blob: e1c4492a71052970c76f3592041cb5f37a80fcbe [file] [log] [blame]
/*
* tiomap.c
*
* DSP-BIOS Bridge driver support functions for TI OMAP processors.
*
* Processor Manager Driver for TI OMAP3430 EVM.
*
* Copyright (C) 2005-2006 Texas Instruments, Inc.
*
* This package is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
#include <plat/dsp.h>
#include <linux/types.h>
/* ----------------------------------- Host OS */
#include <dspbridge/host_os.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
/* ----------------------------------- DSP/BIOS Bridge */
#include <dspbridge/dbdefs.h>
/* ----------------------------------- Trace & Debug */
#include <dspbridge/dbc.h>
/* ----------------------------------- OS Adaptation Layer */
#include <dspbridge/drv.h>
#include <dspbridge/sync.h>
/* ------------------------------------ Hardware Abstraction Layer */
#include <hw_defs.h>
#include <hw_mmu.h>
/* ----------------------------------- Link Driver */
#include <dspbridge/dspdefs.h>
#include <dspbridge/dspchnl.h>
#include <dspbridge/dspdeh.h>
#include <dspbridge/dspio.h>
#include <dspbridge/dspmsg.h>
#include <dspbridge/pwr.h>
#include <dspbridge/io_sm.h>
/* ----------------------------------- Platform Manager */
#include <dspbridge/dev.h>
#include <dspbridge/dspapi.h>
#include <dspbridge/dmm.h>
#include <dspbridge/wdt.h>
/* ----------------------------------- Local */
#include "_tiomap.h"
#include "_tiomap_pwr.h"
#include "tiomap_io.h"
/* Offset in shared mem to write to in order to synchronize start with DSP */
#define SHMSYNCOFFSET 4 /* GPP byte offset */
#define BUFFERSIZE 1024
#define TIHELEN_ACKTIMEOUT 10000
#define MMU_SECTION_ADDR_MASK 0xFFF00000
#define MMU_SSECTION_ADDR_MASK 0xFF000000
#define MMU_LARGE_PAGE_MASK 0xFFFF0000
#define MMU_SMALL_PAGE_MASK 0xFFFFF000
#define OMAP3_IVA2_BOOTADDR_MASK 0xFFFFFC00
#define PAGES_II_LVL_TABLE 512
#define PHYS_TO_PAGE(phys) pfn_to_page((phys) >> PAGE_SHIFT)
/*
* This is a totally ugly layer violation, but needed until
* omap_ctrl_set_dsp_boot*() are provided.
*/
#define OMAP3_IVA2_BOOTMOD_IDLE 1
#define OMAP2_CONTROL_GENERAL 0x270
#define OMAP343X_CONTROL_IVA2_BOOTADDR (OMAP2_CONTROL_GENERAL + 0x0190)
#define OMAP343X_CONTROL_IVA2_BOOTMOD (OMAP2_CONTROL_GENERAL + 0x0194)
#define OMAP343X_CTRL_REGADDR(reg) \
OMAP2_L4_IO_ADDRESS(OMAP343X_CTRL_BASE + (reg))
/* Forward Declarations: */
static int bridge_brd_monitor(struct bridge_dev_context *dev_ctxt);
static int bridge_brd_read(struct bridge_dev_context *dev_ctxt,
u8 *host_buff,
u32 dsp_addr, u32 ul_num_bytes,
u32 mem_type);
static int bridge_brd_start(struct bridge_dev_context *dev_ctxt,
u32 dsp_addr);
static int bridge_brd_status(struct bridge_dev_context *dev_ctxt,
int *board_state);
static int bridge_brd_stop(struct bridge_dev_context *dev_ctxt);
static int bridge_brd_write(struct bridge_dev_context *dev_ctxt,
u8 *host_buff,
u32 dsp_addr, u32 ul_num_bytes,
u32 mem_type);
static int bridge_brd_set_state(struct bridge_dev_context *dev_ctxt,
u32 brd_state);
static int bridge_brd_mem_copy(struct bridge_dev_context *dev_ctxt,
u32 dsp_dest_addr, u32 dsp_src_addr,
u32 ul_num_bytes, u32 mem_type);
static int bridge_brd_mem_write(struct bridge_dev_context *dev_ctxt,
u8 *host_buff, u32 dsp_addr,
u32 ul_num_bytes, u32 mem_type);
static int bridge_brd_mem_map(struct bridge_dev_context *dev_ctxt,
u32 ul_mpu_addr, u32 virt_addr,
u32 ul_num_bytes, u32 ul_map_attr,
struct page **mapped_pages);
static int bridge_brd_mem_un_map(struct bridge_dev_context *dev_ctxt,
u32 virt_addr, u32 ul_num_bytes);
static int bridge_dev_create(struct bridge_dev_context
**dev_cntxt,
struct dev_object *hdev_obj,
struct cfg_hostres *config_param);
static int bridge_dev_ctrl(struct bridge_dev_context *dev_context,
u32 dw_cmd, void *pargs);
static int bridge_dev_destroy(struct bridge_dev_context *dev_ctxt);
static u32 user_va2_pa(struct mm_struct *mm, u32 address);
static int pte_update(struct bridge_dev_context *dev_ctxt, u32 pa,
u32 va, u32 size,
struct hw_mmu_map_attrs_t *map_attrs);
static int pte_set(struct pg_table_attrs *pt, u32 pa, u32 va,
u32 size, struct hw_mmu_map_attrs_t *attrs);
static int mem_map_vmalloc(struct bridge_dev_context *dev_context,
u32 ul_mpu_addr, u32 virt_addr,
u32 ul_num_bytes,
struct hw_mmu_map_attrs_t *hw_attrs);
bool wait_for_start(struct bridge_dev_context *dev_context, u32 dw_sync_addr);
/* ----------------------------------- Globals */
/* Attributes of L2 page tables for DSP MMU */
struct page_info {
u32 num_entries; /* Number of valid PTEs in the L2 PT */
};
/* Attributes used to manage the DSP MMU page tables */
struct pg_table_attrs {
spinlock_t pg_lock; /* Critical section object handle */
u32 l1_base_pa; /* Physical address of the L1 PT */
u32 l1_base_va; /* Virtual address of the L1 PT */
u32 l1_size; /* Size of the L1 PT */
u32 l1_tbl_alloc_pa;
/* Physical address of Allocated mem for L1 table. May not be aligned */
u32 l1_tbl_alloc_va;
/* Virtual address of Allocated mem for L1 table. May not be aligned */
u32 l1_tbl_alloc_sz;
/* Size of consistent memory allocated for L1 table.
* May not be aligned */
u32 l2_base_pa; /* Physical address of the L2 PT */
u32 l2_base_va; /* Virtual address of the L2 PT */
u32 l2_size; /* Size of the L2 PT */
u32 l2_tbl_alloc_pa;
/* Physical address of Allocated mem for L2 table. May not be aligned */
u32 l2_tbl_alloc_va;
/* Virtual address of Allocated mem for L2 table. May not be aligned */
u32 l2_tbl_alloc_sz;
/* Size of consistent memory allocated for L2 table.
* May not be aligned */
u32 l2_num_pages; /* Number of allocated L2 PT */
/* Array [l2_num_pages] of L2 PT info structs */
struct page_info *pg_info;
};
/*
* This Bridge driver's function interface table.
