blob: 1af3fed5a72caa203e9cbda00f677905ef966863 [file] [log] [blame]
/*
* Copyright (c) 2004-2011 Atheros Communications Inc.
* Copyright (c) 2011-2012 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include "core.h"
#include "hif-ops.h"
#include "cfg80211.h"
#include "target.h"
#include "debug.h"
struct ath6kl_sta *ath6kl_find_sta(struct ath6kl_vif *vif, u8 *node_addr)
{
struct ath6kl *ar = vif->ar;
struct ath6kl_sta *conn = NULL;
u8 i, max_conn;
if (is_zero_ether_addr(node_addr))
return NULL;
max_conn = (vif->nw_type == AP_NETWORK) ? AP_MAX_NUM_STA : 0;
for (i = 0; i < max_conn; i++) {
if (memcmp(node_addr, ar->sta_list[i].mac, ETH_ALEN) == 0) {
conn = &ar->sta_list[i];
break;
}
}
return conn;
}
struct ath6kl_sta *ath6kl_find_sta_by_aid(struct ath6kl *ar, u8 aid)
{
struct ath6kl_sta *conn = NULL;
u8 ctr;
for (ctr = 0; ctr < AP_MAX_NUM_STA; ctr++) {
if (ar->sta_list[ctr].aid == aid) {
conn = &ar->sta_list[ctr];
break;
}
}
return conn;
}
static void ath6kl_add_new_sta(struct ath6kl_vif *vif, u8 *mac, u16 aid,
u8 *wpaie, size_t ielen, u8 keymgmt,
u8 ucipher, u8 auth, u8 apsd_info)
{
struct ath6kl *ar = vif->ar;
struct ath6kl_sta *sta;
u8 free_slot;
free_slot = aid - 1;
sta = &ar->sta_list[free_slot];
memcpy(sta->mac, mac, ETH_ALEN);
if (ielen <= ATH6KL_MAX_IE)
memcpy(sta->wpa_ie, wpaie, ielen);
sta->aid = aid;
sta->keymgmt = keymgmt;
sta->ucipher = ucipher;
sta->auth = auth;
sta->apsd_info = apsd_info;
ar->sta_list_index = ar->sta_list_index | (1 << free_slot);
ar->ap_stats.sta[free_slot].aid = cpu_to_le32(aid);
aggr_conn_init(vif, vif->aggr_cntxt, sta->aggr_conn);
}
static void ath6kl_sta_cleanup(struct ath6kl *ar, u8 i)
{
struct ath6kl_sta *sta = &ar->sta_list[i];
struct ath6kl_mgmt_buff *entry, *tmp;
/* empty the queued pkts in the PS queue if any */
spin_lock_bh(&sta->psq_lock);
skb_queue_purge(&sta->psq);
skb_queue_purge(&sta->apsdq);
if (sta->mgmt_psq_len != 0) {
list_for_each_entry_safe(entry, tmp, &sta->mgmt_psq, list) {
kfree(entry);
}
INIT_LIST_HEAD(&sta->mgmt_psq);
sta->mgmt_psq_len = 0;
}
spin_unlock_bh(&sta->psq_lock);
memset(&ar->ap_stats.sta[sta->aid - 1], 0,
sizeof(struct wmi_per_sta_stat));
eth_zero_addr(sta->mac);
memset(sta->wpa_ie, 0, ATH6KL_MAX_IE);
sta->aid = 0;
sta->sta_flags = 0;
ar->sta_list_index = ar->sta_list_index & ~(1 << i);
aggr_reset_state(sta->aggr_conn);
}
static u8 ath6kl_remove_sta(struct ath6kl *ar, u8 *mac, u16 reason)
{
u8 i, removed = 0;
if (is_zero_ether_addr(mac))
return removed;
if (is_broadcast_ether_addr(mac)) {
ath6kl_dbg(ATH6KL_DBG_TRC, "deleting all station\n");
for (i = 0; i < AP_MAX_NUM_STA; i++) {
if (!is_zero_ether_addr(ar->sta_list[i].mac)) {
ath6kl_sta_cleanup(ar, i);
removed = 1;
}
}
} else {
for (i = 0; i < AP_MAX_NUM_STA; i++) {
if (memcmp(ar->sta_list[i].mac, mac, ETH_ALEN) == 0) {
ath6kl_dbg(ATH6KL_DBG_TRC,
"deleting station %pM aid=%d reason=%d\n",
mac, ar->sta_list[i].aid, reason);
ath6kl_sta_cleanup(ar, i);
removed = 1;
break;
}
}
}
return removed;
}
enum htc_endpoint_id ath6kl_ac2_endpoint_id(void *devt, u8 ac)
{
struct ath6kl *ar = devt;
return ar->ac2ep_map[ac];
}
struct ath6kl_cookie *ath6kl_alloc_cookie(struct ath6kl *ar)
{
struct ath6kl_cookie *cookie;
cookie = ar->cookie_list;
if (cookie != NULL) {
ar->cookie_list = cookie->arc_list_next;
ar->cookie_count--;
}
return cookie;
}
void ath6kl_cookie_init(struct ath6kl *ar)
{
u32 i;
ar->cookie_list = NULL;
ar->cookie_count = 0;
memset(ar->cookie_mem, 0, sizeof(ar->cookie_mem));
for (i = 0; i < MAX_COOKIE_NUM; i++)
ath6kl_free_cookie(ar, &ar->cookie_mem[i]);
}
void ath6kl_cookie_cleanup(struct ath6kl *ar)
{
ar->cookie_list = NULL;
ar->cookie_count = 0;
}
void ath6kl_free_cookie(struct ath6kl *ar, struct ath6kl_cookie *cookie)
{
/* Insert first */
if (!ar || !cookie)
return;
cookie->arc_list_next = ar->cookie_list;
ar->cookie_list = cookie;
ar->cookie_count++;
}
/*
* Read from the hardware through its diagnostic window. No cooperation
* from the firmware is required for this.
