_KERNEL);
if (spec == NULL)
return -ENOMEM;
codec->spec = spec;
/* ALC268 has no aa-loopback mixer */
/* automatic parse from the BIOS config */
err = alc268_parse_auto_config(codec);
if (err < 0)
goto error;
has_beep = 0;
for (i = 0; i < spec->num_mixers; i++) {
if (spec->mixers[i] == alc268_beep_mixer) {
has_beep = 1;
break;
}
}
if (has_beep) {
err = snd_hda_attach_beep_device(codec, 0x1);
if (err < 0)
goto error;
if (!query_amp_caps(codec, 0x1d, HDA_INPUT))
/* override the amp caps for beep generator */
snd_hda_override_amp_caps(codec, 0x1d, HDA_INPUT,
(0x0c << AC_AMPCAP_OFFSET_SHIFT) |
(0x0c << AC_AMPCAP_NUM_STEPS_SHIFT) |
(0x07 << AC_AMPCAP_STEP_SIZE_SHIFT) |
(0 << AC_AMPCAP_MUTE_SHIFT));
}
codec->patch_ops = alc_patch_ops;
spec->shutup = alc_eapd_shutup;
return 0;
error:
alc_free(codec);
return err;
}
/*
* ALC269
*/
static const struct hda_pcm_stream alc269_44k_pcm_analog_playback = {
.substreams = 1,
.channels_min = 2,
.channels_max = 8,
.rates = SNDRV_PCM_RATE_44100, /* fixed rate */
/* NID is set in alc_build_pcms */
.ops = {
.open = alc_playback_pcm_open,
.prepare = alc_playback_pcm_prepare,
.cleanup = alc_playback_pcm_cleanup
},
};
static const struct hda_pcm_stream alc269_44k_pcm_analog_capture = {
.substreams = 1,
.channels_min = 2,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_44100, /* fixed rate */
/* NID is set in alc_build_pcms */
};
/* different alc269-variants */
enum {
ALC269_TYPE_ALC269VA,
ALC269_TYPE_ALC269VB,
ALC269_TYPE_ALC269VC,
};
/*
* BIOS auto configuration
*/
static int alc269_parse_auto_config(struct hda_codec *codec)
{
static const hda_nid_t alc269_ignore[] = { 0x1d, 0 };
static const hda_nid_t alc269_ssids[] = { 0, 0x1b, 0x14, 0x21 };
static const hda_nid_t alc269va_ssids[] = { 0x15, 0x1b, 0x14, 0 };
struct alc_spec *spec = codec->spec;
const hda_nid_t *ssids = spec->codec_variant == ALC269_TYPE_ALC269VA ?
alc269va_ssids : alc269_ssids;
return alc_parse_auto_config(codec, alc269_ignore, ssids);
}
static void alc269_toggle_power_output(struct hda_codec *codec, int power_up)
{
int val = alc_read_coef_idx(codec, 0x04);
if (power_up)
val |= 1 << 11;
else
val &= ~(1 << 11);
alc_write_coef_idx(codec, 0x04, val);
}
static void alc269_shutup(struct hda_codec *codec)
{
if ((alc_get_coef0(codec) & 0x00ff) == 0x017)
alc269_toggle_power_output(codec, 0);
if ((alc_get_coef0(codec) & 0x00ff) == 0x018) {
alc269_toggle_power_output(codec, 0);
msleep(150);
}
}
#ifdef CONFIG_PM
static int alc269_resume(struct hda_codec *codec)
{
if ((alc_get_coef0(codec) & 0x00ff) == 0x018) {
alc269_toggle_power_output(codec, 0);
msleep(150);
}
codec->patch_ops.init(codec);
if ((alc_get_coef0(codec) & 0x00ff) == 0x017) {
alc269_toggle_power_output(codec, 1);
msleep(200);
}
if ((alc_get_coef0(codec) & 0x00ff) == 0x018)
alc269_toggle_power_output(codec, 1);
snd_hda_codec_resume_amp(codec);
snd_hda_codec_resume_cache(codec);
hda_call_check_power_status(codec, 0x01);
return 0;
}
#endif /* CONFIG_PM */
static void alc269_fixup_hweq(struct hda_codec *codec,
const struct alc_fixup *fix, int action)
{
int coef;
if (action != ALC_FIXUP_ACT_INIT)
return;
coef = alc_read_coef_idx(codec, 0x1e);
alc_write_coef_idx(codec, 0x1e, coef | 0x80);
}
static void alc271_fixup_dmic(struct hda_codec *codec,
const struct alc_fixup *fix, int action)
{
static const struct hda_verb verbs[] = {
{0x20, AC_VERB_SET_COEF_INDEX, 0x0d},
{0x20, AC_VERB_SET_PROC_COEF, 0x4000},
{}
};
unsigned int cfg;
if (strcmp(codec->chip_name, "ALC271X"))
return;
cfg = snd_hda_codec_get_pincfg(codec, 0x12);
if (get_defcfg_connect(cfg) == AC_JACK_PORT_FIXED)
snd_hda_sequence_write(codec, verbs);
}
static void alc269_fixup_pcm_44k(struct hda_codec *codec,
const struct alc_fixup *fix, int action)
{
struct alc_spec *spec = codec->spec;
if (action != ALC_FIXUP_ACT_PROBE)
return;
/* Due to a hardware problem on Lenovo Ideadpad, we need to
* fix the sample rate of analog I/O to 44.1kHz
*/
spec->stream_analog_playback = &alc269_44k_pcm_analog_playback;
spec->stream_analog_capture = &alc269_44k_pcm_analog_capture;
}
static void alc269_fixup_stereo_dmic(struct hda_codec *codec,
const struct alc_fixup *fix, int action)
{
int coef;
if (action != ALC_FIXUP_ACT_INIT)
return;
/* The digital-mic unit sends PDM (differential signal) instead of
* the standard PCM, thus you can't record a valid mono stream as is.
* Below is a workaround specific to ALC269 to control the dmic
* signal source as mono.
