blob: 90c34f3d1243aa5ec18970ec7aac095d8f657d32 [file] [log] [blame]
/*
* Copyright 2013 Red Hat Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Authors: Jérôme Glisse <jglisse@redhat.com>
*/
/*
* Refer to include/linux/hmm.h for information about heterogeneous memory
* management or HMM for short.
*/
#include <linux/mm.h>
#include <linux/hmm.h>
#include <linux/init.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/mmzone.h>
#include <linux/pagemap.h>
#include <linux/swapops.h>
#include <linux/hugetlb.h>
#include <linux/memremap.h>
#include <linux/jump_label.h>
#include <linux/mmu_notifier.h>
#include <linux/memory_hotplug.h>
#define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
#if IS_ENABLED(CONFIG_HMM_MIRROR)
static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
/*
* struct hmm - HMM per mm struct
*
* @mm: mm struct this HMM struct is bound to
* @lock: lock protecting ranges list
* @ranges: list of range being snapshotted
* @mirrors: list of mirrors for this mm
* @mmu_notifier: mmu notifier to track updates to CPU page table
* @mirrors_sem: read/write semaphore protecting the mirrors list
*/
struct hmm {
struct mm_struct *mm;
spinlock_t lock;
struct list_head ranges;
struct list_head mirrors;
struct mmu_notifier mmu_notifier;
struct rw_semaphore mirrors_sem;
};
/*
* hmm_register - register HMM against an mm (HMM internal)
*
* @mm: mm struct to attach to
*
* This is not intended to be used directly by device drivers. It allocates an
* HMM struct if mm does not have one, and initializes it.
*/
static struct hmm *hmm_register(struct mm_struct *mm)
{
struct hmm *hmm = READ_ONCE(mm->hmm);
bool cleanup = false;
/*
* The hmm struct can only be freed once the mm_struct goes away,
* hence we should always have pre-allocated an new hmm struct
* above.
*/
if (hmm)
return hmm;
hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
if (!hmm)
return NULL;
INIT_LIST_HEAD(&hmm->mirrors);
init_rwsem(&hmm->mirrors_sem);
hmm->mmu_notifier.ops = NULL;
INIT_LIST_HEAD(&hmm->ranges);
spin_lock_init(&hmm->lock);
hmm->mm = mm;
spin_lock(&mm->page_table_lock);
if (!mm->hmm)
mm->hmm = hmm;
else
cleanup = true;
spin_unlock(&mm->page_table_lock);
if (cleanup)
goto error;
/*
* We should only get here if hold the mmap_sem in write mode ie on
* registration of first mirror through hmm_mirror_register()
*/
hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
if (__mmu_notifier_register(&hmm->mmu_notifier, mm))
goto error_mm;
return mm->hmm;
error_mm:
spin_lock(&mm->page_table_lock);
if (mm->hmm == hmm)
mm->hmm = NULL;
spin_unlock(&mm->page_table_lock);
error:
kfree(hmm);
return NULL;
}
void hmm_mm_destroy(struct mm_struct *mm)
{
kfree(mm->hmm);
}
static int hmm_invalidate_range(struct hmm *hmm, bool device,
const struct hmm_update *update)
{
struct hmm_mirror *mirror;
struct hmm_range *range;
spin_lock(&hmm->lock);
list_for_each_entry(range, &hmm->ranges, list) {
unsigned long addr, idx, npages;
if (update->end < range->start || update->start >= range->end)
continue;
range->valid = false;
addr = max(update->start, range->start);
idx = (addr - range->start) >> PAGE_SHIFT;
npages = (min(range->end, update->end) - addr) >> PAGE_SHIFT;
memset(&range->pfns[idx], 0, sizeof(*range->pfns) * npages);
}
spin_unlock(&hmm->lock);
if (!device)
return 0;
down_read(&hmm->mirrors_sem);
list_for_each_entry(mirror, &hmm->mirrors, list) {
int ret;
ret = mirror->ops->sync_cpu_device_pagetables(mirror, update);
if (!update->blockable && ret == -EAGAIN) {
up_read(&hmm->mirrors_sem);
return -EAGAIN;
}
}
up_read(&hmm->mirrors_sem);
return 0;
}
static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
{
struct hmm_mirror *mirror;
struct hmm *hmm = mm->hmm;
down_write(&hmm->mirrors_sem);
mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
list);
while (mirror) {
list_del_init(&mirror->list);
if (mirror->ops->release) {
/*
* Drop mirrors_sem so callback can wait on any pending
* work that might itself trigger mmu_notifier callback
* and thus would deadlock with us.