*/
int ath6kl_diag_read32(struct ath6kl *ar, u32 address, u32 *value)
{
int ret;
ret = ath6kl_hif_diag_read32(ar, address, value);
if (ret) {
ath6kl_warn("failed to read32 through diagnose window: %d\n",
ret);
return ret;
}
return 0;
}
/*
* Write to the ATH6KL through its diagnostic window. No cooperation from
* the Target is required for this.
*/
int ath6kl_diag_write32(struct ath6kl *ar, u32 address, __le32 value)
{
int ret;
ret = ath6kl_hif_diag_write32(ar, address, value);
if (ret) {
ath6kl_err("failed to write 0x%x during diagnose window to 0x%x\n",
address, value);
return ret;
}
return 0;
}
int ath6kl_diag_read(struct ath6kl *ar, u32 address, void *data, u32 length)
{
u32 count, *buf = data;
int ret;
if (WARN_ON(length % 4))
return -EINVAL;
for (count = 0; count < length / 4; count++, address += 4) {
ret = ath6kl_diag_read32(ar, address, &buf[count]);
if (ret)
return ret;
}
return 0;
}
int ath6kl_diag_write(struct ath6kl *ar, u32 address, void *data, u32 length)
{
u32 count;
__le32 *buf = data;
int ret;
if (WARN_ON(length % 4))
return -EINVAL;
for (count = 0; count < length / 4; count++, address += 4) {
ret = ath6kl_diag_write32(ar, address, buf[count]);
if (ret)
return ret;
}
return 0;
}
int ath6kl_read_fwlogs(struct ath6kl *ar)
{
struct ath6kl_dbglog_hdr debug_hdr;
struct ath6kl_dbglog_buf debug_buf;
u32 address, length, dropped, firstbuf, debug_hdr_addr;
int ret, loop;
u8 *buf;
buf = kmalloc(ATH6KL_FWLOG_PAYLOAD_SIZE, GFP_KERNEL);
if (!buf)
return -ENOMEM;
address = TARG_VTOP(ar->target_type,
ath6kl_get_hi_item_addr(ar,
HI_ITEM(hi_dbglog_hdr)));
ret = ath6kl_diag_read32(ar, address, &debug_hdr_addr);
if (ret)
goto out;
/* Get the contents of the ring buffer */
if (debug_hdr_addr == 0) {
ath6kl_warn("Invalid address for debug_hdr_addr\n");
ret = -EINVAL;
goto out;
}
address = TARG_VTOP(ar->target_type, debug_hdr_addr);
ret = ath6kl_diag_read(ar, address, &debug_hdr, sizeof(debug_hdr));
if (ret)
goto out;
address = TARG_VTOP(ar->target_type,
le32_to_cpu(debug_hdr.dbuf_addr));
firstbuf = address;
dropped = le32_to_cpu(debug_hdr.dropped);
ret = ath6kl_diag_read(ar, address, &debug_buf, sizeof(debug_buf));
if (ret)
goto out;
loop = 100;
do {
address = TARG_VTOP(ar->target_type,
le32_to_cpu(debug_buf.buffer_addr));
length = le32_to_cpu(debug_buf.length);
if (length != 0 && (le32_to_cpu(debug_buf.length) <=
le32_to_cpu(debug_buf.bufsize))) {
length = ALIGN(length, 4);
ret = ath6kl_diag_read(ar, address,
buf, length);
if (ret)
goto out;
ath6kl_debug_fwlog_event(ar, buf, length);
}
address = TARG_VTOP(ar->target_type,
le32_to_cpu(debug_buf.next));
ret = ath6kl_diag_read(ar, address, &debug_buf,
sizeof(debug_buf));
if (ret)
goto out;
loop--;
if (WARN_ON(loop == 0)) {
ret = -ETIMEDOUT;
goto out;
}
} while (address != firstbuf);
out:
kfree(buf);
return ret;
}
static void ath6kl_install_static_wep_keys(struct ath6kl_vif *vif)
{
u8 index;
u8 keyusage;
for (index = 0; index <= WMI_MAX_KEY_INDEX; index++) {
if (vif->wep_key_list[index].key_len) {
keyusage = GROUP_USAGE;
if (index == vif->def_txkey_index)
keyusage |= TX_USAGE;
ath6kl_wmi_addkey_cmd(vif->ar->wmi, vif->fw_vif_idx,
index,
WEP_CRYPT,
keyusage,
vif->wep_key_list[index].key_len,
NULL, 0,
vif->wep_key_list[index].key,
KEY_OP_INIT_VAL, NULL,
NO_SYNC_WMIFLAG);
}
}
}
void ath6kl_connect_ap_mode_bss(struct ath6kl_vif *vif, u16 channel)
{
struct ath6kl *ar = vif->ar;
struct ath6kl_req_key *ik;
int res;
u8 key_rsc[ATH6KL_KEY_SEQ_LEN];
ik = &ar->ap_mode_bkey;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "AP mode started on %u MHz\n", channel);
switch (vif->auth_mode) {
case NONE_AUTH:
if (vif->prwise_crypto == WEP_CRYPT)
ath6kl_install_static_wep_keys(vif);
if (!ik->valid || ik->key_type != WAPI_CRYPT)
break;
/* for WAPI, we need to set the delayed group key, continue: */
case WPA_PSK_AUTH:
case WPA2_PSK_AUTH:
case (WPA_PSK_AUTH | WPA2_PSK_AUTH):
if (!ik->valid)
break;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"Delayed addkey for the initial group key for AP mode\n");
memset(key_rsc, 0, sizeof(key_rsc));
res = ath6kl_wmi_addkey_cmd(
ar->wmi, vif->fw_vif_idx, ik->key_index, ik->key_type,
GROUP_USAGE, ik->key_len, key_rsc, ATH6KL_KEY_SEQ_LEN,
ik->key,
KEY_OP_INIT_VAL, NULL, SYNC_BOTH_WMIFLAG);
if (res) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"Delayed addkey failed: %d\n", res);
}
break;
}
if (ar->last_ch != channel)
/* we actually don't know the phymode, default to HT20 */