*/
coef = alc_read_coef_idx(codec, 0x07);
alc_write_coef_idx(codec, 0x07, coef | 0x80);
}
static void alc269_quanta_automute(struct hda_codec *codec)
{
update_outputs(codec);
snd_hda_codec_write(codec, 0x20, 0,
AC_VERB_SET_COEF_INDEX, 0x0c);
snd_hda_codec_write(codec, 0x20, 0,
AC_VERB_SET_PROC_COEF, 0x680);
snd_hda_codec_write(codec, 0x20, 0,
AC_VERB_SET_COEF_INDEX, 0x0c);
snd_hda_codec_write(codec, 0x20, 0,
AC_VERB_SET_PROC_COEF, 0x480);
}
static void alc269_fixup_quanta_mute(struct hda_codec *codec,
const struct alc_fixup *fix, int action)
{
struct alc_spec *spec = codec->spec;
if (action != ALC_FIXUP_ACT_PROBE)
return;
spec->automute_hook = alc269_quanta_automute;
}
/* update mute-LED according to the speaker mute state via mic2 VREF pin */
static void alc269_fixup_mic2_mute_hook(void *private_data, int enabled)
{
struct hda_codec *codec = private_data;
unsigned int pinval = enabled ? 0x20 : 0x24;
snd_hda_codec_update_cache(codec, 0x19, 0,
AC_VERB_SET_PIN_WIDGET_CONTROL,
pinval);
}
static void alc269_fixup_mic2_mute(struct hda_codec *codec,
const struct alc_fixup *fix, int action)
{
struct alc_spec *spec = codec->spec;
switch (action) {
case ALC_FIXUP_ACT_BUILD:
spec->vmaster_mute.hook = alc269_fixup_mic2_mute_hook;
snd_hda_add_vmaster_hook(codec, &spec->vmaster_mute, true);
/* fallthru */
case ALC_FIXUP_ACT_INIT:
snd_hda_sync_vmaster_hook(&spec->vmaster_mute);
break;
}
}
enum {
ALC269_FIXUP_SONY_VAIO,
ALC275_FIXUP_SONY_VAIO_GPIO2,
ALC269_FIXUP_DELL_M101Z,
ALC269_FIXUP_SKU_IGNORE,
ALC269_FIXUP_ASUS_G73JW,
ALC269_FIXUP_LENOVO_EAPD,
ALC275_FIXUP_SONY_HWEQ,
ALC271_FIXUP_DMIC,
ALC269_FIXUP_PCM_44K,
ALC269_FIXUP_STEREO_DMIC,
ALC269_FIXUP_QUANTA_MUTE,
ALC269_FIXUP_LIFEBOOK,
ALC269_FIXUP_AMIC,
ALC269_FIXUP_DMIC,
ALC269VB_FIXUP_AMIC,
ALC269VB_FIXUP_DMIC,
ALC269_FIXUP_MIC2_MUTE_LED,
};
static const struct alc_fixup alc269_fixups[] = {
[ALC269_FIXUP_SONY_VAIO] = {
.type = ALC_FIXUP_VERBS,
.v.verbs = (const struct hda_verb[]) {
{0x19, AC_VERB_SET_PIN_WIDGET_CONTROL, PIN_VREFGRD},
{}
}
},
[ALC275_FIXUP_SONY_VAIO_GPIO2] = {
.type = ALC_FIXUP_VERBS,
.v.verbs = (const struct hda_verb[]) {
{0x01, AC_VERB_SET_GPIO_MASK, 0x04},
{0x01, AC_VERB_SET_GPIO_DIRECTION, 0x04},
{0x01, AC_VERB_SET_GPIO_DATA, 0x00},
{ }
},
.chained = true,
.chain_id = ALC269_FIXUP_SONY_VAIO
},
[ALC269_FIXUP_DELL_M101Z] = {
.type = ALC_FIXUP_VERBS,
.v.verbs = (const struct hda_verb[]) {
/* Enables internal speaker */
{0x20, AC_VERB_SET_COEF_INDEX, 13},
{0x20, AC_VERB_SET_PROC_COEF, 0x4040},
{}
}
},
[ALC269_FIXUP_SKU_IGNORE] = {
.type = ALC_FIXUP_SKU,
.v.sku = ALC_FIXUP_SKU_IGNORE,
},
[ALC269_FIXUP_ASUS_G73JW] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x17, 0x99130111 }, /* subwoofer */
{ }
}
},
[ALC269_FIXUP_LENOVO_EAPD] = {
.type = ALC_FIXUP_VERBS,
.v.verbs = (const struct hda_verb[]) {
{0x14, AC_VERB_SET_EAPD_BTLENABLE, 0},
{}
}
},
[ALC275_FIXUP_SONY_HWEQ] = {
.type = ALC_FIXUP_FUNC,
.v.func = alc269_fixup_hweq,
.chained = true,
.chain_id = ALC275_FIXUP_SONY_VAIO_GPIO2
},
[ALC271_FIXUP_DMIC] = {
.type = ALC_FIXUP_FUNC,
.v.func = alc271_fixup_dmic,
},
[ALC269_FIXUP_PCM_44K] = {
.type = ALC_FIXUP_FUNC,
.v.func = alc269_fixup_pcm_44k,
},
[ALC269_FIXUP_STEREO_DMIC] = {
.type = ALC_FIXUP_FUNC,
.v.func = alc269_fixup_stereo_dmic,
},
[ALC269_FIXUP_QUANTA_MUTE] = {
.type = ALC_FIXUP_FUNC,
.v.func = alc269_fixup_quanta_mute,
},
[ALC269_FIXUP_LIFEBOOK] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x1a, 0x2101103f }, /* dock line-out */
{ 0x1b, 0x23a11040 }, /* dock mic-in */
{ }
},
.chained = true,
.chain_id = ALC269_FIXUP_QUANTA_MUTE
},
[ALC269_FIXUP_AMIC] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x14, 0x99130110 }, /* speaker */
{ 0x15, 0x0121401f }, /* HP out */
{ 0x18, 0x01a19c20 }, /* mic */
{ 0x19, 0x99a3092f }, /* int-mic */
{ }
},
},
[ALC269_FIXUP_DMIC] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x12, 0x99a3092f }, /* int-mic */
{ 0x14, 0x99130110 }, /* speaker */
{ 0x15, 0x0121401f }, /* HP out */
{ 0x18, 0x01a19c20 }, /* mic */
{ }
},
},
[ALC269VB_FIXUP_AMIC] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x14, 0x99130110 }, /* speaker */
{ 0x18, 0x01a19c20 }, /* mic */
{ 0x19, 0x99a3092f }, /* int-mic */
{ 0x21, 0x0121401f }, /* HP out */
{ }
},
},
[ALC269VB_FIXUP_DMIC] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x12, 0x99a3092f }, /* int-mic */
{ 0x14, 0x99130110 }, /* speaker */
{ 0x18, 0x01a19c20 }, /* mic */
{ 0x21, 0x0121401f }, /* HP out */
{ }
},
},
[ALC269_FIXUP_MIC2_MUTE_LED] = {
.type = ALC_FIXUP_FUNC,
.v.func = alc269_fixup_mic2_mute,
},
};
static const struct snd_pci_quirk alc269_fixup_tbl[] = {
SND_PCI_QUIRK(0x103c, 0x1586, "HP", ALC269_FIXUP_MIC2_MUTE_LED),
SND_PCI_QUIRK(0x1043, 0x1a13, "Asus G73Jw", ALC269_FIXUP_ASUS_G73JW),
SND_PCI_QUIRK(0x1043, 0x16e3, "ASUS UX50", ALC269_FIXUP_STEREO_DMIC),