*/
static struct bridge_drv_interface drv_interface_fxns = {
/* Bridge API ver. for which this bridge driver is built. */
BRD_API_MAJOR_VERSION,
BRD_API_MINOR_VERSION,
bridge_dev_create,
bridge_dev_destroy,
bridge_dev_ctrl,
bridge_brd_monitor,
bridge_brd_start,
bridge_brd_stop,
bridge_brd_status,
bridge_brd_read,
bridge_brd_write,
bridge_brd_set_state,
bridge_brd_mem_copy,
bridge_brd_mem_write,
bridge_brd_mem_map,
bridge_brd_mem_un_map,
/* The following CHNL functions are provided by chnl_io.lib: */
bridge_chnl_create,
bridge_chnl_destroy,
bridge_chnl_open,
bridge_chnl_close,
bridge_chnl_add_io_req,
bridge_chnl_get_ioc,
bridge_chnl_cancel_io,
bridge_chnl_flush_io,
bridge_chnl_get_info,
bridge_chnl_get_mgr_info,
bridge_chnl_idle,
bridge_chnl_register_notify,
/* The following IO functions are provided by chnl_io.lib: */
bridge_io_create,
bridge_io_destroy,
bridge_io_on_loaded,
bridge_io_get_proc_load,
/* The following msg_ctrl functions are provided by chnl_io.lib: */
bridge_msg_create,
bridge_msg_create_queue,
bridge_msg_delete,
bridge_msg_delete_queue,
bridge_msg_get,
bridge_msg_put,
bridge_msg_register_notify,
bridge_msg_set_queue_id,
};
static struct notifier_block dsp_mbox_notifier = {
.notifier_call = io_mbox_msg,
};
static inline void flush_all(struct bridge_dev_context *dev_context)
{
if (dev_context->brd_state == BRD_DSP_HIBERNATION ||
dev_context->brd_state == BRD_HIBERNATION)
wake_dsp(dev_context, NULL);
hw_mmu_tlb_flush_all(dev_context->dsp_mmu_base);
}
static void bad_page_dump(u32 pa, struct page *pg)
{
pr_emerg("DSPBRIDGE: MAP function: COUNT 0 FOR PA 0x%x\n", pa);
pr_emerg("Bad page state in process '%s'\n"
"page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
"Backtrace:\n",
current->comm, pg, (int)(2 * sizeof(unsigned long)),
(unsigned long)pg->flags, pg->mapping,
page_mapcount(pg), page_count(pg));
dump_stack();
}
/*
* ======== bridge_drv_entry ========
* purpose:
* Bridge Driver entry point.
*/
void bridge_drv_entry(struct bridge_drv_interface **drv_intf,
const char *driver_file_name)
{
DBC_REQUIRE(driver_file_name != NULL);
if (strcmp(driver_file_name, "UMA") == 0)
*drv_intf = &drv_interface_fxns;
else
dev_dbg(bridge, "%s Unknown Bridge file name", __func__);
}
/*
* ======== bridge_brd_monitor ========
* purpose:
* This bridge_brd_monitor puts DSP into a Loadable state.
* i.e Application can load and start the device.
*
* Preconditions:
* Device in 'OFF' state.
*/
static int bridge_brd_monitor(struct bridge_dev_context *dev_ctxt)
{
struct bridge_dev_context *dev_context = dev_ctxt;
u32 temp;
struct omap_dsp_platform_data *pdata =
omap_dspbridge_dev->dev.platform_data;
temp = (*pdata->dsp_prm_read)(OMAP3430_IVA2_MOD, OMAP2_PM_PWSTST) &
OMAP_POWERSTATEST_MASK;
if (!(temp & 0x02)) {
/* IVA2 is not in ON state */
/* Read and set PM_PWSTCTRL_IVA2 to ON */
(*pdata->dsp_prm_rmw_bits)(OMAP_POWERSTATEST_MASK,
PWRDM_POWER_ON, OMAP3430_IVA2_MOD, OMAP2_PM_PWSTCTRL);
/* Set the SW supervised state transition */
(*pdata->dsp_cm_write)(OMAP34XX_CLKSTCTRL_FORCE_WAKEUP,
OMAP3430_IVA2_MOD, OMAP2_CM_CLKSTCTRL);
/* Wait until the state has moved to ON */
while ((*pdata->dsp_prm_read)(OMAP3430_IVA2_MOD, OMAP2_PM_PWSTST) &
OMAP_INTRANSITION_MASK)
;
/* Disable Automatic transition */
(*pdata->dsp_cm_write)(OMAP34XX_CLKSTCTRL_DISABLE_AUTO,
OMAP3430_IVA2_MOD, OMAP2_CM_CLKSTCTRL);
}
(*pdata->dsp_prm_rmw_bits)(OMAP3430_RST2_IVA2_MASK, 0,
OMAP3430_IVA2_MOD, OMAP2_RM_RSTCTRL);
dsp_clk_enable(DSP_CLK_IVA2);
/* set the device state to IDLE */
dev_context->brd_state = BRD_IDLE;
return 0;
}
/*
* ======== bridge_brd_read ========
* purpose:
* Reads buffers for DSP memory.
*/
static int bridge_brd_read(struct bridge_dev_context *dev_ctxt,
u8 *host_buff, u32 dsp_addr,
u32 ul_num_bytes, u32 mem_type)
{
int status = 0;
struct bridge_dev_context *dev_context = dev_ctxt;
u32 offset;
u32 dsp_base_addr = dev_ctxt->dsp_base_addr;
if (dsp_addr < dev_context->dsp_start_add) {
status = -EPERM;
return status;
}
/* change here to account for the 3 bands of the DSP internal memory */
if ((dsp_addr - dev_context->dsp_start_add) <
dev_context->internal_size) {
offset = dsp_addr - dev_context->dsp_start_add;
} else {
status = read_ext_dsp_data(dev_context, host_buff, dsp_addr,
ul_num_bytes, mem_type);
return status;
}
/* copy the data from DSP memory, */
memcpy(host_buff, (void *)(dsp_base_addr + offset), ul_num_bytes);
return status;
}
/*
* ======== bridge_brd_set_state ========
* purpose:
* This routine updates the Board status.
*/
static int bridge_brd_set_state(struct bridge_dev_context *dev_ctxt,
u32 brd_state)
{
int status = 0;
struct bridge_dev_context *dev_context = dev_ctxt;
dev_context->brd_state = brd_state;
return status;
}
/*
* ======== bridge_brd_start ========
* purpose:
* Initializes DSP MMU and Starts DSP.
*
* Preconditions:
* a) DSP domain is 'ACTIVE'.
* b) DSP_RST1 is asserted.
* b) DSP_RST2 is released.
*/
static int bridge_brd_start(struct bridge_dev_context *dev_ctxt,
u32 dsp_addr)
{
int status = 0;
struct bridge_dev_context *dev_context = dev_ctxt;
u32 dw_sync_addr = 0;
u32 ul_shm_base; /* Gpp Phys SM base addr(byte) */
u32 ul_shm_base_virt; /* Dsp Virt SM base addr */
u32 ul_tlb_base_virt; /* Base of MMU TLB entry */
/* Offset of shm_base_virt from tlb_base_virt */
u32 ul_shm_offset_virt;
s32 entry_ndx;
s32 itmp_entry_ndx = 0; /* DSP-MMU TLB entry base address */
struct cfg_hostres *resources = NULL;
u32 temp;
u32 ul_dsp_clk_rate;
u32 ul_dsp_clk_addr;
u32 ul_bios_gp_timer;
u32 clk_cmd;
struct io_mgr *hio_mgr;
u32 ul_load_monitor_timer;
struct omap_dsp_platform_data *pdata =
omap_dspbridge_dev->dev.platform_data;
/* The device context contains all the mmu setup info from when the
* last dsp base image was loaded. The first entry is always
* SHMMEM base. */
/* Get SHM_BEG - convert to byte address */
(void)dev_get_symbol(dev_context->dev_obj, SHMBASENAME,
&ul_shm_base_virt);
ul_shm_base_virt *= DSPWORDSIZE;
DBC_ASSERT(ul_shm_base_virt != 0);
/* DSP Virtual address */
ul_tlb_base_virt = dev_context->atlb_entry[0].dsp_va;
DBC_ASSERT(ul_tlb_base_virt <= ul_shm_base_virt);
ul_shm_offset_virt =
ul_shm_base_virt - (ul_tlb_base_virt * DSPWORDSIZE);