*/
up_write(&hmm->mirrors_sem);
mirror->ops->release(mirror);
down_write(&hmm->mirrors_sem);
}
mirror = list_first_entry_or_null(&hmm->mirrors,
struct hmm_mirror, list);
}
up_write(&hmm->mirrors_sem);
}
static int hmm_invalidate_range_start(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long start,
unsigned long end,
bool blockable)
{
struct hmm_update update;
struct hmm *hmm = mm->hmm;
VM_BUG_ON(!hmm);
update.start = start;
update.end = end;
update.event = HMM_UPDATE_INVALIDATE;
update.blockable = blockable;
return hmm_invalidate_range(hmm, true, &update);
}
static void hmm_invalidate_range_end(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long start,
unsigned long end)
{
struct hmm_update update;
struct hmm *hmm = mm->hmm;
VM_BUG_ON(!hmm);
update.start = start;
update.end = end;
update.event = HMM_UPDATE_INVALIDATE;
update.blockable = true;
hmm_invalidate_range(hmm, false, &update);
}
static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
.release = hmm_release,
.invalidate_range_start = hmm_invalidate_range_start,
.invalidate_range_end = hmm_invalidate_range_end,
};
/*
* hmm_mirror_register() - register a mirror against an mm
*
* @mirror: new mirror struct to register
* @mm: mm to register against
*
* To start mirroring a process address space, the device driver must register
* an HMM mirror struct.
*
* THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
*/
int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
{
/* Sanity check */
if (!mm || !mirror || !mirror->ops)
return -EINVAL;
again:
mirror->hmm = hmm_register(mm);
if (!mirror->hmm)
return -ENOMEM;
down_write(&mirror->hmm->mirrors_sem);
if (mirror->hmm->mm == NULL) {
/*
* A racing hmm_mirror_unregister() is about to destroy the hmm
* struct. Try again to allocate a new one.
*/
up_write(&mirror->hmm->mirrors_sem);
mirror->hmm = NULL;
goto again;
} else {
list_add(&mirror->list, &mirror->hmm->mirrors);
up_write(&mirror->hmm->mirrors_sem);
}
return 0;
}
EXPORT_SYMBOL(hmm_mirror_register);
/*
* hmm_mirror_unregister() - unregister a mirror
*
* @mirror: new mirror struct to register
*
* Stop mirroring a process address space, and cleanup.
*/
void hmm_mirror_unregister(struct hmm_mirror *mirror)
{
bool should_unregister = false;
struct mm_struct *mm;
struct hmm *hmm;
if (mirror->hmm == NULL)
return;
hmm = mirror->hmm;
down_write(&hmm->mirrors_sem);
list_del_init(&mirror->list);
should_unregister = list_empty(&hmm->mirrors);
mirror->hmm = NULL;
mm = hmm->mm;
hmm->mm = NULL;
up_write(&hmm->mirrors_sem);
if (!should_unregister || mm == NULL)
return;
mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm);
spin_lock(&mm->page_table_lock);
if (mm->hmm == hmm)
mm->hmm = NULL;
spin_unlock(&mm->page_table_lock);
kfree(hmm);
}
EXPORT_SYMBOL(hmm_mirror_unregister);
struct hmm_vma_walk {
struct hmm_range *range;
unsigned long last;
bool fault;
bool block;
};
static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
bool write_fault, uint64_t *pfn)
{
unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
struct hmm_vma_walk *hmm_vma_walk = walk->private;
struct hmm_range *range = hmm_vma_walk->range;
struct vm_area_struct *vma = walk->vma;
vm_fault_t ret;
flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
flags |= write_fault ? FAULT_FLAG_WRITE : 0;
ret = handle_mm_fault(vma, addr, flags);
if (ret & VM_FAULT_RETRY)
return -EBUSY;
if (ret & VM_FAULT_ERROR) {
*pfn = range->values[HMM_PFN_ERROR];
return -EFAULT;
}
return -EAGAIN;
}
static int hmm_pfns_bad(unsigned long addr,
unsigned long end,
struct mm_walk *walk)
{
struct hmm_vma_walk *hmm_vma_walk = walk->private;
struct hmm_range *range = hmm_vma_walk->range;
uint64_t *pfns = range->pfns;
unsigned long i;
i = (addr - range->start) >> PAGE_SHIFT;
for (; addr < end; addr += PAGE_SIZE, i++)
pfns[i] = range->values[HMM_PFN_ERROR];
return 0;
}
/*
* hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
* @start: range virtual start address (inclusive)
* @end: range virtual end address (exclusive)
* @fault: should we fault or not ?
* @write_fault: write fault ?
* @walk: mm_walk structure
* Returns: 0 on success, -EAGAIN after page fault, or page fault error
*
* This function will be called whenever pmd_none() or pte_none() returns true,
* or whenever there is no page directory covering the virtual address range.