SND_PCI_QUIRK(0x1043, 0x831a, "ASUS P901", ALC269_FIXUP_STEREO_DMIC),
SND_PCI_QUIRK(0x1043, 0x834a, "ASUS S101", ALC269_FIXUP_STEREO_DMIC),
SND_PCI_QUIRK(0x1043, 0x8398, "ASUS P1005", ALC269_FIXUP_STEREO_DMIC),
SND_PCI_QUIRK(0x1043, 0x83ce, "ASUS P1005", ALC269_FIXUP_STEREO_DMIC),
SND_PCI_QUIRK(0x104d, 0x9073, "Sony VAIO", ALC275_FIXUP_SONY_VAIO_GPIO2),
SND_PCI_QUIRK(0x104d, 0x907b, "Sony VAIO", ALC275_FIXUP_SONY_HWEQ),
SND_PCI_QUIRK(0x104d, 0x9084, "Sony VAIO", ALC275_FIXUP_SONY_HWEQ),
SND_PCI_QUIRK_VENDOR(0x104d, "Sony VAIO", ALC269_FIXUP_SONY_VAIO),
SND_PCI_QUIRK(0x1028, 0x0470, "Dell M101z", ALC269_FIXUP_DELL_M101Z),
SND_PCI_QUIRK_VENDOR(0x1025, "Acer Aspire", ALC271_FIXUP_DMIC),
SND_PCI_QUIRK(0x10cf, 0x1475, "Lifebook", ALC269_FIXUP_LIFEBOOK),
SND_PCI_QUIRK(0x17aa, 0x20f2, "Thinkpad SL410/510", ALC269_FIXUP_SKU_IGNORE),
SND_PCI_QUIRK(0x17aa, 0x215e, "Thinkpad L512", ALC269_FIXUP_SKU_IGNORE),
SND_PCI_QUIRK(0x17aa, 0x21b8, "Thinkpad Edge 14", ALC269_FIXUP_SKU_IGNORE),
SND_PCI_QUIRK(0x17aa, 0x21ca, "Thinkpad L412", ALC269_FIXUP_SKU_IGNORE),
SND_PCI_QUIRK(0x17aa, 0x21e9, "Thinkpad Edge 15", ALC269_FIXUP_SKU_IGNORE),
SND_PCI_QUIRK(0x17aa, 0x3bf8, "Quanta FL1", ALC269_FIXUP_QUANTA_MUTE),
SND_PCI_QUIRK(0x17aa, 0x3bf8, "Lenovo Ideapd", ALC269_FIXUP_PCM_44K),
SND_PCI_QUIRK(0x17aa, 0x9e54, "LENOVO NB", ALC269_FIXUP_LENOVO_EAPD),
#if 0
/* Below is a quirk table taken from the old code.
* Basically the device should work as is without the fixup table.
* If BIOS doesn't give a proper info, enable the corresponding
* fixup entry.
*/
SND_PCI_QUIRK(0x1043, 0x8330, "ASUS Eeepc P703 P900A",
ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x1043, 0x1013, "ASUS N61Da", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x1043, 0x1143, "ASUS B53f", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x1043, 0x1133, "ASUS UJ20ft", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x1043, 0x1183, "ASUS K72DR", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x1043, 0x11b3, "ASUS K52DR", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x1043, 0x11e3, "ASUS U33Jc", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x1043, 0x1273, "ASUS UL80Jt", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x1043, 0x1283, "ASUS U53Jc", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x1043, 0x12b3, "ASUS N82JV", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x1043, 0x12d3, "ASUS N61Jv", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x1043, 0x13a3, "ASUS UL30Vt", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x1043, 0x1373, "ASUS G73JX", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x1043, 0x1383, "ASUS UJ30Jc", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x1043, 0x13d3, "ASUS N61JA", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x1043, 0x1413, "ASUS UL50", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x1043, 0x1443, "ASUS UL30", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x1043, 0x1453, "ASUS M60Jv", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x1043, 0x1483, "ASUS UL80", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x1043, 0x14f3, "ASUS F83Vf", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x1043, 0x14e3, "ASUS UL20", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x1043, 0x1513, "ASUS UX30", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x1043, 0x1593, "ASUS N51Vn", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x1043, 0x15a3, "ASUS N60Jv", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x1043, 0x15b3, "ASUS N60Dp", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x1043, 0x15c3, "ASUS N70De", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x1043, 0x15e3, "ASUS F83T", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x1043, 0x1643, "ASUS M60J", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x1043, 0x1653, "ASUS U50", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x1043, 0x1693, "ASUS F50N", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x1043, 0x16a3, "ASUS F5Q", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x1043, 0x1723, "ASUS P80", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x1043, 0x1743, "ASUS U80", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x1043, 0x1773, "ASUS U20A", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x1043, 0x1883, "ASUS F81Se", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x152d, 0x1778, "Quanta ON1", ALC269_FIXUP_DMIC),
SND_PCI_QUIRK(0x17aa, 0x3be9, "Quanta Wistron", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x17aa, 0x3bf8, "Quanta FL1", ALC269_FIXUP_AMIC),
SND_PCI_QUIRK(0x17ff, 0x059a, "Quanta EL3", ALC269_FIXUP_DMIC),
SND_PCI_QUIRK(0x17ff, 0x059b, "Quanta JR1", ALC269_FIXUP_DMIC),
#endif
{}