/* Kernel logical address */
ul_shm_base = dev_context->atlb_entry[0].gpp_va + ul_shm_offset_virt;
DBC_ASSERT(ul_shm_base != 0);
/* 2nd wd is used as sync field */
dw_sync_addr = ul_shm_base + SHMSYNCOFFSET;
/* Write a signature into the shm base + offset; this will
* get cleared when the DSP program starts. */
if ((ul_shm_base_virt == 0) || (ul_shm_base == 0)) {
pr_err("%s: Illegal SM base\n", __func__);
status = -EPERM;
} else
__raw_writel(0xffffffff, dw_sync_addr);
if (!status) {
resources = dev_context->resources;
if (!resources)
status = -EPERM;
/* Assert RST1 i.e only the RST only for DSP megacell */
if (!status) {
(*pdata->dsp_prm_rmw_bits)(OMAP3430_RST1_IVA2_MASK,
OMAP3430_RST1_IVA2_MASK, OMAP3430_IVA2_MOD,
OMAP2_RM_RSTCTRL);
/* Mask address with 1K for compatibility */
__raw_writel(dsp_addr & OMAP3_IVA2_BOOTADDR_MASK,
OMAP343X_CTRL_REGADDR(
OMAP343X_CONTROL_IVA2_BOOTADDR));
/*
* Set bootmode to self loop if dsp_debug flag is true
*/
__raw_writel((dsp_debug) ? OMAP3_IVA2_BOOTMOD_IDLE : 0,
OMAP343X_CTRL_REGADDR(
OMAP343X_CONTROL_IVA2_BOOTMOD));
}
}
if (!status) {
/* Reset and Unreset the RST2, so that BOOTADDR is copied to
* IVA2 SYSC register */
(*pdata->dsp_prm_rmw_bits)(OMAP3430_RST2_IVA2_MASK,
OMAP3430_RST2_IVA2_MASK, OMAP3430_IVA2_MOD, OMAP2_RM_RSTCTRL);
udelay(100);
(*pdata->dsp_prm_rmw_bits)(OMAP3430_RST2_IVA2_MASK, 0,
OMAP3430_IVA2_MOD, OMAP2_RM_RSTCTRL);
udelay(100);
/* Disbale the DSP MMU */
hw_mmu_disable(resources->dmmu_base);
/* Disable TWL */
hw_mmu_twl_disable(resources->dmmu_base);
/* Only make TLB entry if both addresses are non-zero */
for (entry_ndx = 0; entry_ndx < BRDIOCTL_NUMOFMMUTLB;
entry_ndx++) {
struct bridge_ioctl_extproc *e = &dev_context->atlb_entry[entry_ndx];
struct hw_mmu_map_attrs_t map_attrs = {
.endianism = e->endianism,
.element_size = e->elem_size,
.mixed_size = e->mixed_mode,
};
if (!e->gpp_pa || !e->dsp_va)
continue;
dev_dbg(bridge,
"MMU %d, pa: 0x%x, va: 0x%x, size: 0x%x",
itmp_entry_ndx,
e->gpp_pa,
e->dsp_va,
e->size);
hw_mmu_tlb_add(dev_context->dsp_mmu_base,
e->gpp_pa,
e->dsp_va,
e->size,
itmp_entry_ndx,
&map_attrs, 1, 1);
itmp_entry_ndx++;
}
}
/* Lock the above TLB entries and get the BIOS and load monitor timer
* information */
if (!status) {
hw_mmu_num_locked_set(resources->dmmu_base, itmp_entry_ndx);
hw_mmu_victim_num_set(resources->dmmu_base, itmp_entry_ndx);
hw_mmu_ttb_set(resources->dmmu_base,
dev_context->pt_attrs->l1_base_pa);
hw_mmu_twl_enable(resources->dmmu_base);
/* Enable the SmartIdle and AutoIdle bit for MMU_SYSCONFIG */
temp = __raw_readl((resources->dmmu_base) + 0x10);
temp = (temp & 0xFFFFFFEF) | 0x11;
__raw_writel(temp, (resources->dmmu_base) + 0x10);
/* Let the DSP MMU run */
hw_mmu_enable(resources->dmmu_base);
/* Enable the BIOS clock */
(void)dev_get_symbol(dev_context->dev_obj,
BRIDGEINIT_BIOSGPTIMER, &ul_bios_gp_timer);
(void)dev_get_symbol(dev_context->dev_obj,
BRIDGEINIT_LOADMON_GPTIMER,
&ul_load_monitor_timer);
}
if (!status) {
if (ul_load_monitor_timer != 0xFFFF) {
clk_cmd = (BPWR_ENABLE_CLOCK << MBX_PM_CLK_CMDSHIFT) |
ul_load_monitor_timer;
dsp_peripheral_clk_ctrl(dev_context, &clk_cmd);
} else {
dev_dbg(bridge, "Not able to get the symbol for Load "
"Monitor Timer\n");
}
}
if (!status) {
if (ul_bios_gp_timer != 0xFFFF) {
clk_cmd = (BPWR_ENABLE_CLOCK << MBX_PM_CLK_CMDSHIFT) |
ul_bios_gp_timer;
dsp_peripheral_clk_ctrl(dev_context, &clk_cmd);
} else {
dev_dbg(bridge,
"Not able to get the symbol for BIOS Timer\n");
}
}
if (!status) {
/* Set the DSP clock rate */
(void)dev_get_symbol(dev_context->dev_obj,
"_BRIDGEINIT_DSP_FREQ", &ul_dsp_clk_addr);
/*Set Autoidle Mode for IVA2 PLL */
(*pdata->dsp_cm_write)(1 << OMAP3430_AUTO_IVA2_DPLL_SHIFT,
OMAP3430_IVA2_MOD, OMAP3430_CM_AUTOIDLE_PLL);
if ((unsigned int *)ul_dsp_clk_addr != NULL) {
/* Get the clock rate */
ul_dsp_clk_rate = dsp_clk_get_iva2_rate();
dev_dbg(bridge, "%s: DSP clock rate (KHZ): 0x%x \n",
__func__, ul_dsp_clk_rate);
(void)bridge_brd_write(dev_context,
(u8 *) &ul_dsp_clk_rate,
ul_dsp_clk_addr, sizeof(u32), 0);
}
/*
* Enable Mailbox events and also drain any pending
* stale messages.
*/
dev_context->mbox = omap_mbox_get("dsp", &dsp_mbox_notifier);
if (IS_ERR(dev_context->mbox)) {
dev_context->mbox = NULL;
pr_err("%s: Failed to get dsp mailbox handle\n",
__func__);
status = -EPERM;
}
}
if (!status) {
/*PM_IVA2GRPSEL_PER = 0xC0;*/
temp = readl(resources->per_pm_base + 0xA8);
temp = (temp & 0xFFFFFF30) | 0xC0;
writel(temp, resources->per_pm_base + 0xA8);
/*PM_MPUGRPSEL_PER &= 0xFFFFFF3F; */
temp = readl(resources->per_pm_base + 0xA4);
temp = (temp & 0xFFFFFF3F);
writel(temp, resources->per_pm_base + 0xA4);
/*CM_SLEEPDEP_PER |= 0x04; */
temp = readl(resources->per_base + 0x44);
temp = (temp & 0xFFFFFFFB) | 0x04;
writel(temp, resources->per_base + 0x44);
/*CM_CLKSTCTRL_IVA2 = 0x00000003 -To Allow automatic transitions */
(*pdata->dsp_cm_write)(OMAP34XX_CLKSTCTRL_ENABLE_AUTO,
OMAP3430_IVA2_MOD, OMAP2_CM_CLKSTCTRL);
/* Let DSP go */
dev_dbg(bridge, "%s Unreset\n", __func__);
/* Enable DSP MMU Interrupts */
hw_mmu_event_enable(resources->dmmu_base,
HW_MMU_ALL_INTERRUPTS);
/* release the RST1, DSP starts executing now .. */
(*pdata->dsp_prm_rmw_bits)(OMAP3430_RST1_IVA2_MASK, 0,
OMAP3430_IVA2_MOD, OMAP2_RM_RSTCTRL);
dev_dbg(bridge, "Waiting for Sync @ 0x%x\n", dw_sync_addr);
dev_dbg(bridge, "DSP c_int00 Address = 0x%x\n", dsp_addr);
if (dsp_debug)
while (__raw_readw(dw_sync_addr))
;
/* Wait for DSP to clear word in shared memory */
/* Read the Location */
if (!wait_for_start(dev_context, dw_sync_addr))
status = -ETIMEDOUT;
/* Start wdt */
dsp_wdt_sm_set((void *)ul_shm_base);
dsp_wdt_enable(true);
status = dev_get_io_mgr(dev_context->dev_obj, &hio_mgr);
if (hio_mgr) {
io_sh_msetting(hio_mgr, SHM_OPPINFO, NULL);
/* Write the synchronization bit to indicate the
* completion of OPP table update to DSP
*/
__raw_writel(0XCAFECAFE, dw_sync_addr);
/* update board state */
dev_context->brd_state = BRD_RUNNING;
/* (void)chnlsm_enable_interrupt(dev_context); */
} else {
dev_context->brd_state = BRD_UNKNOWN;
}
}
return status;
}
/*
* ======== bridge_brd_stop ========
* purpose:
* Puts DSP in self loop.