ath6kl_cfg80211_ch_switch_notify(vif, channel, WMI_11G_HT20);
ath6kl_wmi_bssfilter_cmd(ar->wmi, vif->fw_vif_idx, NONE_BSS_FILTER, 0);
set_bit(CONNECTED, &vif->flags);
netif_carrier_on(vif->ndev);
}
void ath6kl_connect_ap_mode_sta(struct ath6kl_vif *vif, u16 aid, u8 *mac_addr,
u8 keymgmt, u8 ucipher, u8 auth,
u8 assoc_req_len, u8 *assoc_info, u8 apsd_info)
{
u8 *ies = NULL, *wpa_ie = NULL, *pos;
size_t ies_len = 0;
struct station_info sinfo;
ath6kl_dbg(ATH6KL_DBG_TRC, "new station %pM aid=%d\n", mac_addr, aid);
if (assoc_req_len > sizeof(struct ieee80211_hdr_3addr)) {
struct ieee80211_mgmt *mgmt =
(struct ieee80211_mgmt *) assoc_info;
if (ieee80211_is_assoc_req(mgmt->frame_control) &&
assoc_req_len >= sizeof(struct ieee80211_hdr_3addr) +
sizeof(mgmt->u.assoc_req)) {
ies = mgmt->u.assoc_req.variable;
ies_len = assoc_info + assoc_req_len - ies;
} else if (ieee80211_is_reassoc_req(mgmt->frame_control) &&
assoc_req_len >= sizeof(struct ieee80211_hdr_3addr)
+ sizeof(mgmt->u.reassoc_req)) {
ies = mgmt->u.reassoc_req.variable;
ies_len = assoc_info + assoc_req_len - ies;
}
}
pos = ies;
while (pos && pos + 1 < ies + ies_len) {
if (pos + 2 + pos[1] > ies + ies_len)
break;
if (pos[0] == WLAN_EID_RSN)
wpa_ie = pos; /* RSN IE */
else if (pos[0] == WLAN_EID_VENDOR_SPECIFIC &&
pos[1] >= 4 &&
pos[2] == 0x00 && pos[3] == 0x50 && pos[4] == 0xf2) {
if (pos[5] == 0x01)
wpa_ie = pos; /* WPA IE */
else if (pos[5] == 0x04) {
wpa_ie = pos; /* WPS IE */
break; /* overrides WPA/RSN IE */
}
} else if (pos[0] == 0x44 && wpa_ie == NULL) {
/*
* Note: WAPI Parameter Set IE re-uses Element ID that
* was officially allocated for BSS AC Access Delay. As
* such, we need to be a bit more careful on when
* parsing the frame. However, BSS AC Access Delay
* element is not supposed to be included in
* (Re)Association Request frames, so this should not
* cause problems.
*/
wpa_ie = pos; /* WAPI IE */
break;
}
pos += 2 + pos[1];
}
ath6kl_add_new_sta(vif, mac_addr, aid, wpa_ie,
wpa_ie ? 2 + wpa_ie[1] : 0,
keymgmt, ucipher, auth, apsd_info);
/* send event to application */
memset(&sinfo, 0, sizeof(sinfo));
/* TODO: sinfo.generation */
sinfo.assoc_req_ies = ies;
sinfo.assoc_req_ies_len = ies_len;
cfg80211_new_sta(vif->ndev, mac_addr, &sinfo, GFP_KERNEL);
netif_wake_queue(vif->ndev);
}
void disconnect_timer_handler(unsigned long ptr)
{
struct net_device *dev = (struct net_device *)ptr;
struct ath6kl_vif *vif = netdev_priv(dev);
ath6kl_init_profile_info(vif);
ath6kl_disconnect(vif);
}
void ath6kl_disconnect(struct ath6kl_vif *vif)
{
if (test_bit(CONNECTED, &vif->flags) ||
test_bit(CONNECT_PEND, &vif->flags)) {
ath6kl_wmi_disconnect_cmd(vif->ar->wmi, vif->fw_vif_idx);
/*
* Disconnect command is issued, clear the connect pending
* flag. The connected flag will be cleared in
* disconnect event notification.
*/
clear_bit(CONNECT_PEND, &vif->flags);
}
}
/* WMI Event handlers */
void ath6kl_ready_event(void *devt, u8 *datap, u32 sw_ver, u32 abi_ver,
enum wmi_phy_cap cap)
{
struct ath6kl *ar = devt;
memcpy(ar->mac_addr, datap, ETH_ALEN);
ath6kl_dbg(ATH6KL_DBG_BOOT,
"ready event mac addr %pM sw_ver 0x%x abi_ver 0x%x cap 0x%x\n",
ar->mac_addr, sw_ver, abi_ver, cap);
ar->version.wlan_ver = sw_ver;
ar->version.abi_ver = abi_ver;
ar->hw.cap = cap;
if (strlen(ar->wiphy->fw_version) == 0) {
snprintf(ar->wiphy->fw_version,
sizeof(ar->wiphy->fw_version),
"%u.%u.%u.%u",
(ar->version.wlan_ver & 0xf0000000) >> 28,
(ar->version.wlan_ver & 0x0f000000) >> 24,
(ar->version.wlan_ver & 0x00ff0000) >> 16,
(ar->version.wlan_ver & 0x0000ffff));
}
/* indicate to the waiting thread that the ready event was received */
set_bit(WMI_READY, &ar->flag);
wake_up(&ar->event_wq);
}
void ath6kl_scan_complete_evt(struct ath6kl_vif *vif, int status)
{
struct ath6kl *ar = vif->ar;
bool aborted = false;
if (status != WMI_SCAN_STATUS_SUCCESS)
aborted = true;
ath6kl_cfg80211_scan_complete_event(vif, aborted);
if (!ar->usr_bss_filter) {
clear_bit(CLEAR_BSSFILTER_ON_BEACON, &vif->flags);
ath6kl_wmi_bssfilter_cmd(ar->wmi, vif->fw_vif_idx,
NONE_BSS_FILTER, 0);
}
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "scan complete: %d\n", status);
}
static int ath6kl_commit_ch_switch(struct ath6kl_vif *vif, u16 channel)
{
struct ath6kl *ar = vif->ar;
vif->profile.ch = cpu_to_le16(channel);
switch (vif->nw_type) {
case AP_NETWORK:
/*
* reconfigure any saved RSN IE capabilites in the beacon /
* probe response to stay in sync with the supplicant.