*/
static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
bool fault, bool write_fault,
struct mm_walk *walk)
{
struct hmm_vma_walk *hmm_vma_walk = walk->private;
struct hmm_range *range = hmm_vma_walk->range;
uint64_t *pfns = range->pfns;
unsigned long i;
hmm_vma_walk->last = addr;
i = (addr - range->start) >> PAGE_SHIFT;
for (; addr < end; addr += PAGE_SIZE, i++) {
pfns[i] = range->values[HMM_PFN_NONE];
if (fault || write_fault) {
int ret;
ret = hmm_vma_do_fault(walk, addr, write_fault,
&pfns[i]);
if (ret != -EAGAIN)
return ret;
}
}
return (fault || write_fault) ? -EAGAIN : 0;
}
static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
uint64_t pfns, uint64_t cpu_flags,
bool *fault, bool *write_fault)
{
struct hmm_range *range = hmm_vma_walk->range;
*fault = *write_fault = false;
if (!hmm_vma_walk->fault)
return;
/* We aren't ask to do anything ... */
if (!(pfns & range->flags[HMM_PFN_VALID]))
return;
/* If this is device memory than only fault if explicitly requested */
if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
/* Do we fault on device memory ? */
if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
*write_fault = pfns & range->flags[HMM_PFN_WRITE];
*fault = true;
}
return;
}
/* If CPU page table is not valid then we need to fault */
*fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
/* Need to write fault ? */
if ((pfns & range->flags[HMM_PFN_WRITE]) &&
!(cpu_flags & range->flags[HMM_PFN_WRITE])) {
*write_fault = true;
*fault = true;
}
}
static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
const uint64_t *pfns, unsigned long npages,
uint64_t cpu_flags, bool *fault,
bool *write_fault)
{
unsigned long i;
if (!hmm_vma_walk->fault) {
*fault = *write_fault = false;
return;
}
for (i = 0; i < npages; ++i) {
hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
fault, write_fault);
if ((*fault) || (*write_fault))
return;
}
}
static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
struct hmm_vma_walk *hmm_vma_walk = walk->private;
struct hmm_range *range = hmm_vma_walk->range;
bool fault, write_fault;
unsigned long i, npages;
uint64_t *pfns;
i = (addr - range->start) >> PAGE_SHIFT;
npages = (end - addr) >> PAGE_SHIFT;
pfns = &range->pfns[i];
hmm_range_need_fault(hmm_vma_walk, pfns, npages,
0, &fault, &write_fault);
return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
}
static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
{
if (pmd_protnone(pmd))
return 0;
return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
range->flags[HMM_PFN_WRITE] :
range->flags[HMM_PFN_VALID];
}
static int hmm_vma_handle_pmd(struct mm_walk *walk,
unsigned long addr,
unsigned long end,
uint64_t *pfns,
pmd_t pmd)
{
struct hmm_vma_walk *hmm_vma_walk = walk->private;
struct hmm_range *range = hmm_vma_walk->range;
unsigned long pfn, npages, i;
bool fault, write_fault;
uint64_t cpu_flags;
npages = (end - addr) >> PAGE_SHIFT;
cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
&fault, &write_fault);
if (pmd_protnone(pmd) || fault || write_fault)
return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
pfn = pmd_pfn(pmd) + pte_index(addr);
for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
pfns[i] = hmm_pfn_from_pfn(range, pfn) | cpu_flags;
hmm_vma_walk->last = end;
return 0;
}
static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
{
if (pte_none(pte) || !pte_present(pte))
return 0;
return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
range->flags[HMM_PFN_WRITE] :
range->flags[HMM_PFN_VALID];
}
static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
unsigned long end, pmd_t *pmdp, pte_t *ptep,
uint64_t *pfn)
{
struct hmm_vma_walk *hmm_vma_walk = walk->private;
struct hmm_range *range = hmm_vma_walk->range;
struct vm_area_struct *vma = walk->vma;
bool fault, write_fault;
uint64_t cpu_flags;
pte_t pte = *ptep;
uint64_t orig_pfn = *pfn;
*pfn = range->values[HMM_PFN_NONE];
cpu_flags = pte_to_hmm_pfn_flags(range, pte);
hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
&fault, &write_fault);
if (pte_none(pte)) {
if (fault || write_fault)
goto fault;
return 0;
}
if (!pte_present(pte)) {
swp_entry_t entry = pte_to_swp_entry(pte);
if (!non_swap_entry(entry)) {
if (fault || write_fault)
goto fault;
return 0;
}
/*
* This is a special swap entry, ignore migration, use
* device and report anything else as error.
*/
if (is_device_private_entry(entry)) {
cpu_flags = range->flags[HMM_PFN_VALID] |
range->flags[HMM_PFN_DEVICE_PRIVATE];
cpu_flags |= is_write_device_private_entry(entry) ?