*
* Preconditions :
* a) None
*/
static int bridge_brd_stop(struct bridge_dev_context *dev_ctxt)
{
int status = 0;
struct bridge_dev_context *dev_context = dev_ctxt;
struct pg_table_attrs *pt_attrs;
u32 dsp_pwr_state;
struct omap_dsp_platform_data *pdata =
omap_dspbridge_dev->dev.platform_data;
if (dev_context->brd_state == BRD_STOPPED)
return status;
/* as per TRM, it is advised to first drive the IVA2 to 'Standby' mode,
* before turning off the clocks.. This is to ensure that there are no
* pending L3 or other transactons from IVA2 */
dsp_pwr_state = (*pdata->dsp_prm_read)(OMAP3430_IVA2_MOD, OMAP2_PM_PWSTST) &
OMAP_POWERSTATEST_MASK;
if (dsp_pwr_state != PWRDM_POWER_OFF) {
(*pdata->dsp_prm_rmw_bits)(OMAP3430_RST2_IVA2_MASK, 0,
OMAP3430_IVA2_MOD, OMAP2_RM_RSTCTRL);
sm_interrupt_dsp(dev_context, MBX_PM_DSPIDLE);
mdelay(10);
/* IVA2 is not in OFF state */
/* Set PM_PWSTCTRL_IVA2 to OFF */
(*pdata->dsp_prm_rmw_bits)(OMAP_POWERSTATEST_MASK,
PWRDM_POWER_OFF, OMAP3430_IVA2_MOD, OMAP2_PM_PWSTCTRL);
/* Set the SW supervised state transition for Sleep */
(*pdata->dsp_cm_write)(OMAP34XX_CLKSTCTRL_FORCE_SLEEP,
OMAP3430_IVA2_MOD, OMAP2_CM_CLKSTCTRL);
}
udelay(10);
/* Release the Ext Base virtual Address as the next DSP Program
* may have a different load address */
if (dev_context->dsp_ext_base_addr)
dev_context->dsp_ext_base_addr = 0;
dev_context->brd_state = BRD_STOPPED; /* update board state */
dsp_wdt_enable(false);
/* This is a good place to clear the MMU page tables as well */
if (dev_context->pt_attrs) {
pt_attrs = dev_context->pt_attrs;
memset((u8 *) pt_attrs->l1_base_va, 0x00, pt_attrs->l1_size);
memset((u8 *) pt_attrs->l2_base_va, 0x00, pt_attrs->l2_size);
memset((u8 *) pt_attrs->pg_info, 0x00,
(pt_attrs->l2_num_pages * sizeof(struct page_info)));
}
/* Disable the mailbox interrupts */
if (dev_context->mbox) {
omap_mbox_disable_irq(dev_context->mbox, IRQ_RX);
omap_mbox_put(dev_context->mbox, &dsp_mbox_notifier);
dev_context->mbox = NULL;
}
/* Reset IVA2 clocks*/
(*pdata->dsp_prm_write)(OMAP3430_RST1_IVA2_MASK | OMAP3430_RST2_IVA2_MASK |
OMAP3430_RST3_IVA2_MASK, OMAP3430_IVA2_MOD, OMAP2_RM_RSTCTRL);
dsp_clock_disable_all(dev_context->dsp_per_clks);
dsp_clk_disable(DSP_CLK_IVA2);
return status;
}
/*
* ======== bridge_brd_status ========
* Returns the board status.
*/
static int bridge_brd_status(struct bridge_dev_context *dev_ctxt,
int *board_state)
{
struct bridge_dev_context *dev_context = dev_ctxt;
*board_state = dev_context->brd_state;
return 0;
}
/*
* ======== bridge_brd_write ========
* Copies the buffers to DSP internal or external memory.
*/
static int bridge_brd_write(struct bridge_dev_context *dev_ctxt,
u8 *host_buff, u32 dsp_addr,
u32 ul_num_bytes, u32 mem_type)
{
int status = 0;
struct bridge_dev_context *dev_context = dev_ctxt;
if (dsp_addr < dev_context->dsp_start_add) {
status = -EPERM;
return status;
}
if ((dsp_addr - dev_context->dsp_start_add) <
dev_context->internal_size) {
status = write_dsp_data(dev_ctxt, host_buff, dsp_addr,
ul_num_bytes, mem_type);
} else {
status = write_ext_dsp_data(dev_context, host_buff, dsp_addr,
ul_num_bytes, mem_type, false);
}
return status;
}
/*
* ======== bridge_dev_create ========
* Creates a driver object. Puts DSP in self loop.
*/
static int bridge_dev_create(struct bridge_dev_context
**dev_cntxt,
struct dev_object *hdev_obj,
struct cfg_hostres *config_param)
{
int status = 0;
struct bridge_dev_context *dev_context = NULL;
s32 entry_ndx;
struct cfg_hostres *resources = config_param;
struct pg_table_attrs *pt_attrs;
u32 pg_tbl_pa;
u32 pg_tbl_va;
u32 align_size;
struct drv_data *drv_datap = dev_get_drvdata(bridge);
/* Allocate and initialize a data structure to contain the bridge driver
* state, which becomes the context for later calls into this driver */
dev_context = kzalloc(sizeof(struct bridge_dev_context), GFP_KERNEL);
if (!dev_context) {
status = -ENOMEM;
goto func_end;
}
dev_context->dsp_start_add = (u32) OMAP_GEM_BASE;
dev_context->self_loop = (u32) NULL;
dev_context->dsp_per_clks = 0;
dev_context->internal_size = OMAP_DSP_SIZE;
/* Clear dev context MMU table entries.
* These get set on bridge_io_on_loaded() call after program loaded. */
for (entry_ndx = 0; entry_ndx < BRDIOCTL_NUMOFMMUTLB; entry_ndx++) {
dev_context->atlb_entry[entry_ndx].gpp_pa =
dev_context->atlb_entry[entry_ndx].dsp_va = 0;
}
dev_context->dsp_base_addr = (u32) MEM_LINEAR_ADDRESS((void *)
(config_param->
mem_base
[3]),
config_param->
mem_length
[3]);
if (!dev_context->dsp_base_addr)
status = -EPERM;
pt_attrs = kzalloc(sizeof(struct pg_table_attrs), GFP_KERNEL);
if (pt_attrs != NULL) {
pt_attrs->l1_size = SZ_16K; /* 4096 entries of 32 bits */
align_size = pt_attrs->l1_size;
/* Align sizes are expected to be power of 2 */
/* we like to get aligned on L1 table size */
pg_tbl_va = (u32) mem_alloc_phys_mem(pt_attrs->l1_size,
align_size, &pg_tbl_pa);
/* Check if the PA is aligned for us */
if ((pg_tbl_pa) & (align_size - 1)) {
/* PA not aligned to page table size ,
* try with more allocation and align */
mem_free_phys_mem((void *)pg_tbl_va, pg_tbl_pa,
pt_attrs->l1_size);
/* we like to get aligned on L1 table size */
pg_tbl_va =
(u32) mem_alloc_phys_mem((pt_attrs->l1_size) * 2,
align_size, &pg_tbl_pa);
/* We should be able to get aligned table now */
pt_attrs->l1_tbl_alloc_pa = pg_tbl_pa;
pt_attrs->l1_tbl_alloc_va = pg_tbl_va;
pt_attrs->l1_tbl_alloc_sz = pt_attrs->l1_size * 2;
/* Align the PA to the next 'align' boundary */
pt_attrs->l1_base_pa =
((pg_tbl_pa) +
(align_size - 1)) & (~(align_size - 1));
pt_attrs->l1_base_va =
pg_tbl_va + (pt_attrs->l1_base_pa - pg_tbl_pa);
} else {
/* We got aligned PA, cool */
pt_attrs->l1_tbl_alloc_pa = pg_tbl_pa;
pt_attrs->l1_tbl_alloc_va = pg_tbl_va;
pt_attrs->l1_tbl_alloc_sz = pt_attrs->l1_size;
pt_attrs->l1_base_pa = pg_tbl_pa;
pt_attrs->l1_base_va = pg_tbl_va;
}
if (pt_attrs->l1_base_va)
memset((u8 *) pt_attrs->l1_base_va, 0x00,
pt_attrs->l1_size);
/* number of L2 page tables = DMM pool used + SHMMEM +EXTMEM +
* L4 pages */
pt_attrs->l2_num_pages = ((DMMPOOLSIZE >> 20) + 6);
pt_attrs->l2_size = HW_MMU_COARSE_PAGE_SIZE *
pt_attrs->l2_num_pages;
align_size = 4; /* Make it u32 aligned */
/* we like to get aligned on L1 table size */
pg_tbl_va = (u32) mem_alloc_phys_mem(pt_attrs->l2_size,
align_size, &pg_tbl_pa);
pt_attrs->l2_tbl_alloc_pa = pg_tbl_pa;
pt_attrs->l2_tbl_alloc_va = pg_tbl_va;
pt_attrs->l2_tbl_alloc_sz = pt_attrs->l2_size;
pt_attrs->l2_base_pa = pg_tbl_pa;