*/
if (vif->rsn_capab &&
test_bit(ATH6KL_FW_CAPABILITY_RSN_CAP_OVERRIDE,
ar->fw_capabilities))
ath6kl_wmi_set_ie_cmd(ar->wmi, vif->fw_vif_idx,
WLAN_EID_RSN, WMI_RSN_IE_CAPB,
(const u8 *) &vif->rsn_capab,
sizeof(vif->rsn_capab));
return ath6kl_wmi_ap_profile_commit(ar->wmi, vif->fw_vif_idx,
&vif->profile);
default:
ath6kl_err("won't switch channels nw_type=%d\n", vif->nw_type);
return -ENOTSUPP;
}
}
static void ath6kl_check_ch_switch(struct ath6kl *ar, u16 channel)
{
struct ath6kl_vif *vif;
int res = 0;
if (!ar->want_ch_switch)
return;
spin_lock_bh(&ar->list_lock);
list_for_each_entry(vif, &ar->vif_list, list) {
if (ar->want_ch_switch & (1 << vif->fw_vif_idx))
res = ath6kl_commit_ch_switch(vif, channel);
/* if channel switch failed, oh well we tried */
ar->want_ch_switch &= ~(1 << vif->fw_vif_idx);
if (res)
ath6kl_err("channel switch failed nw_type %d res %d\n",
vif->nw_type, res);
}
spin_unlock_bh(&ar->list_lock);
}
void ath6kl_connect_event(struct ath6kl_vif *vif, u16 channel, u8 *bssid,
u16 listen_int, u16 beacon_int,
enum network_type net_type, u8 beacon_ie_len,
u8 assoc_req_len, u8 assoc_resp_len,
u8 *assoc_info)
{
struct ath6kl *ar = vif->ar;
ath6kl_cfg80211_connect_event(vif, channel, bssid,
listen_int, beacon_int,
net_type, beacon_ie_len,
assoc_req_len, assoc_resp_len,
assoc_info);
memcpy(vif->bssid, bssid, sizeof(vif->bssid));
vif->bss_ch = channel;
if ((vif->nw_type == INFRA_NETWORK)) {
ath6kl_wmi_listeninterval_cmd(ar->wmi, vif->fw_vif_idx,
vif->listen_intvl_t, 0);
ath6kl_check_ch_switch(ar, channel);
}
netif_wake_queue(vif->ndev);
/* Update connect & link status atomically */
spin_lock_bh(&vif->if_lock);
set_bit(CONNECTED, &vif->flags);
clear_bit(CONNECT_PEND, &vif->flags);
netif_carrier_on(vif->ndev);
spin_unlock_bh(&vif->if_lock);
aggr_reset_state(vif->aggr_cntxt->aggr_conn);
vif->reconnect_flag = 0;
if ((vif->nw_type == ADHOC_NETWORK) && ar->ibss_ps_enable) {
memset(ar->node_map, 0, sizeof(ar->node_map));
ar->node_num = 0;
ar->next_ep_id = ENDPOINT_2;
}
if (!ar->usr_bss_filter) {
set_bit(CLEAR_BSSFILTER_ON_BEACON, &vif->flags);
ath6kl_wmi_bssfilter_cmd(ar->wmi, vif->fw_vif_idx,
CURRENT_BSS_FILTER, 0);
}
}
void ath6kl_tkip_micerr_event(struct ath6kl_vif *vif, u8 keyid, bool ismcast)
{
struct ath6kl_sta *sta;
struct ath6kl *ar = vif->ar;
u8 tsc[6];
/*
* For AP case, keyid will have aid of STA which sent pkt with
* MIC error. Use this aid to get MAC & send it to hostapd.