};
static const struct alc_model_fixup alc269_fixup_models[] = {
{.id = ALC269_FIXUP_AMIC, .name = "laptop-amic"},
{.id = ALC269_FIXUP_DMIC, .name = "laptop-dmic"},
{}
};
static void alc269_fill_coef(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
int val;
if (spec->codec_variant != ALC269_TYPE_ALC269VB)
return;
if ((alc_get_coef0(codec) & 0x00ff) < 0x015) {
alc_write_coef_idx(codec, 0xf, 0x960b);
alc_write_coef_idx(codec, 0xe, 0x8817);
}
if ((alc_get_coef0(codec) & 0x00ff) == 0x016) {
alc_write_coef_idx(codec, 0xf, 0x960b);
alc_write_coef_idx(codec, 0xe, 0x8814);
}
if ((alc_get_coef0(codec) & 0x00ff) == 0x017) {
val = alc_read_coef_idx(codec, 0x04);
/* Power up output pin */
alc_write_coef_idx(codec, 0x04, val | (1<<11));
}
if ((alc_get_coef0(codec) & 0x00ff) == 0x018) {
val = alc_read_coef_idx(codec, 0xd);
if ((val & 0x0c00) >> 10 != 0x1) {
/* Capless ramp up clock control */
alc_write_coef_idx(codec, 0xd, val | (1<<10));
}
val = alc_read_coef_idx(codec, 0x17);
if ((val & 0x01c0) >> 6 != 0x4) {
/* Class D power on reset */
alc_write_coef_idx(codec, 0x17, val | (1<<7));
}
}
val = alc_read_coef_idx(codec, 0xd); /* Class D */
alc_write_coef_idx(codec, 0xd, val | (1<<14));
val = alc_read_coef_idx(codec, 0x4); /* HP */
alc_write_coef_idx(codec, 0x4, val | (1<<11));
}
/*
*/
static int patch_alc269(struct hda_codec *codec)
{
struct alc_spec *spec;
int err = 0;
spec = kzalloc(sizeof(*spec), GFP_KERNEL);
if (spec == NULL)
return -ENOMEM;
codec->spec = spec;
spec->mixer_nid = 0x0b;
alc_auto_parse_customize_define(codec);
err = alc_codec_rename_from_preset(codec);
if (err < 0)
goto error;
if (codec->vendor_id == 0x10ec0269) {
spec->codec_variant = ALC269_TYPE_ALC269VA;
switch (alc_get_coef0(codec) & 0x00f0) {
case 0x0010:
if (codec->bus->pci->subsystem_vendor == 0x1025 &&
spec->cdefine.platform_type == 1)
err = alc_codec_rename(codec, "ALC271X");
spec->codec_variant = ALC269_TYPE_ALC269VB;
break;
case 0x0020:
if (codec->bus->pci->subsystem_vendor == 0x17aa &&
codec->bus->pci->subsystem_device == 0x21f3)
err = alc_codec_rename(codec, "ALC3202");
spec->codec_variant = ALC269_TYPE_ALC269VC;
break;
default:
alc_fix_pll_init(codec, 0x20, 0x04, 15);
}
if (err < 0)
goto error;
spec->init_hook = alc269_fill_coef;
alc269_fill_coef(codec);
}
alc_pick_fixup(codec, alc269_fixup_models,
alc269_fixup_tbl, alc269_fixups);
alc_apply_fixup(codec, ALC_FIXUP_ACT_PRE_PROBE);
/* automatic parse from the BIOS config */
err = alc269_parse_auto_config(codec);
if (err < 0)
goto error;
if (!spec->no_analog && has_cdefine_beep(codec)) {
err = snd_hda_attach_beep_device(codec, 0x1);
if (err < 0)
goto error;
set_beep_amp(spec, 0x0b, 0x04, HDA_INPUT);
}
codec->patch_ops = alc_patch_ops;
#ifdef CONFIG_PM
codec->patch_ops.resume = alc269_resume;
#endif
spec->shutup = alc269_shutup;
alc_apply_fixup(codec, ALC_FIXUP_ACT_PROBE);
return 0;
error:
alc_free(codec);
return err;
}
/*
* ALC861
*/
static int alc861_parse_auto_config(struct hda_codec *codec)
{
static const hda_nid_t alc861_ignore[] = { 0x1d, 0 };
static const hda_nid_t alc861_ssids[] = { 0x0e, 0x0f, 0x0b, 0 };
return alc_parse_auto_config(codec, alc861_ignore, alc861_ssids);
}
/* Pin config fixes */
enum {
ALC861_FIXUP_FSC_AMILO_PI1505,
ALC861_FIXUP_AMP_VREF_0F,
ALC861_FIXUP_NO_JACK_DETECT,
ALC861_FIXUP_ASUS_A6RP,
};
/* On some laptops, VREF of pin 0x0f is abused for controlling the main amp */
static void alc861_fixup_asus_amp_vref_0f(struct hda_codec *codec,
const struct alc_fixup *fix, int action)
{
struct alc_spec *spec = codec->spec;
unsigned int val;
if (action != ALC_FIXUP_ACT_INIT)
return;
val = snd_hda_codec_read(codec, 0x0f, 0,
AC_VERB_GET_PIN_WIDGET_CONTROL, 0);
if (!(val & (AC_PINCTL_IN_EN | AC_PINCTL_OUT_EN)))
val |= AC_PINCTL_IN_EN;
val |= AC_PINCTL_VREF_50;
snd_hda_codec_write(codec, 0x0f, 0,
AC_VERB_SET_PIN_WIDGET_CONTROL, val);
spec->keep_vref_in_automute = 1;
}
/* suppress the jack-detection */
static void alc_fixup_no_jack_detect(struct hda_codec *codec,
const struct alc_fixup *fix, int action)
{
if (action == ALC_FIXUP_ACT_PRE_PROBE)
codec->no_jack_detect = 1;
}
static const struct alc_fixup alc861_fixups[] = {
[ALC861_FIXUP_FSC_AMILO_PI1505] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x0b, 0x0221101f }, /* HP */
{ 0x0f, 0x90170310 }, /* speaker */
{ }
}
},
[ALC861_FIXUP_AMP_VREF_0F] = {
.type = ALC_FIXUP_FUNC,
.v.func = alc861_fixup_asus_amp_vref_0f,
},
[ALC861_FIXUP_NO_JACK_DETECT] = {
.type = ALC_FIXUP_FUNC,
.v.func = alc_fixup_no_jack_detect,
},
[ALC861_FIXUP_ASUS_A6RP] = {
.type = ALC_FIXUP_FUNC,
.v.func = alc861_fixup_asus_amp_vref_0f,
.chained = true,
.chain_id = ALC861_FIXUP_NO_JACK_DETECT,
}
};
static const struct snd_pci_quirk alc861_fixup_tbl[] = {
SND_PCI_QUIRK(0x1043, 0x1393, "ASUS A6Rp", ALC861_FIXUP_ASUS_A6RP),