pt_attrs->l2_base_va = pg_tbl_va;
if (pt_attrs->l2_base_va)
memset((u8 *) pt_attrs->l2_base_va, 0x00,
pt_attrs->l2_size);
pt_attrs->pg_info = kzalloc(pt_attrs->l2_num_pages *
sizeof(struct page_info), GFP_KERNEL);
dev_dbg(bridge,
"L1 pa %x, va %x, size %x\n L2 pa %x, va "
"%x, size %x\n", pt_attrs->l1_base_pa,
pt_attrs->l1_base_va, pt_attrs->l1_size,
pt_attrs->l2_base_pa, pt_attrs->l2_base_va,
pt_attrs->l2_size);
dev_dbg(bridge, "pt_attrs %p L2 NumPages %x pg_info %p\n",
pt_attrs, pt_attrs->l2_num_pages, pt_attrs->pg_info);
}
if ((pt_attrs != NULL) && (pt_attrs->l1_base_va != 0) &&
(pt_attrs->l2_base_va != 0) && (pt_attrs->pg_info != NULL))
dev_context->pt_attrs = pt_attrs;
else
status = -ENOMEM;
if (!status) {
spin_lock_init(&pt_attrs->pg_lock);
dev_context->tc_word_swap_on = drv_datap->tc_wordswapon;
/* Set the Clock Divisor for the DSP module */
udelay(5);
/* MMU address is obtained from the host
* resources struct */
dev_context->dsp_mmu_base = resources->dmmu_base;
}
if (!status) {
dev_context->dev_obj = hdev_obj;
/* Store current board state. */
dev_context->brd_state = BRD_UNKNOWN;
dev_context->resources = resources;
dsp_clk_enable(DSP_CLK_IVA2);
bridge_brd_stop(dev_context);
/* Return ptr to our device state to the DSP API for storage */
*dev_cntxt = dev_context;
} else {
if (pt_attrs != NULL) {
kfree(pt_attrs->pg_info);
if (pt_attrs->l2_tbl_alloc_va) {
mem_free_phys_mem((void *)
pt_attrs->l2_tbl_alloc_va,
pt_attrs->l2_tbl_alloc_pa,
pt_attrs->l2_tbl_alloc_sz);
}
if (pt_attrs->l1_tbl_alloc_va) {
mem_free_phys_mem((void *)
pt_attrs->l1_tbl_alloc_va,
pt_attrs->l1_tbl_alloc_pa,
pt_attrs->l1_tbl_alloc_sz);
}
}
kfree(pt_attrs);
kfree(dev_context);
}
func_end:
return status;
}
/*
* ======== bridge_dev_ctrl ========
* Receives device specific commands.
*/
static int bridge_dev_ctrl(struct bridge_dev_context *dev_context,
u32 dw_cmd, void *pargs)
{
int status = 0;
struct bridge_ioctl_extproc *pa_ext_proc =
(struct bridge_ioctl_extproc *)pargs;
s32 ndx;
switch (dw_cmd) {
case BRDIOCTL_CHNLREAD:
break;
case BRDIOCTL_CHNLWRITE:
break;
case BRDIOCTL_SETMMUCONFIG:
/* store away dsp-mmu setup values for later use */
for (ndx = 0; ndx < BRDIOCTL_NUMOFMMUTLB; ndx++, pa_ext_proc++)
dev_context->atlb_entry[ndx] = *pa_ext_proc;
break;
case BRDIOCTL_DEEPSLEEP:
case BRDIOCTL_EMERGENCYSLEEP:
/* Currently only DSP Idle is supported Need to update for
* later releases */
status = sleep_dsp(dev_context, PWR_DEEPSLEEP, pargs);
break;
case BRDIOCTL_WAKEUP:
status = wake_dsp(dev_context, pargs);
break;
case BRDIOCTL_CLK_CTRL:
status = 0;
/* Looking For Baseport Fix for Clocks */
status = dsp_peripheral_clk_ctrl(dev_context, pargs);
break;
case BRDIOCTL_PWR_HIBERNATE:
status = handle_hibernation_from_dsp(dev_context);
break;
case BRDIOCTL_PRESCALE_NOTIFY:
status = pre_scale_dsp(dev_context, pargs);
break;
case BRDIOCTL_POSTSCALE_NOTIFY:
status = post_scale_dsp(dev_context, pargs);
break;
case BRDIOCTL_CONSTRAINT_REQUEST:
status = handle_constraints_set(dev_context, pargs);
break;
default:
status = -EPERM;
break;
}
return status;
}
/*
* ======== bridge_dev_destroy ========
* Destroys the driver object.
*/
static int bridge_dev_destroy(struct bridge_dev_context *dev_ctxt)
{
struct pg_table_attrs *pt_attrs;
int status = 0;
struct bridge_dev_context *dev_context = (struct bridge_dev_context *)
dev_ctxt;
struct cfg_hostres *host_res;
u32 shm_size;
struct drv_data *drv_datap = dev_get_drvdata(bridge);
/* It should never happen */
if (!dev_ctxt)
return -EFAULT;
/* first put the device to stop state */
bridge_brd_stop(dev_context);
if (dev_context->pt_attrs) {
pt_attrs = dev_context->pt_attrs;
kfree(pt_attrs->pg_info);
if (pt_attrs->l2_tbl_alloc_va) {
mem_free_phys_mem((void *)pt_attrs->l2_tbl_alloc_va,
pt_attrs->l2_tbl_alloc_pa,
pt_attrs->l2_tbl_alloc_sz);
}
if (pt_attrs->l1_tbl_alloc_va) {
mem_free_phys_mem((void *)pt_attrs->l1_tbl_alloc_va,
pt_attrs->l1_tbl_alloc_pa,
pt_attrs->l1_tbl_alloc_sz);
}
kfree(pt_attrs);
}
if (dev_context->resources) {
host_res = dev_context->resources;
shm_size = drv_datap->shm_size;
if (shm_size >= 0x10000) {
if ((host_res->mem_base[1]) &&
(host_res->mem_phys[1])) {
mem_free_phys_mem((void *)
host_res->mem_base
[1],
host_res->mem_phys
[1], shm_size);
}
} else {
dev_dbg(bridge, "%s: Error getting shm size "
"from registry: %x. Not calling "
"mem_free_phys_mem\n", __func__,
status);
}
host_res->mem_base[1] = 0;
host_res->mem_phys[1] = 0;
if (host_res->mem_base[0])
iounmap((void *)host_res->mem_base[0]);
if (host_res->mem_base[2])
iounmap((void *)host_res->mem_base[2]);
if (host_res->mem_base[3])
iounmap((void *)host_res->mem_base[3]);
if (host_res->mem_base[4])
iounmap((void *)host_res->mem_base[4]);
if (host_res->dmmu_base)
iounmap(host_res->dmmu_base);
if (host_res->per_base)
iounmap(host_res->per_base);
if (host_res->per_pm_base)
iounmap((void *)host_res->per_pm_base);
if (host_res->core_pm_base)
iounmap((void *)host_res->core_pm_base);
host_res->mem_base[0] = (u32) NULL;
host_res->mem_base[2] = (u32) NULL;
host_res->mem_base[3] = (u32) NULL;
host_res->mem_base[4] = (u32) NULL;
host_res->dmmu_base = NULL;
kfree(host_res);
}
/* Free the driver's device context: */
kfree(drv_datap->base_img);
kfree(drv_datap);
dev_set_drvdata(bridge, NULL);
kfree((void *)dev_ctxt);
return status;
}
static int bridge_brd_mem_copy(struct bridge_dev_context *dev_ctxt,
u32 dsp_dest_addr, u32 dsp_src_addr,
u32 ul_num_bytes, u32 mem_type)
{
int status = 0;
u32 src_addr = dsp_src_addr;
u32 dest_addr = dsp_dest_addr;
u32 copy_bytes = 0;
u32 total_bytes = ul_num_bytes;
u8 host_buf[BUFFERSIZE];
struct bridge_dev_context *dev_context = dev_ctxt;
while (total_bytes > 0 && !status) {
copy_bytes =
total_bytes > BUFFERSIZE ? BUFFERSIZE : total_bytes;
/* Read from External memory */
status = read_ext_dsp_data(dev_ctxt, host_buf, src_addr,
copy_bytes, mem_type);
if (!status) {
if (dest_addr < (dev_context->dsp_start_add +
dev_context->internal_size)) {
/* Write to Internal memory */
status = write_dsp_data(dev_ctxt, host_buf,
dest_addr, copy_bytes,
mem_type);
} else {
/* Write to External memory */
status =
write_ext_dsp_data(dev_ctxt, host_buf,
dest_addr, copy_bytes,
mem_type, false);
}
}
total_bytes -= copy_bytes;
src_addr += copy_bytes;
dest_addr += copy_bytes;
}
return status;
}
/* Mem Write does not halt the DSP to write unlike bridge_brd_write */
static int bridge_brd_mem_write(struct bridge_dev_context *dev_ctxt,
u8 *host_buff, u32 dsp_addr,
u32 ul_num_bytes, u32 mem_type)