range->flags[HMM_PFN_WRITE] : 0;
hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
&fault, &write_fault);
if (fault || write_fault)
goto fault;
*pfn = hmm_pfn_from_pfn(range, swp_offset(entry));
*pfn |= cpu_flags;
return 0;
}
if (is_migration_entry(entry)) {
if (fault || write_fault) {
pte_unmap(ptep);
hmm_vma_walk->last = addr;
migration_entry_wait(vma->vm_mm,
pmdp, addr);
return -EAGAIN;
}
return 0;
}
/* Report error for everything else */
*pfn = range->values[HMM_PFN_ERROR];
return -EFAULT;
}
if (fault || write_fault)
goto fault;
*pfn = hmm_pfn_from_pfn(range, pte_pfn(pte)) | cpu_flags;
return 0;
fault:
pte_unmap(ptep);
/* Fault any virtual address we were asked to fault */
return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
}
static int hmm_vma_walk_pmd(pmd_t *pmdp,
unsigned long start,
unsigned long end,
struct mm_walk *walk)
{
struct hmm_vma_walk *hmm_vma_walk = walk->private;
struct hmm_range *range = hmm_vma_walk->range;
struct vm_area_struct *vma = walk->vma;
uint64_t *pfns = range->pfns;
unsigned long addr = start, i;
pte_t *ptep;
pmd_t pmd;
again:
pmd = READ_ONCE(*pmdp);
if (pmd_none(pmd))
return hmm_vma_walk_hole(start, end, walk);
if (pmd_huge(pmd) && (range->vma->vm_flags & VM_HUGETLB))
return hmm_pfns_bad(start, end, walk);
if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
bool fault, write_fault;
unsigned long npages;
uint64_t *pfns;
i = (addr - range->start) >> PAGE_SHIFT;
npages = (end - addr) >> PAGE_SHIFT;
pfns = &range->pfns[i];
hmm_range_need_fault(hmm_vma_walk, pfns, npages,
0, &fault, &write_fault);
if (fault || write_fault) {
hmm_vma_walk->last = addr;
pmd_migration_entry_wait(vma->vm_mm, pmdp);
return -EAGAIN;
}
return 0;
} else if (!pmd_present(pmd))
return hmm_pfns_bad(start, end, walk);
if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
/*
* No need to take pmd_lock here, even if some other threads
* is splitting the huge pmd we will get that event through
* mmu_notifier callback.
*
* So just read pmd value and check again its a transparent
* huge or device mapping one and compute corresponding pfn
* values.
*/
pmd = pmd_read_atomic(pmdp);
barrier();
if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
goto again;
i = (addr - range->start) >> PAGE_SHIFT;
return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
}
/*
* We have handled all the valid case above ie either none, migration,
* huge or transparent huge. At this point either it is a valid pmd
* entry pointing to pte directory or it is a bad pmd that will not
* recover.
*/
if (pmd_bad(pmd))
return hmm_pfns_bad(start, end, walk);
ptep = pte_offset_map(pmdp, addr);
i = (addr - range->start) >> PAGE_SHIFT;
for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
int r;
r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
if (r) {
/* hmm_vma_handle_pte() did unmap pte directory */
hmm_vma_walk->last = addr;
return r;
}
}
pte_unmap(ptep - 1);
hmm_vma_walk->last = addr;
return 0;
}
static void hmm_pfns_clear(struct hmm_range *range,
uint64_t *pfns,
unsigned long addr,
unsigned long end)
{
for (; addr < end; addr += PAGE_SIZE, pfns++)
*pfns = range->values[HMM_PFN_NONE];
}
static void hmm_pfns_special(struct hmm_range *range)
{
unsigned long addr = range->start, i = 0;
for (; addr < range->end; addr += PAGE_SIZE, i++)
range->pfns[i] = range->values[HMM_PFN_SPECIAL];
}
/*
* hmm_vma_get_pfns() - snapshot CPU page table for a range of virtual addresses
* @range: range being snapshotted
* Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
* vma permission, 0 success
*
* This snapshots the CPU page table for a range of virtual addresses. Snapshot
* validity is tracked by range struct. See hmm_vma_range_done() for further
* information.
*
* The range struct is initialized here. It tracks the CPU page table, but only
* if the function returns success (0), in which case the caller must then call
* hmm_vma_range_done() to stop CPU page table update tracking on this range.
*
* NOT CALLING hmm_vma_range_done() IF FUNCTION RETURNS 0 WILL LEAD TO SERIOUS
* MEMORY CORRUPTION ! YOU HAVE BEEN WARNED !
*/
int hmm_vma_get_pfns(struct hmm_range *range)
{
struct vm_area_struct *vma = range->vma;
struct hmm_vma_walk hmm_vma_walk;
struct mm_walk mm_walk;
struct hmm *hmm;
/* Sanity check, this really should not happen ! */
if (range->start < vma->vm_start || range->start >= vma->vm_end)
return -EINVAL;
if (range->end < vma->vm_start || range->end > vma->vm_end)
return -EINVAL;
hmm = hmm_register(vma->vm_mm);
if (!hmm)
return -ENOMEM;
/* Caller must have registered a mirror, via hmm_mirror_register() ! */
if (!hmm->mmu_notifier.ops)
return -EINVAL;
/* FIXME support hugetlb fs */
if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
vma_is_dax(vma)) {
hmm_pfns_special(range);
return -EINVAL;
}
if (!(vma->vm_flags & VM_READ)) {
/*
* If vma do not allow read access, then assume that it does
* not allow write access, either. Architecture that allow
* write without read access are not supported by HMM, because
* operations such has atomic access would not work.