*/
if (vif->nw_type == AP_NETWORK) {
sta = ath6kl_find_sta_by_aid(ar, (keyid >> 2));
if (!sta)
return;
ath6kl_dbg(ATH6KL_DBG_TRC,
"ap tkip mic error received from aid=%d\n", keyid);
memset(tsc, 0, sizeof(tsc)); /* FIX: get correct TSC */
cfg80211_michael_mic_failure(vif->ndev, sta->mac,
NL80211_KEYTYPE_PAIRWISE, keyid,
tsc, GFP_KERNEL);
} else {
ath6kl_cfg80211_tkip_micerr_event(vif, keyid, ismcast);
}
}
static void ath6kl_update_target_stats(struct ath6kl_vif *vif, u8 *ptr, u32 len)
{
struct wmi_target_stats *tgt_stats =
(struct wmi_target_stats *) ptr;
struct ath6kl *ar = vif->ar;
struct target_stats *stats = &vif->target_stats;
struct tkip_ccmp_stats *ccmp_stats;
s32 rate;
u8 ac;
if (len < sizeof(*tgt_stats))
return;
ath6kl_dbg(ATH6KL_DBG_TRC, "updating target stats\n");
stats->tx_pkt += le32_to_cpu(tgt_stats->stats.tx.pkt);
stats->tx_byte += le32_to_cpu(tgt_stats->stats.tx.byte);
stats->tx_ucast_pkt += le32_to_cpu(tgt_stats->stats.tx.ucast_pkt);
stats->tx_ucast_byte += le32_to_cpu(tgt_stats->stats.tx.ucast_byte);
stats->tx_mcast_pkt += le32_to_cpu(tgt_stats->stats.tx.mcast_pkt);
stats->tx_mcast_byte += le32_to_cpu(tgt_stats->stats.tx.mcast_byte);
stats->tx_bcast_pkt += le32_to_cpu(tgt_stats->stats.tx.bcast_pkt);
stats->tx_bcast_byte += le32_to_cpu(tgt_stats->stats.tx.bcast_byte);
stats->tx_rts_success_cnt +=
le32_to_cpu(tgt_stats->stats.tx.rts_success_cnt);
for (ac = 0; ac < WMM_NUM_AC; ac++)
stats->tx_pkt_per_ac[ac] +=
le32_to_cpu(tgt_stats->stats.tx.pkt_per_ac[ac]);
stats->tx_err += le32_to_cpu(tgt_stats->stats.tx.err);
stats->tx_fail_cnt += le32_to_cpu(tgt_stats->stats.tx.fail_cnt);
stats->tx_retry_cnt += le32_to_cpu(tgt_stats->stats.tx.retry_cnt);
stats->tx_mult_retry_cnt +=
le32_to_cpu(tgt_stats->stats.tx.mult_retry_cnt);
stats->tx_rts_fail_cnt +=
le32_to_cpu(tgt_stats->stats.tx.rts_fail_cnt);
rate = a_sle32_to_cpu(tgt_stats->stats.tx.ucast_rate);
stats->tx_ucast_rate = ath6kl_wmi_get_rate(ar->wmi, rate);
stats->rx_pkt += le32_to_cpu(tgt_stats->stats.rx.pkt);
stats->rx_byte += le32_to_cpu(tgt_stats->stats.rx.byte);
stats->rx_ucast_pkt += le32_to_cpu(tgt_stats->stats.rx.ucast_pkt);
stats->rx_ucast_byte += le32_to_cpu(tgt_stats->stats.rx.ucast_byte);
stats->rx_mcast_pkt += le32_to_cpu(tgt_stats->stats.rx.mcast_pkt);
stats->rx_mcast_byte += le32_to_cpu(tgt_stats->stats.rx.mcast_byte);
stats->rx_bcast_pkt += le32_to_cpu(tgt_stats->stats.rx.bcast_pkt);
stats->rx_bcast_byte += le32_to_cpu(tgt_stats->stats.rx.bcast_byte);
stats->rx_frgment_pkt += le32_to_cpu(tgt_stats->stats.rx.frgment_pkt);
stats->rx_err += le32_to_cpu(tgt_stats->stats.rx.err);
stats->rx_crc_err += le32_to_cpu(tgt_stats->stats.rx.crc_err);
stats->rx_key_cache_miss +=
le32_to_cpu(tgt_stats->stats.rx.key_cache_miss);
stats->rx_decrypt_err += le32_to_cpu(tgt_stats->stats.rx.decrypt_err);
stats->rx_dupl_frame += le32_to_cpu(tgt_stats->stats.rx.dupl_frame);
rate = a_sle32_to_cpu(tgt_stats->stats.rx.ucast_rate);
stats->rx_ucast_rate = ath6kl_wmi_get_rate(ar->wmi, rate);
ccmp_stats = &tgt_stats->stats.tkip_ccmp_stats;
stats->tkip_local_mic_fail +=
le32_to_cpu(ccmp_stats->tkip_local_mic_fail);
stats->tkip_cnter_measures_invoked +=
le32_to_cpu(ccmp_stats->tkip_cnter_measures_invoked);
stats->tkip_fmt_err += le32_to_cpu(ccmp_stats->tkip_fmt_err);
stats->ccmp_fmt_err += le32_to_cpu(ccmp_stats->ccmp_fmt_err);
stats->ccmp_replays += le32_to_cpu(ccmp_stats->ccmp_replays);
stats->pwr_save_fail_cnt +=
le32_to_cpu(tgt_stats->pm_stats.pwr_save_failure_cnt);
stats->noise_floor_calib =
a_sle32_to_cpu(tgt_stats->noise_floor_calib);
stats->cs_bmiss_cnt +=
le32_to_cpu(tgt_stats->cserv_stats.cs_bmiss_cnt);
stats->cs_low_rssi_cnt +=
le32_to_cpu(tgt_stats->cserv_stats.cs_low_rssi_cnt);
stats->cs_connect_cnt +=
le16_to_cpu(tgt_stats->cserv_stats.cs_connect_cnt);
stats->cs_discon_cnt +=
le16_to_cpu(tgt_stats->cserv_stats.cs_discon_cnt);
stats->cs_ave_beacon_rssi =
a_sle16_to_cpu(tgt_stats->cserv_stats.cs_ave_beacon_rssi);
stats->cs_last_roam_msec =
tgt_stats->cserv_stats.cs_last_roam_msec;