{
int status = 0;
struct bridge_dev_context *dev_context = dev_ctxt;
u32 ul_remain_bytes = 0;
u32 ul_bytes = 0;
ul_remain_bytes = ul_num_bytes;
while (ul_remain_bytes > 0 && !status) {
ul_bytes =
ul_remain_bytes > BUFFERSIZE ? BUFFERSIZE : ul_remain_bytes;
if (dsp_addr < (dev_context->dsp_start_add +
dev_context->internal_size)) {
status =
write_dsp_data(dev_ctxt, host_buff, dsp_addr,
ul_bytes, mem_type);
} else {
status = write_ext_dsp_data(dev_ctxt, host_buff,
dsp_addr, ul_bytes,
mem_type, true);
}
ul_remain_bytes -= ul_bytes;
dsp_addr += ul_bytes;
host_buff = host_buff + ul_bytes;
}
return status;
}
/*
* ======== bridge_brd_mem_map ========
* This function maps MPU buffer to the DSP address space. It performs
* linear to physical address translation if required. It translates each
* page since linear addresses can be physically non-contiguous
* All address & size arguments are assumed to be page aligned (in proc.c)
*
* TODO: Disable MMU while updating the page tables (but that'll stall DSP)
*/
static int bridge_brd_mem_map(struct bridge_dev_context *dev_ctxt,
u32 ul_mpu_addr, u32 virt_addr,
u32 ul_num_bytes, u32 ul_map_attr,
struct page **mapped_pages)
{
u32 attrs;
int status = 0;
struct bridge_dev_context *dev_context = dev_ctxt;
struct hw_mmu_map_attrs_t hw_attrs;
struct vm_area_struct *vma;
struct mm_struct *mm = current->mm;
u32 write = 0;
u32 num_usr_pgs = 0;
struct page *mapped_page, *pg;
s32 pg_num;
u32 va = virt_addr;
struct task_struct *curr_task = current;
u32 pg_i = 0;
u32 mpu_addr, pa;
dev_dbg(bridge,
"%s hDevCtxt %p, pa %x, va %x, size %x, ul_map_attr %x\n",
__func__, dev_ctxt, ul_mpu_addr, virt_addr, ul_num_bytes,
ul_map_attr);
if (ul_num_bytes == 0)
return -EINVAL;
if (ul_map_attr & DSP_MAP_DIR_MASK) {
attrs = ul_map_attr;
} else {
/* Assign default attributes */
attrs = ul_map_attr | (DSP_MAPVIRTUALADDR | DSP_MAPELEMSIZE16);
}
/* Take mapping properties */
if (attrs & DSP_MAPBIGENDIAN)
hw_attrs.endianism = HW_BIG_ENDIAN;
else
hw_attrs.endianism = HW_LITTLE_ENDIAN;
hw_attrs.mixed_size = (enum hw_mmu_mixed_size_t)
((attrs & DSP_MAPMIXEDELEMSIZE) >> 2);
/* Ignore element_size if mixed_size is enabled */
if (hw_attrs.mixed_size == 0) {
if (attrs & DSP_MAPELEMSIZE8) {
/* Size is 8 bit */
hw_attrs.element_size = HW_ELEM_SIZE8BIT;
} else if (attrs & DSP_MAPELEMSIZE16) {
/* Size is 16 bit */
hw_attrs.element_size = HW_ELEM_SIZE16BIT;
} else if (attrs & DSP_MAPELEMSIZE32) {
/* Size is 32 bit */
hw_attrs.element_size = HW_ELEM_SIZE32BIT;
} else if (attrs & DSP_MAPELEMSIZE64) {
/* Size is 64 bit */
hw_attrs.element_size = HW_ELEM_SIZE64BIT;
} else {
/*
* Mixedsize isn't enabled, so size can't be
* zero here
*/
return -EINVAL;
}
}
if (attrs & DSP_MAPDONOTLOCK)
hw_attrs.donotlockmpupage = 1;
else
hw_attrs.donotlockmpupage = 0;
if (attrs & DSP_MAPVMALLOCADDR) {
return mem_map_vmalloc(dev_ctxt, ul_mpu_addr, virt_addr,
ul_num_bytes, &hw_attrs);
}
/*
* Do OS-specific user-va to pa translation.
* Combine physically contiguous regions to reduce TLBs.
* Pass the translated pa to pte_update.
*/
if ((attrs & DSP_MAPPHYSICALADDR)) {
status = pte_update(dev_context, ul_mpu_addr, virt_addr,
ul_num_bytes, &hw_attrs);
goto func_cont;
}
/*
* Important Note: ul_mpu_addr is mapped from user application process
* to current process - it must lie completely within the current
* virtual memory address space in order to be of use to us here!
*/
down_read(&mm->mmap_sem);
vma = find_vma(mm, ul_mpu_addr);
if (vma)
dev_dbg(bridge,
"VMAfor UserBuf: ul_mpu_addr=%x, ul_num_bytes=%x, "
"vm_start=%lx, vm_end=%lx, vm_flags=%lx\n", ul_mpu_addr,
ul_num_bytes, vma->vm_start, vma->vm_end,
vma->vm_flags);
/*
* It is observed that under some circumstances, the user buffer is
* spread across several VMAs. So loop through and check if the entire
* user buffer is covered
*/
while ((vma) && (ul_mpu_addr + ul_num_bytes > vma->vm_end)) {
/* jump to the next VMA region */
vma = find_vma(mm, vma->vm_end + 1);
dev_dbg(bridge,
"VMA for UserBuf ul_mpu_addr=%x ul_num_bytes=%x, "
"vm_start=%lx, vm_end=%lx, vm_flags=%lx\n", ul_mpu_addr,
ul_num_bytes, vma->vm_start, vma->vm_end,
vma->vm_flags);
}
if (!vma) {
pr_err("%s: Failed to get VMA region for 0x%x (%d)\n",
__func__, ul_mpu_addr, ul_num_bytes);
status = -EINVAL;
up_read(&mm->mmap_sem);
goto func_cont;
}
if (vma->vm_flags & VM_IO) {
num_usr_pgs = ul_num_bytes / PG_SIZE4K;
mpu_addr = ul_mpu_addr;
/* Get the physical addresses for user buffer */
for (pg_i = 0; pg_i < num_usr_pgs; pg_i++) {
pa = user_va2_pa(mm, mpu_addr);
if (!pa) {
status = -EPERM;
pr_err("DSPBRIDGE: VM_IO mapping physical"
"address is invalid\n");
break;
}
if (pfn_valid(__phys_to_pfn(pa))) {
pg = PHYS_TO_PAGE(pa);
get_page(pg);
if (page_count(pg) < 1) {
pr_err("Bad page in VM_IO buffer\n");
bad_page_dump(pa, pg);
}
}
status = pte_set(dev_context->pt_attrs, pa,
va, HW_PAGE_SIZE4KB, &hw_attrs);
if (status)
break;
va += HW_PAGE_SIZE4KB;
mpu_addr += HW_PAGE_SIZE4KB;
pa += HW_PAGE_SIZE4KB;
}
} else {
num_usr_pgs = ul_num_bytes / PG_SIZE4K;
if (vma->vm_flags & (VM_WRITE | VM_MAYWRITE))
write = 1;
for (pg_i = 0; pg_i < num_usr_pgs; pg_i++) {
pg_num = get_user_pages(curr_task, mm, ul_mpu_addr, 1,
write, 1, &mapped_page, NULL);
if (pg_num > 0) {
if (page_count(mapped_page) < 1) {
pr_err("Bad page count after doing"
"get_user_pages on"
"user buffer\n");
bad_page_dump(page_to_phys(mapped_page),
mapped_page);
}
status = pte_set(dev_context->pt_attrs,
page_to_phys(mapped_page), va,
HW_PAGE_SIZE4KB, &hw_attrs);
if (status)
break;
if (mapped_pages)
mapped_pages[pg_i] = mapped_page;
va += HW_PAGE_SIZE4KB;
ul_mpu_addr += HW_PAGE_SIZE4KB;
} else {
pr_err("DSPBRIDGE: get_user_pages FAILED,"
"MPU addr = 0x%x,"
"vma->vm_flags = 0x%lx,"
"get_user_pages Err"
"Value = %d, Buffer"
"size=0x%x\n", ul_mpu_addr,
vma->vm_flags, pg_num, ul_num_bytes);
status = -EPERM;
break;
}
}
}
up_read(&mm->mmap_sem);
func_cont:
if (status) {
/*
* Roll out the mapped pages incase it failed in middle of
* mapping
*/
if (pg_i) {
bridge_brd_mem_un_map(dev_context, virt_addr,
(pg_i * PG_SIZE4K));
}
status = -EPERM;
}
/*
* In any case, flush the TLB
* This is called from here instead from pte_update to avoid unnecessary
* repetition while mapping non-contiguous physical regions of a virtual
* region
*/
flush_all(dev_context);
dev_dbg(bridge, "%s status %x\n", __func__, status);
return status;
}
/*
* ======== bridge_brd_mem_un_map ========
* Invalidate the PTEs for the DSP VA block to be unmapped.