*/
hmm_pfns_clear(range, range->pfns, range->start, range->end);
return -EPERM;
}
/* Initialize range to track CPU page table update */
spin_lock(&hmm->lock);
range->valid = true;
list_add_rcu(&range->list, &hmm->ranges);
spin_unlock(&hmm->lock);
hmm_vma_walk.fault = false;
hmm_vma_walk.range = range;
mm_walk.private = &hmm_vma_walk;
mm_walk.vma = vma;
mm_walk.mm = vma->vm_mm;
mm_walk.pte_entry = NULL;
mm_walk.test_walk = NULL;
mm_walk.hugetlb_entry = NULL;
mm_walk.pmd_entry = hmm_vma_walk_pmd;
mm_walk.pte_hole = hmm_vma_walk_hole;
walk_page_range(range->start, range->end, &mm_walk);
return 0;
}
EXPORT_SYMBOL(hmm_vma_get_pfns);
/*
* hmm_vma_range_done() - stop tracking change to CPU page table over a range
* @range: range being tracked
* Returns: false if range data has been invalidated, true otherwise
*
* Range struct is used to track updates to the CPU page table after a call to
* either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done
* using the data, or wants to lock updates to the data it got from those
* functions, it must call the hmm_vma_range_done() function, which will then
* stop tracking CPU page table updates.
*
* Note that device driver must still implement general CPU page table update
* tracking either by using hmm_mirror (see hmm_mirror_register()) or by using
* the mmu_notifier API directly.
*
* CPU page table update tracking done through hmm_range is only temporary and
* to be used while trying to duplicate CPU page table contents for a range of
* virtual addresses.
*
* There are two ways to use this :
* again:
* hmm_vma_get_pfns(range); or hmm_vma_fault(...);
* trans = device_build_page_table_update_transaction(pfns);
* device_page_table_lock();
* if (!hmm_vma_range_done(range)) {
* device_page_table_unlock();
* goto again;
* }
* device_commit_transaction(trans);
* device_page_table_unlock();
*
* Or:
* hmm_vma_get_pfns(range); or hmm_vma_fault(...);
* device_page_table_lock();
* hmm_vma_range_done(range);
* device_update_page_table(range->pfns);
* device_page_table_unlock();
*/
bool hmm_vma_range_done(struct hmm_range *range)
{
unsigned long npages = (range->end - range->start) >> PAGE_SHIFT;
struct hmm *hmm;
if (range->end <= range->start) {
BUG();
return false;
}
hmm = hmm_register(range->vma->vm_mm);
if (!hmm) {
memset(range->pfns, 0, sizeof(*range->pfns) * npages);
return false;
}
spin_lock(&hmm->lock);
list_del_rcu(&range->list);
spin_unlock(&hmm->lock);
return range->valid;
}
EXPORT_SYMBOL(hmm_vma_range_done);
/*
* hmm_vma_fault() - try to fault some address in a virtual address range
* @range: range being faulted
* @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
* Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop)
*
* This is similar to a regular CPU page fault except that it will not trigger
* any memory migration if the memory being faulted is not accessible by CPUs.
*
* On error, for one virtual address in the range, the function will mark the
* corresponding HMM pfn entry with an error flag.
*
* Expected use pattern:
* retry:
* down_read(&mm->mmap_sem);
* // Find vma and address device wants to fault, initialize hmm_pfn_t
* // array accordingly
* ret = hmm_vma_fault(range, write, block);
* switch (ret) {
* case -EAGAIN:
* hmm_vma_range_done(range);
* // You might want to rate limit or yield to play nicely, you may
* // also commit any valid pfn in the array assuming that you are
* // getting true from hmm_vma_range_monitor_end()
* goto retry;
* case 0:
* break;
* case -ENOMEM:
* case -EINVAL:
* case -EPERM:
* default:
* // Handle error !
* up_read(&mm->mmap_sem)
* return;
* }
* // Take device driver lock that serialize device page table update
* driver_lock_device_page_table_update();
* hmm_vma_range_done(range);
* // Commit pfns we got from hmm_vma_fault()
* driver_unlock_device_page_table_update();
* up_read(&mm->mmap_sem)
*
* YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0)
* BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION !
*
* YOU HAVE BEEN WARNED !
*/
int hmm_vma_fault(struct hmm_range *range, bool block)
{
struct vm_area_struct *vma = range->vma;
unsigned long start = range->start;
struct hmm_vma_walk hmm_vma_walk;
struct mm_walk mm_walk;
struct hmm *hmm;
int ret;
/* Sanity check, this really should not happen ! */
if (range->start < vma->vm_start || range->start >= vma->vm_end)
return -EINVAL;
if (range->end < vma->vm_start || range->end > vma->vm_end)
return -EINVAL;
hmm = hmm_register(vma->vm_mm);
if (!hmm) {
hmm_pfns_clear(range, range->pfns, range->start, range->end);
return -ENOMEM;
}
/* Caller must have registered a mirror using hmm_mirror_register() */
if (!hmm->mmu_notifier.ops)
return -EINVAL;
/* FIXME support hugetlb fs */
if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
vma_is_dax(vma)) {
hmm_pfns_special(range);
return -EINVAL;
}
if (!(vma->vm_flags & VM_READ)) {
/*
* If vma do not allow read access, then assume that it does
* not allow write access, either. Architecture that allow
* write without read access are not supported by HMM, because
* operations such has atomic access would not work.