SND_PCI_QUIRK_VENDOR(0x1043, "ASUS laptop", ALC861_FIXUP_AMP_VREF_0F),
SND_PCI_QUIRK(0x1462, 0x7254, "HP DX2200", ALC861_FIXUP_NO_JACK_DETECT),
SND_PCI_QUIRK(0x1584, 0x2b01, "Haier W18", ALC861_FIXUP_AMP_VREF_0F),
SND_PCI_QUIRK(0x1584, 0x0000, "Uniwill ECS M31EI", ALC861_FIXUP_AMP_VREF_0F),
SND_PCI_QUIRK(0x1734, 0x10c7, "FSC Amilo Pi1505", ALC861_FIXUP_FSC_AMILO_PI1505),
{}
};
/*
*/
static int patch_alc861(struct hda_codec *codec)
{
struct alc_spec *spec;
int err;
spec = kzalloc(sizeof(*spec), GFP_KERNEL);
if (spec == NULL)
return -ENOMEM;
codec->spec = spec;
spec->mixer_nid = 0x15;
alc_pick_fixup(codec, NULL, alc861_fixup_tbl, alc861_fixups);
alc_apply_fixup(codec, ALC_FIXUP_ACT_PRE_PROBE);
/* automatic parse from the BIOS config */
err = alc861_parse_auto_config(codec);
if (err < 0)
goto error;
if (!spec->no_analog) {
err = snd_hda_attach_beep_device(codec, 0x23);
if (err < 0)
goto error;
set_beep_amp(spec, 0x23, 0, HDA_OUTPUT);
}
codec->patch_ops = alc_patch_ops;
#ifdef CONFIG_SND_HDA_POWER_SAVE
spec->power_hook = alc_power_eapd;
#endif
alc_apply_fixup(codec, ALC_FIXUP_ACT_PROBE);
return 0;
error:
alc_free(codec);
return err;
}
/*
* ALC861-VD support
*
* Based on ALC882
*
* In addition, an independent DAC
*/
static int alc861vd_parse_auto_config(struct hda_codec *codec)
{
static const hda_nid_t alc861vd_ignore[] = { 0x1d, 0 };
static const hda_nid_t alc861vd_ssids[] = { 0x15, 0x1b, 0x14, 0 };
return alc_parse_auto_config(codec, alc861vd_ignore, alc861vd_ssids);
}
enum {
ALC660VD_FIX_ASUS_GPIO1,
ALC861VD_FIX_DALLAS,
};
/* exclude VREF80 */
static void alc861vd_fixup_dallas(struct hda_codec *codec,
const struct alc_fixup *fix, int action)
{
if (action == ALC_FIXUP_ACT_PRE_PROBE) {
snd_hda_override_pin_caps(codec, 0x18, 0x00001714);
snd_hda_override_pin_caps(codec, 0x19, 0x0000171c);
}
}
static const struct alc_fixup alc861vd_fixups[] = {
[ALC660VD_FIX_ASUS_GPIO1] = {
.type = ALC_FIXUP_VERBS,
.v.verbs = (const struct hda_verb[]) {
/* reset GPIO1 */
{0x01, AC_VERB_SET_GPIO_MASK, 0x03},
{0x01, AC_VERB_SET_GPIO_DIRECTION, 0x01},
{0x01, AC_VERB_SET_GPIO_DATA, 0x01},
{ }
}
},
[ALC861VD_FIX_DALLAS] = {
.type = ALC_FIXUP_FUNC,
.v.func = alc861vd_fixup_dallas,
},
};
static const struct snd_pci_quirk alc861vd_fixup_tbl[] = {
SND_PCI_QUIRK(0x103c, 0x30bf, "HP TX1000", ALC861VD_FIX_DALLAS),
SND_PCI_QUIRK(0x1043, 0x1339, "ASUS A7-K", ALC660VD_FIX_ASUS_GPIO1),
SND_PCI_QUIRK(0x1179, 0xff31, "Toshiba L30-149", ALC861VD_FIX_DALLAS),
{}
};
static const struct hda_verb alc660vd_eapd_verbs[] = {
{0x14, AC_VERB_SET_EAPD_BTLENABLE, 2},
{0x15, AC_VERB_SET_EAPD_BTLENABLE, 2},
{ }
};
/*
*/
static int patch_alc861vd(struct hda_codec *codec)
{
struct alc_spec *spec;
int err;
spec = kzalloc(sizeof(*spec), GFP_KERNEL);
if (spec == NULL)
return -ENOMEM;
codec->spec = spec;
spec->mixer_nid = 0x0b;
alc_pick_fixup(codec, NULL, alc861vd_fixup_tbl, alc861vd_fixups);
alc_apply_fixup(codec, ALC_FIXUP_ACT_PRE_PROBE);
/* automatic parse from the BIOS config */
err = alc861vd_parse_auto_config(codec);
if (err < 0)
goto error;
if (codec->vendor_id == 0x10ec0660) {
/* always turn on EAPD */
add_verb(spec, alc660vd_eapd_verbs);
}
if (!spec->no_analog) {
err = snd_hda_attach_beep_device(codec, 0x23);
if (err < 0)
goto error;
set_beep_amp(spec, 0x0b, 0x05, HDA_INPUT);
}
codec->patch_ops = alc_patch_ops;
spec->shutup = alc_eapd_shutup;
alc_apply_fixup(codec, ALC_FIXUP_ACT_PROBE);
return 0;
error:
alc_free(codec);
return err;
}
/*
* ALC662 support
*
* ALC662 is almost identical with ALC880 but has cleaner and more flexible
* configuration. Each pin widget can choose any input DACs and a mixer.
* Each ADC is connected from a mixer of all inputs. This makes possible
* 6-channel independent captures.
*
* In addition, an independent DAC for the multi-playback (not used in this
* driver yet).
*/
/*
* BIOS auto configuration
*/
static int alc662_parse_auto_config(struct hda_codec *codec)
{
static const hda_nid_t alc662_ignore[] = { 0x1d, 0 };
static const hda_nid_t alc663_ssids[] = { 0x15, 0x1b, 0x14, 0x21 };
static const hda_nid_t alc662_ssids[] = { 0x15, 0x1b, 0x14, 0 };
const hda_nid_t *ssids;
if (codec->vendor_id == 0x10ec0272 || codec->vendor_id == 0x10ec0663 ||
codec->vendor_id == 0x10ec0665 || codec->vendor_id == 0x10ec0670)
ssids = alc663_ssids;
else
ssids = alc662_ssids;
return alc_parse_auto_config(codec, alc662_ignore, ssids);
}
static void alc272_fixup_mario(struct hda_codec *codec,
const struct alc_fixup *fix, int action)
{
if (action != ALC_FIXUP_ACT_PROBE)
return;
if (snd_hda_override_amp_caps(codec, 0x2, HDA_OUTPUT,
(0x3b << AC_AMPCAP_OFFSET_SHIFT) |
(0x3b << AC_AMPCAP_NUM_STEPS_SHIFT) |
(0x03 << AC_AMPCAP_STEP_SIZE_SHIFT) |
(0 << AC_AMPCAP_MUTE_SHIFT)))
printk(KERN_WARNING
"hda_codec: failed to override amp caps for NID 0x2\n");