*
* PTEs of a mapped memory block are contiguous in any page table
* So, instead of looking up the PTE address for every 4K block,
* we clear consecutive PTEs until we unmap all the bytes
*/
static int bridge_brd_mem_un_map(struct bridge_dev_context *dev_ctxt,
u32 virt_addr, u32 ul_num_bytes)
{
u32 l1_base_va;
u32 l2_base_va;
u32 l2_base_pa;
u32 l2_page_num;
u32 pte_val;
u32 pte_size;
u32 pte_count;
u32 pte_addr_l1;
u32 pte_addr_l2 = 0;
u32 rem_bytes;
u32 rem_bytes_l2;
u32 va_curr;
struct page *pg = NULL;
int status = 0;
struct bridge_dev_context *dev_context = dev_ctxt;
struct pg_table_attrs *pt = dev_context->pt_attrs;
u32 temp;
u32 paddr;
u32 numof4k_pages = 0;
va_curr = virt_addr;
rem_bytes = ul_num_bytes;
rem_bytes_l2 = 0;
l1_base_va = pt->l1_base_va;
pte_addr_l1 = hw_mmu_pte_addr_l1(l1_base_va, va_curr);
dev_dbg(bridge, "%s dev_ctxt %p, va %x, NumBytes %x l1_base_va %x, "
"pte_addr_l1 %x\n", __func__, dev_ctxt, virt_addr,
ul_num_bytes, l1_base_va, pte_addr_l1);
while (rem_bytes && !status) {
u32 va_curr_orig = va_curr;
/* Find whether the L1 PTE points to a valid L2 PT */
pte_addr_l1 = hw_mmu_pte_addr_l1(l1_base_va, va_curr);
pte_val = *(u32 *) pte_addr_l1;
pte_size = hw_mmu_pte_size_l1(pte_val);
if (pte_size != HW_MMU_COARSE_PAGE_SIZE)
goto skip_coarse_page;
/*
* Get the L2 PA from the L1 PTE, and find
* corresponding L2 VA
*/
l2_base_pa = hw_mmu_pte_coarse_l1(pte_val);
l2_base_va = l2_base_pa - pt->l2_base_pa + pt->l2_base_va;
l2_page_num =
(l2_base_pa - pt->l2_base_pa) / HW_MMU_COARSE_PAGE_SIZE;
/*
* Find the L2 PTE address from which we will start
* clearing, the number of PTEs to be cleared on this
* page, and the size of VA space that needs to be
* cleared on this L2 page
*/
pte_addr_l2 = hw_mmu_pte_addr_l2(l2_base_va, va_curr);
pte_count = pte_addr_l2 & (HW_MMU_COARSE_PAGE_SIZE - 1);
pte_count = (HW_MMU_COARSE_PAGE_SIZE - pte_count) / sizeof(u32);
if (rem_bytes < (pte_count * PG_SIZE4K))
pte_count = rem_bytes / PG_SIZE4K;
rem_bytes_l2 = pte_count * PG_SIZE4K;
/*
* Unmap the VA space on this L2 PT. A quicker way
* would be to clear pte_count entries starting from
* pte_addr_l2. However, below code checks that we don't
* clear invalid entries or less than 64KB for a 64KB
* entry. Similar checking is done for L1 PTEs too
* below
*/
while (rem_bytes_l2 && !status) {
pte_val = *(u32 *) pte_addr_l2;
pte_size = hw_mmu_pte_size_l2(pte_val);
/* va_curr aligned to pte_size? */
if (pte_size == 0 || rem_bytes_l2 < pte_size ||
va_curr & (pte_size - 1)) {
status = -EPERM;
break;
}
/* Collect Physical addresses from VA */
paddr = (pte_val & ~(pte_size - 1));
if (pte_size == HW_PAGE_SIZE64KB)
numof4k_pages = 16;
else
numof4k_pages = 1;
temp = 0;
while (temp++ < numof4k_pages) {
if (!pfn_valid(__phys_to_pfn(paddr))) {
paddr += HW_PAGE_SIZE4KB;
continue;
}
pg = PHYS_TO_PAGE(paddr);
if (page_count(pg) < 1) {
pr_info("DSPBRIDGE: UNMAP function: "
"COUNT 0 FOR PA 0x%x, size = "
"0x%x\n", paddr, ul_num_bytes);
bad_page_dump(paddr, pg);
} else {
set_page_dirty(pg);
page_cache_release(pg);
}
paddr += HW_PAGE_SIZE4KB;
}
if (hw_mmu_pte_clear(pte_addr_l2, va_curr, pte_size)) {
status = -EPERM;
goto EXIT_LOOP;
}
status = 0;
rem_bytes_l2 -= pte_size;
va_curr += pte_size;
pte_addr_l2 += (pte_size >> 12) * sizeof(u32);
}
spin_lock(&pt->pg_lock);
if (rem_bytes_l2 == 0) {
pt->pg_info[l2_page_num].num_entries -= pte_count;
if (pt->pg_info[l2_page_num].num_entries == 0) {
/*
* Clear the L1 PTE pointing to the L2 PT
*/
if (!hw_mmu_pte_clear(l1_base_va, va_curr_orig,
HW_MMU_COARSE_PAGE_SIZE))
status = 0;
else {
status = -EPERM;
spin_unlock(&pt->pg_lock);
goto EXIT_LOOP;
}
}
rem_bytes -= pte_count * PG_SIZE4K;
} else
status = -EPERM;
spin_unlock(&pt->pg_lock);
continue;
skip_coarse_page:
/* va_curr aligned to pte_size? */
/* pte_size = 1 MB or 16 MB */
if (pte_size == 0 || rem_bytes < pte_size ||
va_curr & (pte_size - 1)) {
status = -EPERM;
break;
}
if (pte_size == HW_PAGE_SIZE1MB)
numof4k_pages = 256;
else
numof4k_pages = 4096;
temp = 0;
/* Collect Physical addresses from VA */
paddr = (pte_val & ~(pte_size - 1));
while (temp++ < numof4k_pages) {
if (pfn_valid(__phys_to_pfn(paddr))) {
pg = PHYS_TO_PAGE(paddr);
if (page_count(pg) < 1) {
pr_info("DSPBRIDGE: UNMAP function: "
"COUNT 0 FOR PA 0x%x, size = "
"0x%x\n", paddr, ul_num_bytes);
bad_page_dump(paddr, pg);
} else {
set_page_dirty(pg);
page_cache_release(pg);
}
}
paddr += HW_PAGE_SIZE4KB;
}
if (!hw_mmu_pte_clear(l1_base_va, va_curr, pte_size)) {
status = 0;
rem_bytes -= pte_size;
va_curr += pte_size;
} else {
status = -EPERM;
goto EXIT_LOOP;
}
}
/*
* It is better to flush the TLB here, so that any stale old entries
* get flushed
*/
EXIT_LOOP:
flush_all(dev_context);
dev_dbg(bridge,
"%s: va_curr %x, pte_addr_l1 %x pte_addr_l2 %x rem_bytes %x,"
" rem_bytes_l2 %x status %x\n", __func__, va_curr, pte_addr_l1,
pte_addr_l2, rem_bytes, rem_bytes_l2, status);
return status;
}
/*
* ======== user_va2_pa ========
* Purpose:
* This function walks through the page tables to convert a userland
* virtual address to physical address
*/
static u32 user_va2_pa(struct mm_struct *mm, u32 address)
{
pgd_t *pgd;
pmd_t *pmd;
pte_t *ptep, pte;
pgd = pgd_offset(mm, address);
if (!(pgd_none(*pgd) || pgd_bad(*pgd))) {
pmd = pmd_offset(pgd, address);
if (!(pmd_none(*pmd) || pmd_bad(*pmd))) {
ptep = pte_offset_map(pmd, address);
if (ptep) {
pte = *ptep;
if (pte_present(pte))
return pte & PAGE_MASK;
}
}
}
return 0;
}
/*
* ======== pte_update ========
* This function calculates the optimum page-aligned addresses and sizes
* Caller must pass page-aligned values
*/
static int pte_update(struct bridge_dev_context *dev_ctxt, u32 pa,
u32 va, u32 size,