*/
hmm_pfns_clear(range, range->pfns, range->start, range->end);
return -EPERM;
}
/* Initialize range to track CPU page table update */
spin_lock(&hmm->lock);
range->valid = true;
list_add_rcu(&range->list, &hmm->ranges);
spin_unlock(&hmm->lock);
hmm_vma_walk.fault = true;
hmm_vma_walk.block = block;
hmm_vma_walk.range = range;
mm_walk.private = &hmm_vma_walk;
hmm_vma_walk.last = range->start;
mm_walk.vma = vma;
mm_walk.mm = vma->vm_mm;
mm_walk.pte_entry = NULL;
mm_walk.test_walk = NULL;
mm_walk.hugetlb_entry = NULL;
mm_walk.pmd_entry = hmm_vma_walk_pmd;
mm_walk.pte_hole = hmm_vma_walk_hole;
do {
ret = walk_page_range(start, range->end, &mm_walk);
start = hmm_vma_walk.last;
} while (ret == -EAGAIN);
if (ret) {
unsigned long i;
i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
hmm_pfns_clear(range, &range->pfns[i], hmm_vma_walk.last,
range->end);
hmm_vma_range_done(range);
}
return ret;
}
EXPORT_SYMBOL(hmm_vma_fault);
#endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
#if IS_ENABLED(CONFIG_DEVICE_PRIVATE) || IS_ENABLED(CONFIG_DEVICE_PUBLIC)
struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
unsigned long addr)
{
struct page *page;
page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
if (!page)
return NULL;
lock_page(page);
return page;
}
EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
static void hmm_devmem_ref_release(struct percpu_ref *ref)
{
struct hmm_devmem *devmem;
devmem = container_of(ref, struct hmm_devmem, ref);
complete(&devmem->completion);
}
static void hmm_devmem_ref_exit(void *data)
{
struct percpu_ref *ref = data;
struct hmm_devmem *devmem;
devmem = container_of(ref, struct hmm_devmem, ref);
percpu_ref_exit(ref);
devm_remove_action(devmem->device, &hmm_devmem_ref_exit, data);
}
static void hmm_devmem_ref_kill(void *data)
{
struct percpu_ref *ref = data;
struct hmm_devmem *devmem;
devmem = container_of(ref, struct hmm_devmem, ref);
percpu_ref_kill(ref);
wait_for_completion(&devmem->completion);
devm_remove_action(devmem->device, &hmm_devmem_ref_kill, data);
}
static int hmm_devmem_fault(struct vm_area_struct *vma,
unsigned long addr,
const struct page *page,
unsigned int flags,
pmd_t *pmdp)
{
struct hmm_devmem *devmem = page->pgmap->data;
return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
}
static void hmm_devmem_free(struct page *page, void *data)
{
struct hmm_devmem *devmem = data;
page->mapping = NULL;
devmem->ops->free(devmem, page);
}
static DEFINE_MUTEX(hmm_devmem_lock);
static RADIX_TREE(hmm_devmem_radix, GFP_KERNEL);
static void hmm_devmem_radix_release(struct resource *resource)
{
resource_size_t key;
mutex_lock(&hmm_devmem_lock);
for (key = resource->start;
key <= resource->end;
key += PA_SECTION_SIZE)
radix_tree_delete(&hmm_devmem_radix, key >> PA_SECTION_SHIFT);
mutex_unlock(&hmm_devmem_lock);
}
static void hmm_devmem_release(struct device *dev, void *data)
{
struct hmm_devmem *devmem = data;
struct resource *resource = devmem->resource;
unsigned long start_pfn, npages;
struct zone *zone;
struct page *page;
if (percpu_ref_tryget_live(&devmem->ref)) {
dev_WARN(dev, "%s: page mapping is still live!\n", __func__);
percpu_ref_put(&devmem->ref);
}
/* pages are dead and unused, undo the arch mapping */
start_pfn = (resource->start & ~(PA_SECTION_SIZE - 1)) >> PAGE_SHIFT;
npages = ALIGN(resource_size(resource), PA_SECTION_SIZE) >> PAGE_SHIFT;
page = pfn_to_page(start_pfn);
zone = page_zone(page);
mem_hotplug_begin();
if (resource->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY)
__remove_pages(zone, start_pfn, npages, NULL);
else
arch_remove_memory(start_pfn << PAGE_SHIFT,
npages << PAGE_SHIFT, NULL);
mem_hotplug_done();
hmm_devmem_radix_release(resource);
}
static int hmm_devmem_pages_create(struct hmm_devmem *devmem)
{
resource_size_t key, align_start, align_size, align_end;
struct device *device = devmem->device;
int ret, nid, is_ram;
align_start = devmem->resource->start & ~(PA_SECTION_SIZE - 1);
align_size = ALIGN(devmem->resource->start +
resource_size(devmem->resource),
PA_SECTION_SIZE) - align_start;
is_ram = region_intersects(align_start, align_size,
IORESOURCE_SYSTEM_RAM,
IORES_DESC_NONE);
if (is_ram == REGION_MIXED) {
WARN_ONCE(1, "%s attempted on mixed region %pr\n",
__func__, devmem->resource);
return -ENXIO;
}
if (is_ram == REGION_INTERSECTS)
return -ENXIO;