}
enum {
ALC662_FIXUP_ASPIRE,
ALC662_FIXUP_IDEAPAD,
ALC272_FIXUP_MARIO,
ALC662_FIXUP_CZC_P10T,
ALC662_FIXUP_SKU_IGNORE,
ALC662_FIXUP_HP_RP5800,
ALC662_FIXUP_ASUS_MODE1,
ALC662_FIXUP_ASUS_MODE2,
ALC662_FIXUP_ASUS_MODE3,
ALC662_FIXUP_ASUS_MODE4,
ALC662_FIXUP_ASUS_MODE5,
ALC662_FIXUP_ASUS_MODE6,
ALC662_FIXUP_ASUS_MODE7,
ALC662_FIXUP_ASUS_MODE8,
ALC662_FIXUP_NO_JACK_DETECT,
};
static const struct alc_fixup alc662_fixups[] = {
[ALC662_FIXUP_ASPIRE] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x15, 0x99130112 }, /* subwoofer */
{ }
}
},
[ALC662_FIXUP_IDEAPAD] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x17, 0x99130112 }, /* subwoofer */
{ }
}
},
[ALC272_FIXUP_MARIO] = {
.type = ALC_FIXUP_FUNC,
.v.func = alc272_fixup_mario,
},
[ALC662_FIXUP_CZC_P10T] = {
.type = ALC_FIXUP_VERBS,
.v.verbs = (const struct hda_verb[]) {
{0x14, AC_VERB_SET_EAPD_BTLENABLE, 0},
{}
}
},
[ALC662_FIXUP_SKU_IGNORE] = {
.type = ALC_FIXUP_SKU,
.v.sku = ALC_FIXUP_SKU_IGNORE,
},
[ALC662_FIXUP_HP_RP5800] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x14, 0x0221201f }, /* HP out */
{ }
},
.chained = true,
.chain_id = ALC662_FIXUP_SKU_IGNORE
},
[ALC662_FIXUP_ASUS_MODE1] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x14, 0x99130110 }, /* speaker */
{ 0x18, 0x01a19c20 }, /* mic */
{ 0x19, 0x99a3092f }, /* int-mic */
{ 0x21, 0x0121401f }, /* HP out */
{ }
},
.chained = true,
.chain_id = ALC662_FIXUP_SKU_IGNORE
},
[ALC662_FIXUP_ASUS_MODE2] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x14, 0x99130110 }, /* speaker */
{ 0x18, 0x01a19820 }, /* mic */
{ 0x19, 0x99a3092f }, /* int-mic */
{ 0x1b, 0x0121401f }, /* HP out */
{ }
},
.chained = true,
.chain_id = ALC662_FIXUP_SKU_IGNORE
},
[ALC662_FIXUP_ASUS_MODE3] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x14, 0x99130110 }, /* speaker */
{ 0x15, 0x0121441f }, /* HP */
{ 0x18, 0x01a19840 }, /* mic */
{ 0x19, 0x99a3094f }, /* int-mic */
{ 0x21, 0x01211420 }, /* HP2 */
{ }
},
.chained = true,
.chain_id = ALC662_FIXUP_SKU_IGNORE
},
[ALC662_FIXUP_ASUS_MODE4] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x14, 0x99130110 }, /* speaker */
{ 0x16, 0x99130111 }, /* speaker */
{ 0x18, 0x01a19840 }, /* mic */
{ 0x19, 0x99a3094f }, /* int-mic */
{ 0x21, 0x0121441f }, /* HP */
{ }
},
.chained = true,
.chain_id = ALC662_FIXUP_SKU_IGNORE
},
[ALC662_FIXUP_ASUS_MODE5] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x14, 0x99130110 }, /* speaker */
{ 0x15, 0x0121441f }, /* HP */
{ 0x16, 0x99130111 }, /* speaker */
{ 0x18, 0x01a19840 }, /* mic */
{ 0x19, 0x99a3094f }, /* int-mic */
{ }
},
.chained = true,
.chain_id = ALC662_FIXUP_SKU_IGNORE
},
[ALC662_FIXUP_ASUS_MODE6] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x14, 0x99130110 }, /* speaker */
{ 0x15, 0x01211420 }, /* HP2 */
{ 0x18, 0x01a19840 }, /* mic */
{ 0x19, 0x99a3094f }, /* int-mic */
{ 0x1b, 0x0121441f }, /* HP */
{ }
},
.chained = true,
.chain_id = ALC662_FIXUP_SKU_IGNORE
},
[ALC662_FIXUP_ASUS_MODE7] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x14, 0x99130110 }, /* speaker */
{ 0x17, 0x99130111 }, /* speaker */
{ 0x18, 0x01a19840 }, /* mic */
{ 0x19, 0x99a3094f }, /* int-mic */
{ 0x1b, 0x01214020 }, /* HP */
{ 0x21, 0x0121401f }, /* HP */
{ }
},
.chained = true,
.chain_id = ALC662_FIXUP_SKU_IGNORE
},
[ALC662_FIXUP_ASUS_MODE8] = {
.type = ALC_FIXUP_PINS,
.v.pins = (const struct alc_pincfg[]) {
{ 0x14, 0x99130110 }, /* speaker */
{ 0x12, 0x99a30970 }, /* int-mic */
{ 0x15, 0x01214020 }, /* HP */
{ 0x17, 0x99130111 }, /* speaker */
{ 0x18, 0x01a19840 }, /* mic */
{ 0x21, 0x0121401f }, /* HP */
{ }
},
.chained = true,
.chain_id = ALC662_FIXUP_SKU_IGNORE
},
[ALC662_FIXUP_NO_JACK_DETECT] = {
.type = ALC_FIXUP_FUNC,
.v.func = alc_fixup_no_jack_detect,
},
};
static const struct snd_pci_quirk alc662_fixup_tbl[] = {
SND_PCI_QUIRK(0x1019, 0x9087, "ECS", ALC662_FIXUP_ASUS_MODE2),
SND_PCI_QUIRK(0x1025, 0x0308, "Acer Aspire 8942G", ALC662_FIXUP_ASPIRE),
SND_PCI_QUIRK(0x1025, 0x031c, "Gateway NV79", ALC662_FIXUP_SKU_IGNORE),
SND_PCI_QUIRK(0x1025, 0x038b, "Acer Aspire 8943G", ALC662_FIXUP_ASPIRE),
SND_PCI_QUIRK(0x103c, 0x1632, "HP RP5800", ALC662_FIXUP_HP_RP5800),
SND_PCI_QUIRK(0x1043, 0x8469, "ASUS mobo", ALC662_FIXUP_NO_JACK_DETECT),
SND_PCI_QUIRK(0x105b, 0x0cd6, "Foxconn", ALC662_FIXUP_ASUS_MODE2),
SND_PCI_QUIRK(0x144d, 0xc051, "Samsung R720", ALC662_FIXUP_IDEAPAD),
SND_PCI_QUIRK(0x17aa, 0x38af, "Lenovo Ideapad Y550P", ALC662_FIXUP_IDEAPAD),
SND_PCI_QUIRK(0x17aa, 0x3a0d, "Lenovo Ideapad Y550", ALC662_FIXUP_IDEAPAD),
SND_PCI_QUIRK(0x1b35, 0x2206, "CZC P10T", ALC662_FIXUP_CZC_P10T),
#if 0
/* Below is a quirk table taken from the old code.
* Basically the device should work as is without the fixup table.
* If BIOS doesn't give a proper info, enable the corresponding
* fixup entry.
*/
SND_PCI_QUIRK(0x1043, 0x1000, "ASUS N50Vm", ALC662_FIXUP_ASUS_MODE1),
SND_PCI_QUIRK(0x1043, 0x1092, "ASUS NB", ALC662_FIXUP_ASUS_MODE3),
SND_PCI_QUIRK(0x1043, 0x1173, "ASUS K73Jn", ALC662_FIXUP_ASUS_MODE1),
SND_PCI_QUIRK(0x1043, 0x11c3, "ASUS M70V", ALC662_FIXUP_ASUS_MODE3),
SND_PCI_QUIRK(0x1043, 0x11d3, "ASUS NB", ALC662_FIXUP_ASUS_MODE1),
SND_PCI_QUIRK(0x1043, 0x11f3, "ASUS NB", ALC662_FIXUP_ASUS_MODE2),
SND_PCI_QUIRK(0x1043, 0x1203, "ASUS NB", ALC662_FIXUP_ASUS_MODE1),
SND_PCI_QUIRK(0x1043, 0x1303, "ASUS G60J", ALC662_FIXUP_ASUS_MODE1),
SND_PCI_QUIRK(0x1043, 0x1333, "ASUS G60Jx", ALC662_FIXUP_ASUS_MODE1),
SND_PCI_QUIRK(0x1043, 0x1339, "ASUS NB", ALC662_FIXUP_ASUS_MODE2),
SND_PCI_QUIRK(0x1043, 0x13e3, "ASUS N71JA", ALC662_FIXUP_ASUS_MODE7),
SND_PCI_QUIRK(0x1043, 0x1463, "ASUS N71", ALC662_FIXUP_ASUS_MODE7),
SND_PCI_QUIRK(0x1043, 0x14d3, "ASUS G72", ALC662_FIXUP_ASUS_MODE8),
SND_PCI_QUIRK(0x1043, 0x1563, "ASUS N90", ALC662_FIXUP_ASUS_MODE3),
SND_PCI_QUIRK(0x1043, 0x15d3, "ASUS N50SF F50SF", ALC662_FIXUP_ASUS_MODE1),
SND_PCI_QUIRK(0x1043, 0x16c3, "ASUS NB", ALC662_FIXUP_ASUS_MODE2),
SND_PCI_QUIRK(0x1043, 0x16f3, "ASUS K40C K50C", ALC662_FIXUP_ASUS_MODE2),
SND_PCI_QUIRK(0x1043, 0x1733, "ASUS N81De", ALC662_FIXUP_ASUS_MODE1),
SND_PCI_QUIRK(0x1043, 0x1753, "ASUS NB", ALC662_FIXUP_ASUS_MODE2),
SND_PCI_QUIRK(0x1043, 0x1763, "ASUS NB", ALC662_FIXUP_ASUS_MODE6),
SND_PCI_QUIRK(0x1043, 0x1765, "ASUS NB", ALC662_FIXUP_ASUS_MODE6),
SND_PCI_QUIRK(0x1043, 0x1783, "ASUS NB", ALC662_FIXUP_ASUS_MODE2),
SND_PCI_QUIRK(0x1043, 0x1793, "ASUS F50GX", ALC662_FIXUP_ASUS_MODE1),
SND_PCI_QUIRK(0x1043, 0x17b3, "ASUS F70SL", ALC662_FIXUP_ASUS_MODE3),
SND_PCI_QUIRK(0x1043, 0x17f3, "ASUS X58LE", ALC662_FIXUP_ASUS_MODE2),
SND_PCI_QUIRK(0x1043, 0x1813, "ASUS NB", ALC662_FIXUP_ASUS_MODE2),
SND_PCI_QUIRK(0x1043, 0x1823, "ASUS NB", ALC662_FIXUP_ASUS_MODE5),
SND_PCI_QUIRK(0x1043, 0x1833, "ASUS NB", ALC662_FIXUP_ASUS_MODE6),
SND_PCI_QUIRK(0x1043, 0x1843, "ASUS NB", ALC662_FIXUP_ASUS_MODE2),
SND_PCI_QUIRK(0x1043, 0x1853, "ASUS F50Z", ALC662_FIXUP_ASUS_MODE1),
SND_PCI_QUIRK(0x1043, 0x1864, "ASUS NB", ALC662_FIXUP_ASUS_MODE2),
SND_PCI_QUIRK(0x1043, 0x1876, "ASUS NB", ALC662_FIXUP_ASUS_MODE2),
SND_PCI_QUIRK(0x1043, 0x1893, "ASUS M50Vm", ALC662_FIXUP_ASUS_MODE3),
SND_PCI_QUIRK(0x1043, 0x1894, "ASUS X55", ALC662_FIXUP_ASUS_MODE3),
SND_PCI_QUIRK(0x1043, 0x18b3, "ASUS N80Vc", ALC662_FIXUP_ASUS_MODE1),
SND_PCI_QUIRK(0x1043, 0x18c3, "ASUS VX5", ALC662_FIXUP_ASUS_MODE1),
SND_PCI_QUIRK(0x1043, 0x18d3, "ASUS N81Te", ALC662_FIXUP_ASUS_MODE1),
SND_PCI_QUIRK(0x1043, 0x18f3, "ASUS N505Tp", ALC662_FIXUP_ASUS_MODE1),
SND_PCI_QUIRK(0x1043, 0x1903, "ASUS F5GL", ALC662_FIXUP_ASUS_MODE1),
SND_PCI_QUIRK(0x1043, 0x1913, "ASUS NB", ALC662_FIXUP_ASUS_MODE2),
SND_PCI_QUIRK(0x1043, 0x1933, "ASUS F80Q", ALC662_FIXUP_ASUS_MODE2),
SND_PCI_QUIRK(0x1043, 0x1943, "ASUS Vx3V", ALC662_FIXUP_ASUS_MODE1),
SND_PCI_QUIRK(0x1043, 0x1953, "ASUS NB", ALC662_FIXUP_ASUS_MODE1),
SND_PCI_QUIRK(0x1043, 0x1963, "ASUS X71C", ALC662_FIXUP_ASUS_MODE3),
SND_PCI_QUIRK(0x1043, 0x1983, "ASUS N5051A", ALC662_FIXUP_ASUS_MODE1),
SND_PCI_QUIRK(0x1043, 0x1993, "ASUS N20", ALC662_FIXUP_ASUS_MODE1),
SND_PCI_QUIRK(0x1043, 0x19b3, "ASUS F7Z", ALC662_FIXUP_ASUS_MODE1),
SND_PCI_QUIRK(0x1043, 0x19c3, "ASUS F5Z/F6x", ALC662_FIXUP_ASUS_MODE2),
SND_PCI_QUIRK(0x1043, 0x19e3, "ASUS NB", ALC662_FIXUP_ASUS_MODE1),
SND_PCI_QUIRK(0x1043, 0x19f3, "ASUS NB", ALC662_FIXUP_ASUS_MODE4),
#endif
{}
};
static const struct alc_model_fixup alc662_fixup_models[] = {
{.id = ALC272_FIXUP_MARIO, .name = "mario"},
{.id = ALC662_FIXUP_ASUS_MODE1, .name = "asus-mode1"},
{.id = ALC662_FIXUP_ASUS_MODE2, .name = "asus-mode2"},
{.id = ALC662_FIXUP_ASUS_MODE3, .name = "asus-mode3"},
{.id = ALC662_FIXUP_ASUS_MODE4, .name = "asus-mode4"},
{.id = ALC662_FIXUP_ASUS_MODE5, .name = "asus-mode5"},
{.id = ALC662_FIXUP_ASUS_MODE6, .name = "asus-mode6"},
{.id = ALC662_FIXUP_ASUS_MODE7, .name = "asus-mode7"},
{.id = ALC662_FIXUP_ASUS_MODE8, .name = "asus-mode8"},
{}
};
/*
*/
static int patch_alc662(struct hda_codec *codec)
{
struct alc_spec *spec;
int err = 0;
spec = kzalloc(sizeof(*spec), GFP_KERNEL);
if (!spec)
return -ENOMEM;
codec->spec = spec;
spec->mixer_nid = 0x0b;
/* handle multiple HPs as is */
spec->parse_flags = HDA_PINCFG_NO_HP_FIXUP;
alc_auto_parse_customize_define(codec);
alc_fix_pll_init(codec, 0x20, 0x04, 15);
err = alc_codec_rename_from_preset(codec);
if (err < 0)
goto error;
if ((alc_get_coef0(codec) & (1 << 14)) &&
codec->bus->pci->subsystem_vendor == 0x1025 &&
spec->cdefine.platform_type == 1) {
if (alc_codec_rename(codec, "ALC272X") < 0)
goto error;
}
alc_pick_fixup(codec, alc662_fixup_models,
alc662_fixup_tbl, alc662_fixups);
alc_apply_fixup(codec, ALC_FIXUP_ACT_PRE_PROBE);
/* automatic parse from the BIOS config */
err = alc662_parse_auto_config(codec);
if (err < 0)
goto error;
if (!spec->no_analog && has_cdefine_beep(codec)) {
err = snd_hda_attach_beep_device(codec, 0x1);
if (err < 0)
goto error;
switch (codec->vendor_id) {
case 0x10ec0662:
set_beep_amp(spec, 0x0b, 0x05, HDA_INPUT);
break;
case 0x10ec0272:
case 0x10ec0663:
case 0x10ec0665:
set_beep_amp(spec, 0x0b, 0x04, HDA_INPUT);
break;
case 0x10ec0273:
set_beep_amp(spec, 0x0b, 0x03, HDA_INPUT);
break;
}
}
codec->patch_ops = alc_patch_ops;
spec->shutup = alc_eapd_shutup;
alc_apply_fixup(codec, ALC_FIXUP_ACT_PROBE);
return 0;
error:
alc_free(codec);
return err;
}
/*
* ALC680 support
*/
static int alc680_parse_auto_config(struct hda_codec *codec)
{
return alc_parse_auto_config(codec, NULL, NULL);
}
/*
*/
static int patch_alc680(struct hda_codec *codec)
{
struct alc_spec *spec;
int err;
spec = kzalloc(sizeof(*spec), GFP_KERNEL);
if (spec == NULL)
return -ENOMEM;
codec->spec = spec;
/* ALC680 has no aa-loopback mixer */
/* automatic parse from the BIOS config */
err = alc680_parse_auto_config(codec);
if (err < 0) {
alc_free(codec);
return err;
}
codec->patch_ops = alc_patch_ops;
return 0;
}
/*
* patch entries
*/
static const struct hda_codec_preset snd_hda_preset_realtek[] = {
{ .id = 0x10ec0221, .name = "ALC221", .patch = patch_alc269 },
{ .id = 0x10ec0260, .name = "ALC260", .patch = patch_alc260 },
{ .id = 0x10ec0262, .name = "ALC262", .patch = patch_alc262 },
{ .id = 0x10ec0267, .name = "ALC267", .patch = patch_alc268 },
{ .id = 0x10ec0268, .name = "ALC268", .patch = patch_alc268 },
{ .id = 0x10ec0269, .name = "ALC269", .patch = patch_alc269 },
{ .id = 0x10ec0270, .name = "ALC270", .patch = patch_alc269 },
{ .id = 0x10ec0272, .name = "ALC272", .patch = patch_alc662 },
{ .id = 0x10ec0275, .name = "ALC275", .patch = patch_alc269 },
{ .id = 0x10ec0276, .name = "ALC276", .patch = patch_alc269 },
{ .id = 0x10ec0861, .rev = 0x100340, .name = "ALC660",
.patch = patch_alc861 },
{ .id = 0x10ec0660, .name = "ALC660-VD", .patch = patch_alc861vd },
{ .id = 0x10ec0861, .name = "ALC861", .patch = patch_alc861 },
{ .id = 0x10ec0862, .name = "ALC861-VD", .patch = patch_alc861vd },
{ .id = 0x10ec0662, .rev = 0x100002, .name = "ALC662 rev2",
.patch = patch_alc882 },
{ .id = 0x10ec0662, .rev = 0x100101, .name = "ALC662 rev1",
.patch = patch_alc662 },
{ .id = 0x10ec0662, .rev = 0x100300, .name = "ALC662 rev3",
.patch = patch_alc662 },
{ .id = 0x10ec0663, .name = "ALC663", .patch = patch_alc662 },
{ .id = 0x10ec0665, .name = "ALC665", .patch = patch_alc662 },
{ .id = 0x10ec0670, .name = "ALC670", .patch = patch_alc662 },
{ .id = 0x10ec0680, .name = "ALC680", .patch = patch_alc680 },
{ .id = 0x10ec0880, .name = "ALC880", .patch = patch_alc880 },
{ .id = 0x10ec0882, .name = "ALC882", .patch = patch_alc882 },
{ .id = 0x10ec0883, .name = "ALC883", .patch = patch_alc882 },
{ .id = 0x10ec0885, .rev = 0x100101, .name = "ALC889A",
.patch = patch_alc882 },
{ .id = 0x10ec0885, .rev = 0x100103, .name = "ALC889A",
.patch = patch_alc882 },
{ .id = 0x10ec0885, .name = "ALC885", .patch = patch_alc882 },
{ .id = 0x10ec0887, .name = "ALC887", .patch = patch_alc882 },
{ .id = 0x10ec0888, .rev = 0x100101, .name = "ALC1200",
.patch = patch_alc882 },
{ .id = 0x10ec0888, .name = "ALC888", .patch = patch_alc882 },
{ .id = 0x10ec0889, .name = "ALC889", .patch = patch_alc882 },
{ .id = 0x10ec0892, .name = "ALC892", .patch = patch_alc662 },
{ .id = 0x10ec0899, .name = "ALC898", .patch = patch_alc882 },
{} /* terminator */
};
MODULE_ALIAS("snd-hda-codec-id:10ec*");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Realtek HD-audio codec");
static struct hda_codec_preset_list realtek_list = {
.preset = snd_hda_preset_realtek,
.owner = THIS_MODULE,
};
static int __init patch_realtek_init(void)
{
return snd_hda_add_codec_preset(&realtek_list);
}
static void __exit patch_realtek_exit(void)
{
snd_hda_delete_codec_preset(&realtek_list);
}
module_init(patch_realtek_init)
module_exit(patch_realtek_exit)