struct hw_mmu_map_attrs_t *map_attrs)
{
u32 i;
u32 all_bits;
u32 pa_curr = pa;
u32 va_curr = va;
u32 num_bytes = size;
struct bridge_dev_context *dev_context = dev_ctxt;
int status = 0;
u32 page_size[] = { HW_PAGE_SIZE16MB, HW_PAGE_SIZE1MB,
HW_PAGE_SIZE64KB, HW_PAGE_SIZE4KB
};
while (num_bytes && !status) {
/* To find the max. page size with which both PA & VA are
* aligned */
all_bits = pa_curr | va_curr;
for (i = 0; i < 4; i++) {
if ((num_bytes >= page_size[i]) && ((all_bits &
(page_size[i] -
1)) == 0)) {
status =
pte_set(dev_context->pt_attrs, pa_curr,
va_curr, page_size[i], map_attrs);
pa_curr += page_size[i];
va_curr += page_size[i];
num_bytes -= page_size[i];
/* Don't try smaller sizes. Hopefully we have
* reached an address aligned to a bigger page
* size */
break;
}
}
}
return status;
}
/*
* ======== pte_set ========
* This function calculates PTE address (MPU virtual) to be updated
* It also manages the L2 page tables
*/
static int pte_set(struct pg_table_attrs *pt, u32 pa, u32 va,
u32 size, struct hw_mmu_map_attrs_t *attrs)
{
u32 i;
u32 pte_val;
u32 pte_addr_l1;
u32 pte_size;
/* Base address of the PT that will be updated */
u32 pg_tbl_va;
u32 l1_base_va;
/* Compiler warns that the next three variables might be used
* uninitialized in this function. Doesn't seem so. Working around,
* anyways. */
u32 l2_base_va = 0;
u32 l2_base_pa = 0;
u32 l2_page_num = 0;
int status = 0;
l1_base_va = pt->l1_base_va;
pg_tbl_va = l1_base_va;
if ((size == HW_PAGE_SIZE64KB) || (size == HW_PAGE_SIZE4KB)) {
/* Find whether the L1 PTE points to a valid L2 PT */
pte_addr_l1 = hw_mmu_pte_addr_l1(l1_base_va, va);
if (pte_addr_l1 <= (pt->l1_base_va + pt->l1_size)) {
pte_val = *(u32 *) pte_addr_l1;
pte_size = hw_mmu_pte_size_l1(pte_val);
} else {
return -EPERM;
}
spin_lock(&pt->pg_lock);
if (pte_size == HW_MMU_COARSE_PAGE_SIZE) {
/* Get the L2 PA from the L1 PTE, and find
* corresponding L2 VA */
l2_base_pa = hw_mmu_pte_coarse_l1(pte_val);
l2_base_va =
l2_base_pa - pt->l2_base_pa + pt->l2_base_va;
l2_page_num =
(l2_base_pa -
pt->l2_base_pa) / HW_MMU_COARSE_PAGE_SIZE;
} else if (pte_size == 0) {
/* L1 PTE is invalid. Allocate a L2 PT and
* point the L1 PTE to it */
/* Find a free L2 PT. */
for (i = 0; (i < pt->l2_num_pages) &&
(pt->pg_info[i].num_entries != 0); i++)
;
if (i < pt->l2_num_pages) {
l2_page_num = i;
l2_base_pa = pt->l2_base_pa + (l2_page_num *
HW_MMU_COARSE_PAGE_SIZE);
l2_base_va = pt->l2_base_va + (l2_page_num *
HW_MMU_COARSE_PAGE_SIZE);
/* Endianness attributes are ignored for
* HW_MMU_COARSE_PAGE_SIZE */
status =
hw_mmu_pte_set(l1_base_va, l2_base_pa, va,
HW_MMU_COARSE_PAGE_SIZE,
attrs);
} else {
status = -ENOMEM;
}
} else {
/* Found valid L1 PTE of another size.
* Should not overwrite it. */
status = -EPERM;
}
if (!status) {
pg_tbl_va = l2_base_va;
if (size == HW_PAGE_SIZE64KB)
pt->pg_info[l2_page_num].num_entries += 16;
else
pt->pg_info[l2_page_num].num_entries++;
dev_dbg(bridge, "PTE: L2 BaseVa %x, BasePa %x, PageNum "
"%x, num_entries %x\n", l2_base_va,
l2_base_pa, l2_page_num,
pt->pg_info[l2_page_num].num_entries);
}
spin_unlock(&pt->pg_lock);
}
if (!status) {
dev_dbg(bridge, "PTE: pg_tbl_va %x, pa %x, va %x, size %x\n",
pg_tbl_va, pa, va, size);
dev_dbg(bridge, "PTE: endianism %x, element_size %x, "
"mixed_size %x\n", attrs->endianism,
attrs->element_size, attrs->mixed_size);
status = hw_mmu_pte_set(pg_tbl_va, pa, va, size, attrs);
}
return status;
}
/* Memory map kernel VA -- memory allocated with vmalloc */
static int mem_map_vmalloc(struct bridge_dev_context *dev_context,
u32 ul_mpu_addr, u32 virt_addr,
u32 ul_num_bytes,
struct hw_mmu_map_attrs_t *hw_attrs)
{
int status = 0;
struct page *page[1];
u32 i;
u32 pa_curr;
u32 pa_next;
u32 va_curr;
u32 size_curr;
u32 num_pages;
u32 pa;
u32 num_of4k_pages;
u32 temp = 0;
/*
* Do Kernel va to pa translation.
* Combine physically contiguous regions to reduce TLBs.
* Pass the translated pa to pte_update.
*/
num_pages = ul_num_bytes / PAGE_SIZE; /* PAGE_SIZE = OS page size */
i = 0;
va_curr = ul_mpu_addr;
page[0] = vmalloc_to_page((void *)va_curr);
pa_next = page_to_phys(page[0]);
while (!status && (i < num_pages)) {
/*
* Reuse pa_next from the previous iteraion to avoid
* an extra va2pa call
*/
pa_curr = pa_next;
size_curr = PAGE_SIZE;
/*
* If the next page is physically contiguous,
* map it with the current one by increasing
* the size of the region to be mapped
*/
while (++i < num_pages) {
page[0] =
vmalloc_to_page((void *)(va_curr + size_curr));
pa_next = page_to_phys(page[0]);
if (pa_next == (pa_curr + size_curr))
size_curr += PAGE_SIZE;
else
break;
}
if (pa_next == 0) {
status = -ENOMEM;
break;
}
pa = pa_curr;
num_of4k_pages = size_curr / HW_PAGE_SIZE4KB;
while (temp++ < num_of4k_pages) {
get_page(PHYS_TO_PAGE(pa));
pa += HW_PAGE_SIZE4KB;
}
status = pte_update(dev_context, pa_curr, virt_addr +
(va_curr - ul_mpu_addr), size_curr,
hw_attrs);
va_curr += size_curr;
}
/*
* In any case, flush the TLB
* This is called from here instead from pte_update to avoid unnecessary
* repetition while mapping non-contiguous physical regions of a virtual
* region
*/
flush_all(dev_context);
dev_dbg(bridge, "%s status %x\n", __func__, status);
return status;
}
/*
* ======== wait_for_start ========
* Wait for the singal from DSP that it has started, or time out.
*/
bool wait_for_start(struct bridge_dev_context *dev_context, u32 dw_sync_addr)
{
u16 timeout = TIHELEN_ACKTIMEOUT;
/* Wait for response from board */
while (__raw_readw(dw_sync_addr) && --timeout)
udelay(10);
/* If timed out: return false */
if (!timeout) {
pr_err("%s: Timed out waiting DSP to Start\n", __func__);
return false;
}
return true;
}