if (devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY)
devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
else
devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
devmem->pagemap.res = *devmem->resource;
devmem->pagemap.page_fault = hmm_devmem_fault;
devmem->pagemap.page_free = hmm_devmem_free;
devmem->pagemap.dev = devmem->device;
devmem->pagemap.ref = &devmem->ref;
devmem->pagemap.data = devmem;
mutex_lock(&hmm_devmem_lock);
align_end = align_start + align_size - 1;
for (key = align_start; key <= align_end; key += PA_SECTION_SIZE) {
struct hmm_devmem *dup;
dup = radix_tree_lookup(&hmm_devmem_radix,
key >> PA_SECTION_SHIFT);
if (dup) {
dev_err(device, "%s: collides with mapping for %s\n",
__func__, dev_name(dup->device));
mutex_unlock(&hmm_devmem_lock);
ret = -EBUSY;
goto error;
}
ret = radix_tree_insert(&hmm_devmem_radix,
key >> PA_SECTION_SHIFT,
devmem);
if (ret) {
dev_err(device, "%s: failed: %d\n", __func__, ret);
mutex_unlock(&hmm_devmem_lock);
goto error_radix;
}
}
mutex_unlock(&hmm_devmem_lock);
nid = dev_to_node(device);
if (nid < 0)
nid = numa_mem_id();
mem_hotplug_begin();
/*
* For device private memory we call add_pages() as we only need to
* allocate and initialize struct page for the device memory. More-
* over the device memory is un-accessible thus we do not want to
* create a linear mapping for the memory like arch_add_memory()
* would do.
*
* For device public memory, which is accesible by the CPU, we do
* want the linear mapping and thus use arch_add_memory().
*/
if (devmem->pagemap.type == MEMORY_DEVICE_PUBLIC)
ret = arch_add_memory(nid, align_start, align_size, NULL,
false);
else
ret = add_pages(nid, align_start >> PAGE_SHIFT,
align_size >> PAGE_SHIFT, NULL, false);
if (ret) {
mem_hotplug_done();
goto error_add_memory;
}
move_pfn_range_to_zone(&NODE_DATA(nid)->node_zones[ZONE_DEVICE],
align_start >> PAGE_SHIFT,
align_size >> PAGE_SHIFT, NULL);
mem_hotplug_done();
/*
* Initialization of the pages has been deferred until now in order
* to allow us to do the work while not holding the hotplug lock.
*/
memmap_init_zone_device(&NODE_DATA(nid)->node_zones[ZONE_DEVICE],
align_start >> PAGE_SHIFT,
align_size >> PAGE_SHIFT, &devmem->pagemap);
return 0;
error_add_memory:
untrack_pfn(NULL, PHYS_PFN(align_start), align_size);
error_radix:
hmm_devmem_radix_release(devmem->resource);
error:
return ret;
}
static int hmm_devmem_match(struct device *dev, void *data, void *match_data)
{
struct hmm_devmem *devmem = data;
return devmem->resource == match_data;
}
static void hmm_devmem_pages_remove(struct hmm_devmem *devmem)
{
devres_release(devmem->device, &hmm_devmem_release,
&hmm_devmem_match, devmem->resource);
}
/*
* hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
*
* @ops: memory event device driver callback (see struct hmm_devmem_ops)
* @device: device struct to bind the resource too
* @size: size in bytes of the device memory to add
* Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
*
* This function first finds an empty range of physical address big enough to
* contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
* in turn allocates struct pages. It does not do anything beyond that; all
* events affecting the memory will go through the various callbacks provided
* by hmm_devmem_ops struct.
*
* Device driver should call this function during device initialization and
* is then responsible of memory management. HMM only provides helpers.
*/
struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
struct device *device,
unsigned long size)
{
struct hmm_devmem *devmem;
resource_size_t addr;
int ret;
dev_pagemap_get_ops();
devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
GFP_KERNEL, dev_to_node(device));
if (!devmem)
return ERR_PTR(-ENOMEM);
init_completion(&devmem->completion);
devmem->pfn_first = -1UL;
devmem->pfn_last = -1UL;
devmem->resource = NULL;
devmem->device = device;
devmem->ops = ops;
ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
0, GFP_KERNEL);
if (ret)
goto error_percpu_ref;
ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
if (ret)
goto error_devm_add_action;
size = ALIGN(size, PA_SECTION_SIZE);
addr = min((unsigned long)iomem_resource.end,
(1UL << MAX_PHYSMEM_BITS) - 1);
addr = addr - size + 1UL;
/*
* FIXME add a new helper to quickly walk resource tree and find free
* range
*
* FIXME what about ioport_resource resource ?