stats->cs_snr = tgt_stats->cserv_stats.cs_snr;
stats->cs_rssi = a_sle16_to_cpu(tgt_stats->cserv_stats.cs_rssi);
stats->lq_val = le32_to_cpu(tgt_stats->lq_val);
stats->wow_pkt_dropped +=
le32_to_cpu(tgt_stats->wow_stats.wow_pkt_dropped);
stats->wow_host_pkt_wakeups +=
tgt_stats->wow_stats.wow_host_pkt_wakeups;
stats->wow_host_evt_wakeups +=
tgt_stats->wow_stats.wow_host_evt_wakeups;
stats->wow_evt_discarded +=
le16_to_cpu(tgt_stats->wow_stats.wow_evt_discarded);
stats->arp_received = le32_to_cpu(tgt_stats->arp_stats.arp_received);
stats->arp_replied = le32_to_cpu(tgt_stats->arp_stats.arp_replied);
stats->arp_matched = le32_to_cpu(tgt_stats->arp_stats.arp_matched);
if (test_bit(STATS_UPDATE_PEND, &vif->flags)) {
clear_bit(STATS_UPDATE_PEND, &vif->flags);
wake_up(&ar->event_wq);
}
}
static void ath6kl_add_le32(__le32 *var, __le32 val)
{
*var = cpu_to_le32(le32_to_cpu(*var) + le32_to_cpu(val));
}
void ath6kl_tgt_stats_event(struct ath6kl_vif *vif, u8 *ptr, u32 len)
{
struct wmi_ap_mode_stat *p = (struct wmi_ap_mode_stat *) ptr;
struct ath6kl *ar = vif->ar;
struct wmi_ap_mode_stat *ap = &ar->ap_stats;
struct wmi_per_sta_stat *st_ap, *st_p;
u8 ac;
if (vif->nw_type == AP_NETWORK) {
if (len < sizeof(*p))
return;
for (ac = 0; ac < AP_MAX_NUM_STA; ac++) {
st_ap = &ap->sta[ac];
st_p = &p->sta[ac];
ath6kl_add_le32(&st_ap->tx_bytes, st_p->tx_bytes);
ath6kl_add_le32(&st_ap->tx_pkts, st_p->tx_pkts);
ath6kl_add_le32(&st_ap->tx_error, st_p->tx_error);
ath6kl_add_le32(&st_ap->tx_discard, st_p->tx_discard);
ath6kl_add_le32(&st_ap->rx_bytes, st_p->rx_bytes);
ath6kl_add_le32(&st_ap->rx_pkts, st_p->rx_pkts);
ath6kl_add_le32(&st_ap->rx_error, st_p->rx_error);
ath6kl_add_le32(&st_ap->rx_discard, st_p->rx_discard);
}
} else {
ath6kl_update_target_stats(vif, ptr, len);
}
}
void ath6kl_wakeup_event(void *dev)
{
struct ath6kl *ar = (struct ath6kl *) dev;
wake_up(&ar->event_wq);
}
void ath6kl_txpwr_rx_evt(void *devt, u8 tx_pwr)
{
struct ath6kl *ar = (struct ath6kl *) devt;
ar->tx_pwr = tx_pwr;
wake_up(&ar->event_wq);
}
void ath6kl_pspoll_event(struct ath6kl_vif *vif, u8 aid)
{
struct ath6kl_sta *conn;
struct sk_buff *skb;
bool psq_empty = false;
struct ath6kl *ar = vif->ar;
struct ath6kl_mgmt_buff *mgmt_buf;
conn = ath6kl_find_sta_by_aid(ar, aid);
if (!conn)
return;
/*
* Send out a packet queued on ps queue. When the ps queue
* becomes empty update the PVB for this station.
*/
spin_lock_bh(&conn->psq_lock);
psq_empty = skb_queue_empty(&conn->psq) && (conn->mgmt_psq_len == 0);
spin_unlock_bh(&conn->psq_lock);
if (psq_empty)
/* TODO: Send out a NULL data frame */
return;
spin_lock_bh(&conn->psq_lock);
if (conn->mgmt_psq_len > 0) {
mgmt_buf = list_first_entry(&conn->mgmt_psq,
struct ath6kl_mgmt_buff, list);
list_del(&mgmt_buf->list);
conn->mgmt_psq_len--;
spin_unlock_bh(&conn->psq_lock);
conn->sta_flags |= STA_PS_POLLED;
ath6kl_wmi_send_mgmt_cmd(ar->wmi, vif->fw_vif_idx,
mgmt_buf->id, mgmt_buf->freq,
mgmt_buf->wait, mgmt_buf->buf,
mgmt_buf->len, mgmt_buf->no_cck);
conn->sta_flags &= ~STA_PS_POLLED;
kfree(mgmt_buf);
} else {
skb = skb_dequeue(&conn->psq);
spin_unlock_bh(&conn->psq_lock);
conn->sta_flags |= STA_PS_POLLED;
ath6kl_data_tx(skb, vif->ndev);
conn->sta_flags &= ~STA_PS_POLLED;
}
spin_lock_bh(&conn->psq_lock);
psq_empty = skb_queue_empty(&conn->psq) && (conn->mgmt_psq_len == 0);
spin_unlock_bh(&conn->psq_lock);
if (psq_empty)
ath6kl_wmi_set_pvb_cmd(ar->wmi, vif->fw_vif_idx, conn->aid, 0);
}
void ath6kl_dtimexpiry_event(struct ath6kl_vif *vif)
{
bool mcastq_empty = false;
struct sk_buff *skb;
struct ath6kl *ar = vif->ar;
/*
* If there are no associated STAs, ignore the DTIM expiry event.
* There can be potential race conditions where the last associated
* STA may disconnect & before the host could clear the 'Indicate
* DTIM' request to the firmware, the firmware would have just
* indicated a DTIM expiry event. The race is between 'clear DTIM
* expiry cmd' going from the host to the firmware & the DTIM
* expiry event happening from the firmware to the host.
*/
if (!ar->sta_list_index)
return;
spin_lock_bh(&ar->mcastpsq_lock);
mcastq_empty = skb_queue_empty(&ar->mcastpsq);
spin_unlock_bh(&ar->mcastpsq_lock);
if (mcastq_empty)
return;
/* set the STA flag to dtim_expired for the frame to go out */
set_bit(DTIM_EXPIRED, &vif->flags);
spin_lock_bh(&ar->mcastpsq_lock);
while ((skb = skb_dequeue(&ar->mcastpsq)) != NULL) {
spin_unlock_bh(&ar->mcastpsq_lock);
ath6kl_data_tx(skb, vif->ndev);
spin_lock_bh(&ar->mcastpsq_lock);
}
spin_unlock_bh(&ar->mcastpsq_lock);
clear_bit(DTIM_EXPIRED, &vif->flags);
/* clear the LSB of the BitMapCtl field of the TIM IE */
ath6kl_wmi_set_pvb_cmd(ar->wmi, vif->fw_vif_idx, MCAST_AID, 0);
}
void ath6kl_disconnect_event(struct ath6kl_vif *vif, u8 reason, u8 *bssid,
u8 assoc_resp_len, u8 *assoc_info,
u16 prot_reason_status)
{
struct ath6kl *ar = vif->ar;
if (vif->nw_type == AP_NETWORK) {
/* disconnect due to other STA vif switching channels */
if (reason == BSS_DISCONNECTED &&
prot_reason_status == WMI_AP_REASON_STA_ROAM) {
ar->want_ch_switch |= 1 << vif->fw_vif_idx;
/* bail back to this channel if STA vif fails connect */
ar->last_ch = le16_to_cpu(vif->profile.ch);
}
if (prot_reason_status == WMI_AP_REASON_MAX_STA) {
/* send max client reached notification to user space */
cfg80211_conn_failed(vif->ndev, bssid,
NL80211_CONN_FAIL_MAX_CLIENTS,
GFP_KERNEL);
}
if (prot_reason_status == WMI_AP_REASON_ACL) {
/* send blocked client notification to user space */
cfg80211_conn_failed(vif->ndev, bssid,
NL80211_CONN_FAIL_BLOCKED_CLIENT,
GFP_KERNEL);
}
if (!ath6kl_remove_sta(ar, bssid, prot_reason_status))
return;
/* if no more associated STAs, empty the mcast PS q */
if (ar->sta_list_index == 0) {
spin_lock_bh(&ar->mcastpsq_lock);
skb_queue_purge(&ar->mcastpsq);
spin_unlock_bh(&ar->mcastpsq_lock);
/* clear the LSB of the TIM IE's BitMapCtl field */
if (test_bit(WMI_READY, &ar->flag))
ath6kl_wmi_set_pvb_cmd(ar->wmi, vif->fw_vif_idx,
MCAST_AID, 0);
}
if (!is_broadcast_ether_addr(bssid)) {
/* send event to application */
cfg80211_del_sta(vif->ndev, bssid, GFP_KERNEL);
}
if (memcmp(vif->ndev->dev_addr, bssid, ETH_ALEN) == 0) {
memset(vif->wep_key_list, 0, sizeof(vif->wep_key_list));
clear_bit(CONNECTED, &vif->flags);
}
return;
}
ath6kl_cfg80211_disconnect_event(vif, reason, bssid,
assoc_resp_len, assoc_info,
prot_reason_status);
aggr_reset_state(vif->aggr_cntxt->aggr_conn);
del_timer(&vif->disconnect_timer);
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "disconnect reason is %d\n", reason);
/*
* If the event is due to disconnect cmd from the host, only they
* the target would stop trying to connect. Under any other
* condition, target would keep trying to connect.
*/
if (reason == DISCONNECT_CMD) {
if (!ar->usr_bss_filter && test_bit(WMI_READY, &ar->flag))
ath6kl_wmi_bssfilter_cmd(ar->wmi, vif->fw_vif_idx,
NONE_BSS_FILTER, 0);
} else {
set_bit(CONNECT_PEND, &vif->flags);
if (((reason == ASSOC_FAILED) &&
(prot_reason_status == 0x11)) ||
((reason == ASSOC_FAILED) && (prot_reason_status == 0x0) &&
(vif->reconnect_flag == 1))) {
set_bit(CONNECTED, &vif->flags);
return;
}
}
/* restart disconnected concurrent vifs waiting for new channel */
ath6kl_check_ch_switch(ar, ar->last_ch);
/* update connect & link status atomically */
spin_lock_bh(&vif->if_lock);
clear_bit(CONNECTED, &vif->flags);
netif_carrier_off(vif->ndev);
spin_unlock_bh(&vif->if_lock);
if ((reason != CSERV_DISCONNECT) || (vif->reconnect_flag != 1))
vif->reconnect_flag = 0;
if (reason != CSERV_DISCONNECT)
ar->user_key_ctrl = 0;
netif_stop_queue(vif->ndev);
memset(vif->bssid, 0, sizeof(vif->bssid));
vif->bss_ch = 0;
ath6kl_tx_data_cleanup(ar);
}
struct ath6kl_vif *ath6kl_vif_first(struct ath6kl *ar)
{
struct ath6kl_vif *vif;
spin_lock_bh(&ar->list_lock);
if (list_empty(&ar->vif_list)) {
spin_unlock_bh(&ar->list_lock);
return NULL;
}
vif = list_first_entry(&ar->vif_list, struct ath6kl_vif, list);
spin_unlock_bh(&ar->list_lock);
return vif;
}
static int ath6kl_open(struct net_device *dev)
{
struct ath6kl_vif *vif = netdev_priv(dev);
set_bit(WLAN_ENABLED, &vif->flags);
if (test_bit(CONNECTED, &vif->flags)) {
netif_carrier_on(dev);
netif_wake_queue(dev);
} else {
netif_carrier_off(dev);
}
return 0;
}
static int ath6kl_close(struct net_device *dev)
{
struct ath6kl_vif *vif = netdev_priv(dev);
netif_stop_queue(dev);
ath6kl_cfg80211_stop(vif);
clear_bit(WLAN_ENABLED, &vif->flags);
return 0;
}
static struct net_device_stats *ath6kl_get_stats(struct net_device *dev)
{
struct ath6kl_vif *vif = netdev_priv(dev);
return &vif->net_stats;
}
static int ath6kl_set_features(struct net_device *dev,
netdev_features_t features)
{
struct ath6kl_vif *vif = netdev_priv(dev);
struct ath6kl *ar = vif->ar;
int err = 0;
if ((features & NETIF_F_RXCSUM) &&
(ar->rx_meta_ver != WMI_META_VERSION_2)) {
ar->rx_meta_ver = WMI_META_VERSION_2;
err = ath6kl_wmi_set_rx_frame_format_cmd(ar->wmi,
vif->fw_vif_idx,
ar->rx_meta_ver, 0, 0);
if (err) {
dev->features = features & ~NETIF_F_RXCSUM;
return err;
}
} else if (!(features & NETIF_F_RXCSUM) &&
(ar->rx_meta_ver == WMI_META_VERSION_2)) {
ar->rx_meta_ver = 0;
err = ath6kl_wmi_set_rx_frame_format_cmd(ar->wmi,
vif->fw_vif_idx,
ar->rx_meta_ver, 0, 0);
if (err) {
dev->features = features | NETIF_F_RXCSUM;
return err;
}
}
return err;
}
static void ath6kl_set_multicast_list(struct net_device *ndev)
{
struct ath6kl_vif *vif = netdev_priv(ndev);
bool mc_all_on = false;
int mc_count = netdev_mc_count(ndev);
struct netdev_hw_addr *ha;
bool found;
struct ath6kl_mc_filter *mc_filter, *tmp;
struct list_head mc_filter_new;
int ret;
if (!test_bit(WMI_READY, &vif->ar->flag) ||
!test_bit(WLAN_ENABLED, &vif->flags))
return;
/* Enable multicast-all filter. */
mc_all_on = !!(ndev->flags & IFF_PROMISC) ||
!!(ndev->flags & IFF_ALLMULTI) ||
!!(mc_count > ATH6K_MAX_MC_FILTERS_PER_LIST);
if (mc_all_on)
set_bit(NETDEV_MCAST_ALL_ON, &vif->flags);
else
clear_bit(NETDEV_MCAST_ALL_ON, &vif->flags);
if (test_bit(ATH6KL_FW_CAPABILITY_WOW_MULTICAST_FILTER,
vif->ar->fw_capabilities)) {
mc_all_on = mc_all_on || (vif->ar->state == ATH6KL_STATE_ON);
}
if (!(ndev->flags & IFF_MULTICAST)) {
mc_all_on = false;
set_bit(NETDEV_MCAST_ALL_OFF, &vif->flags);
} else {
clear_bit(NETDEV_MCAST_ALL_OFF, &vif->flags);
}
/* Enable/disable "multicast-all" filter*/
ath6kl_dbg(ATH6KL_DBG_TRC, "%s multicast-all filter\n",
mc_all_on ? "enabling" : "disabling");
ret = ath6kl_wmi_mcast_filter_cmd(vif->ar->wmi, vif->fw_vif_idx,
mc_all_on);
if (ret) {
ath6kl_warn("Failed to %s multicast-all receive\n",
mc_all_on ? "enable" : "disable");
return;
}
if (test_bit(NETDEV_MCAST_ALL_ON, &vif->flags))
return;
/* Keep the driver and firmware mcast list in sync. */
list_for_each_entry_safe(mc_filter, tmp, &vif->mc_filter, list) {
found = false;
netdev_for_each_mc_addr(ha, ndev) {
if (memcmp(ha->addr, mc_filter->hw_addr,
ATH6KL_MCAST_FILTER_MAC_ADDR_SIZE) == 0) {
found = true;
break;
}
}
if (!found) {
/*
* Delete the filter which was previously set
* but not in the new request.
*/
ath6kl_dbg(ATH6KL_DBG_TRC,
"Removing %pM from multicast filter\n",
mc_filter->hw_addr);
ret = ath6kl_wmi_add_del_mcast_filter_cmd(vif->ar->wmi,
vif->fw_vif_idx, mc_filter->hw_addr,
false);
if (ret) {
ath6kl_warn("Failed to remove multicast filter:%pM\n",
mc_filter->hw_addr);
return;
}
list_del(&mc_filter->list);
kfree(mc_filter);
}
}
INIT_LIST_HEAD(&mc_filter_new);
netdev_for_each_mc_addr(ha, ndev) {
found = false;
list_for_each_entry(mc_filter, &vif->mc_filter, list) {
if (memcmp(ha->addr, mc_filter->hw_addr,
ATH6KL_MCAST_FILTER_MAC_ADDR_SIZE) == 0) {
found = true;
break;
}
}
if (!found) {
mc_filter = kzalloc(sizeof(struct ath6kl_mc_filter),
GFP_ATOMIC);
if (!mc_filter) {
WARN_ON(1);
goto out;
}
memcpy(mc_filter->hw_addr, ha->addr,
ATH6KL_MCAST_FILTER_MAC_ADDR_SIZE);
/* Set the multicast filter */
ath6kl_dbg(ATH6KL_DBG_TRC,
"Adding %pM to multicast filter list\n",
mc_filter->hw_addr);
ret = ath6kl_wmi_add_del_mcast_filter_cmd(vif->ar->wmi,
vif->fw_vif_idx, mc_filter->hw_addr,
true);
if (ret) {
ath6kl_warn("Failed to add multicast filter :%pM\n",
mc_filter->hw_addr);
kfree(mc_filter);
goto out;
}
list_add_tail(&mc_filter->list, &mc_filter_new);
}
}
out:
list_splice_tail(&mc_filter_new, &vif->mc_filter);
}
static const struct net_device_ops ath6kl_netdev_ops = {
.ndo_open = ath6kl_open,
.ndo_stop = ath6kl_close,
.ndo_start_xmit = ath6kl_data_tx,
.ndo_get_stats = ath6kl_get_stats,
.ndo_set_features = ath6kl_set_features,
.ndo_set_rx_mode = ath6kl_set_multicast_list,
};
void init_netdev(struct net_device *dev)
{
struct ath6kl *ar = ath6kl_priv(dev);
dev->netdev_ops = &ath6kl_netdev_ops;
dev->destructor = free_netdev;
dev->watchdog_timeo = ATH6KL_TX_TIMEOUT;
dev->needed_headroom = ETH_HLEN;
dev->needed_headroom += roundup(sizeof(struct ath6kl_llc_snap_hdr) +
sizeof(struct wmi_data_hdr) +
HTC_HDR_LENGTH +
WMI_MAX_TX_META_SZ +
ATH6KL_HTC_ALIGN_BYTES, 4);
if (!test_bit(ATH6KL_FW_CAPABILITY_NO_IP_CHECKSUM,
ar->fw_capabilities))
dev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_RXCSUM;
return;
}