*/
for (; addr > size && addr >= iomem_resource.start; addr -= size) {
ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
if (ret != REGION_DISJOINT)
continue;
devmem->resource = devm_request_mem_region(device, addr, size,
dev_name(device));
if (!devmem->resource) {
ret = -ENOMEM;
goto error_no_resource;
}
break;
}
if (!devmem->resource) {
ret = -ERANGE;
goto error_no_resource;
}
devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
devmem->pfn_last = devmem->pfn_first +
(resource_size(devmem->resource) >> PAGE_SHIFT);
ret = hmm_devmem_pages_create(devmem);
if (ret)
goto error_pages;
devres_add(device, devmem);
ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
if (ret) {
hmm_devmem_remove(devmem);
return ERR_PTR(ret);
}
return devmem;
error_pages:
devm_release_mem_region(device, devmem->resource->start,
resource_size(devmem->resource));
error_no_resource:
error_devm_add_action:
hmm_devmem_ref_kill(&devmem->ref);
hmm_devmem_ref_exit(&devmem->ref);
error_percpu_ref:
devres_free(devmem);
return ERR_PTR(ret);
}
EXPORT_SYMBOL(hmm_devmem_add);
struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
struct device *device,
struct resource *res)
{
struct hmm_devmem *devmem;
int ret;
if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
return ERR_PTR(-EINVAL);
dev_pagemap_get_ops();
devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
GFP_KERNEL, dev_to_node(device));
if (!devmem)
return ERR_PTR(-ENOMEM);
init_completion(&devmem->completion);
devmem->pfn_first = -1UL;
devmem->pfn_last = -1UL;
devmem->resource = res;
devmem->device = device;
devmem->ops = ops;
ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
0, GFP_KERNEL);
if (ret)
goto error_percpu_ref;
ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
if (ret)
goto error_devm_add_action;
devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
devmem->pfn_last = devmem->pfn_first +
(resource_size(devmem->resource) >> PAGE_SHIFT);
ret = hmm_devmem_pages_create(devmem);
if (ret)
goto error_devm_add_action;
devres_add(device, devmem);
ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
if (ret) {
hmm_devmem_remove(devmem);
return ERR_PTR(ret);
}
return devmem;
error_devm_add_action:
hmm_devmem_ref_kill(&devmem->ref);
hmm_devmem_ref_exit(&devmem->ref);
error_percpu_ref:
devres_free(devmem);
return ERR_PTR(ret);
}
EXPORT_SYMBOL(hmm_devmem_add_resource);
/*
* hmm_devmem_remove() - remove device memory (kill and free ZONE_DEVICE)
*
* @devmem: hmm_devmem struct use to track and manage the ZONE_DEVICE memory
*
* This will hot-unplug memory that was hotplugged by hmm_devmem_add on behalf
* of the device driver. It will free struct page and remove the resource that
* reserved the physical address range for this device memory.
*/
void hmm_devmem_remove(struct hmm_devmem *devmem)
{
resource_size_t start, size;
struct device *device;
bool cdm = false;
if (!devmem)
return;
device = devmem->device;
start = devmem->resource->start;
size = resource_size(devmem->resource);
cdm = devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY;
hmm_devmem_ref_kill(&devmem->ref);
hmm_devmem_ref_exit(&devmem->ref);
hmm_devmem_pages_remove(devmem);
if (!cdm)
devm_release_mem_region(device, start, size);
}
EXPORT_SYMBOL(hmm_devmem_remove);
/*
* A device driver that wants to handle multiple devices memory through a
* single fake device can use hmm_device to do so. This is purely a helper
* and it is not needed to make use of any HMM functionality.
*/
#define HMM_DEVICE_MAX 256
static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
static DEFINE_SPINLOCK(hmm_device_lock);
static struct class *hmm_device_class;
static dev_t hmm_device_devt;
static void hmm_device_release(struct device *device)
{
struct hmm_device *hmm_device;
hmm_device = container_of(device, struct hmm_device, device);
spin_lock(&hmm_device_lock);
clear_bit(hmm_device->minor, hmm_device_mask);
spin_unlock(&hmm_device_lock);
kfree(hmm_device);
}
struct hmm_device *hmm_device_new(void *drvdata)
{
struct hmm_device *hmm_device;
hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
if (!hmm_device)
return ERR_PTR(-ENOMEM);
spin_lock(&hmm_device_lock);
hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
if (hmm_device->minor >= HMM_DEVICE_MAX) {
spin_unlock(&hmm_device_lock);
kfree(hmm_device);
return ERR_PTR(-EBUSY);
}
set_bit(hmm_device->minor, hmm_device_mask);
spin_unlock(&hmm_device_lock);
dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
hmm_device->minor);
hmm_device->device.release = hmm_device_release;
dev_set_drvdata(&hmm_device->device, drvdata);
hmm_device->device.class = hmm_device_class;
device_initialize(&hmm_device->device);
return hmm_device;
}
EXPORT_SYMBOL(hmm_device_new);
void hmm_device_put(struct hmm_device *hmm_device)
{
put_device(&hmm_device->device);
}
EXPORT_SYMBOL(hmm_device_put);
static int __init hmm_init(void)
{
int ret;
ret = alloc_chrdev_region(&hmm_device_devt, 0,
HMM_DEVICE_MAX,
"hmm_device");
if (ret)
return ret;
hmm_device_class = class_create(THIS_MODULE, "hmm_device");
if (IS_ERR(hmm_device_class)) {
unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
return PTR_ERR(hmm_device_class);
}
return 0;
}
device_initcall(hmm_init);
#endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */