blob: 8d3f39a8a11eaaba65c1bd651430b82c4b776e0a [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Hosting Protected Virtual Machines
*
* Copyright IBM Corp. 2019, 2020
* Author(s): Janosch Frank <frankja@linux.ibm.com>
*/
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/minmax.h>
#include <linux/pagemap.h>
#include <linux/sched/signal.h>
#include <asm/gmap.h>
#include <asm/uv.h>
#include <asm/mman.h>
#include <linux/pagewalk.h>
#include <linux/sched/mm.h>
#include <linux/mmu_notifier.h>
#include "kvm-s390.h"
bool kvm_s390_pv_is_protected(struct kvm *kvm)
{
lockdep_assert_held(&kvm->lock);
return !!kvm_s390_pv_get_handle(kvm);
}
EXPORT_SYMBOL_GPL(kvm_s390_pv_is_protected);
bool kvm_s390_pv_cpu_is_protected(struct kvm_vcpu *vcpu)
{
lockdep_assert_held(&vcpu->mutex);
return !!kvm_s390_pv_cpu_get_handle(vcpu);
}
EXPORT_SYMBOL_GPL(kvm_s390_pv_cpu_is_protected);
/**
* struct pv_vm_to_be_destroyed - Represents a protected VM that needs to
* be destroyed
*
* @list: list head for the list of leftover VMs
* @old_gmap_table: the gmap table of the leftover protected VM
* @handle: the handle of the leftover protected VM
* @stor_var: pointer to the variable storage of the leftover protected VM
* @stor_base: address of the base storage of the leftover protected VM
*
* Represents a protected VM that is still registered with the Ultravisor,
* but which does not correspond any longer to an active KVM VM. It should
* be destroyed at some point later, either asynchronously or when the
* process terminates.
*/
struct pv_vm_to_be_destroyed {
struct list_head list;
unsigned long old_gmap_table;
u64 handle;
void *stor_var;
unsigned long stor_base;
};
static void kvm_s390_clear_pv_state(struct kvm *kvm)
{
kvm->arch.pv.handle = 0;
kvm->arch.pv.guest_len = 0;
kvm->arch.pv.stor_base = 0;
kvm->arch.pv.stor_var = NULL;
}
int kvm_s390_pv_destroy_cpu(struct kvm_vcpu *vcpu, u16 *rc, u16 *rrc)
{
int cc;
if (!kvm_s390_pv_cpu_get_handle(vcpu))
return 0;
cc = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), UVC_CMD_DESTROY_SEC_CPU, rc, rrc);
KVM_UV_EVENT(vcpu->kvm, 3, "PROTVIRT DESTROY VCPU %d: rc %x rrc %x",
vcpu->vcpu_id, *rc, *rrc);
WARN_ONCE(cc, "protvirt destroy cpu failed rc %x rrc %x", *rc, *rrc);
/* Intended memory leak for something that should never happen. */
if (!cc)
free_pages(vcpu->arch.pv.stor_base,
get_order(uv_info.guest_cpu_stor_len));
free_page((unsigned long)sida_addr(vcpu->arch.sie_block));
vcpu->arch.sie_block->pv_handle_cpu = 0;
vcpu->arch.sie_block->pv_handle_config = 0;
memset(&vcpu->arch.pv, 0, sizeof(vcpu->arch.pv));
vcpu->arch.sie_block->sdf = 0;
/*
* The sidad field (for sdf == 2) is now the gbea field (for sdf == 0).
* Use the reset value of gbea to avoid leaking the kernel pointer of
* the just freed sida.
*/
vcpu->arch.sie_block->gbea = 1;
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
return cc ? EIO : 0;
}
int kvm_s390_pv_create_cpu(struct kvm_vcpu *vcpu, u16 *rc, u16 *rrc)
{
struct uv_cb_csc uvcb = {
.header.cmd = UVC_CMD_CREATE_SEC_CPU,
.header.len = sizeof(uvcb),
};
void *sida_addr;
int cc;
if (kvm_s390_pv_cpu_get_handle(vcpu))
return -EINVAL;
vcpu->arch.pv.stor_base = __get_free_pages(GFP_KERNEL_ACCOUNT,
get_order(uv_info.guest_cpu_stor_len));
if (!vcpu->arch.pv.stor_base)
return -ENOMEM;
/* Input */
uvcb.guest_handle = kvm_s390_pv_get_handle(vcpu->kvm);
uvcb.num = vcpu->arch.sie_block->icpua;
uvcb.state_origin = virt_to_phys(vcpu->arch.sie_block);
uvcb.stor_origin = virt_to_phys((void *)vcpu->arch.pv.stor_base);
/* Alloc Secure Instruction Data Area Designation */
sida_addr = (void *)__get_free_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
if (!sida_addr) {
free_pages(vcpu->arch.pv.stor_base,
get_order(uv_info.guest_cpu_stor_len));
return -ENOMEM;
}
vcpu->arch.sie_block->sidad = virt_to_phys(sida_addr);
cc = uv_call(0, (u64)&uvcb);
*rc = uvcb.header.rc;
*rrc = uvcb.header.rrc;
KVM_UV_EVENT(vcpu->kvm, 3,
"PROTVIRT CREATE VCPU: cpu %d handle %llx rc %x rrc %x",
vcpu->vcpu_id, uvcb.cpu_handle, uvcb.header.rc,
uvcb.header.rrc);
if (cc) {
u16 dummy;
kvm_s390_pv_destroy_cpu(vcpu, &dummy, &dummy);
return -EIO;
}
/* Output */
vcpu->arch.pv.handle = uvcb.cpu_handle;
vcpu->arch.sie_block->pv_handle_cpu = uvcb.cpu_handle;
vcpu->arch.sie_block->pv_handle_config = kvm_s390_pv_get_handle(vcpu->kvm);
vcpu->arch.sie_block->sdf = 2;
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
return 0;
}
/* only free resources when the destroy was successful */
static void kvm_s390_pv_dealloc_vm(struct kvm *kvm)
{
vfree(kvm->arch.pv.stor_var);
free_pages(kvm->arch.pv.stor_base,
get_order(uv_info.guest_base_stor_len));
kvm_s390_clear_pv_state(kvm);
}
static int kvm_s390_pv_alloc_vm(struct kvm *kvm)
{
unsigned long base = uv_info.guest_base_stor_len;
unsigned long virt = uv_info.guest_virt_var_stor_len;
unsigned long npages = 0, vlen = 0;
kvm->arch.pv.stor_var = NULL;
kvm->arch.pv.stor_base = __get_free_pages(GFP_KERNEL_ACCOUNT, get_order(base));
if (!kvm->arch.pv.stor_base)
return -ENOMEM;
/*
* Calculate current guest storage for allocation of the
* variable storage, which is based on the length in MB.
*
* Slots are sorted by GFN
*/
mutex_lock(&kvm->slots_lock);
npages = kvm_s390_get_gfn_end(kvm_memslots(kvm));
mutex_unlock(&kvm->slots_lock);
kvm->arch.pv.guest_len = npages * PAGE_SIZE;
/* Allocate variable storage */
vlen = ALIGN(virt * ((npages * PAGE_SIZE) / HPAGE_SIZE), PAGE_SIZE);
vlen += uv_info.guest_virt_base_stor_len;
kvm->arch.pv.stor_var = vzalloc(vlen);
if (!kvm->arch.pv.stor_var)
goto out_err;
return 0;
out_err:
kvm_s390_pv_dealloc_vm(kvm);
return -ENOMEM;
}
/**
* kvm_s390_pv_dispose_one_leftover - Clean up one leftover protected VM.
* @kvm: the KVM that was associated with this leftover protected VM
* @leftover: details about the leftover protected VM that needs a clean up
* @rc: the RC code of the Destroy Secure Configuration UVC
* @rrc: the RRC code of the Destroy Secure Configuration UVC
*
* Destroy one leftover protected VM.
* On success, kvm->mm->context.protected_count will be decremented atomically
* and all other resources used by the VM will be freed.
*
* Return: 0 in case of success, otherwise 1
*/
static int kvm_s390_pv_dispose_one_leftover(struct kvm *kvm,
struct pv_vm_to_be_destroyed *leftover,
u16 *rc, u16 *rrc)
{
int cc;
/* It used the destroy-fast UVC, nothing left to do here */
if (!leftover->handle)
goto done_fast;
cc = uv_cmd_nodata(leftover->handle, UVC_CMD_DESTROY_SEC_CONF, rc, rrc);
KVM_UV_EVENT(kvm, 3, "PROTVIRT DESTROY LEFTOVER VM: rc %x rrc %x", *rc, *rrc);
WARN_ONCE(cc, "protvirt destroy leftover vm failed rc %x rrc %x", *rc, *rrc);
if (cc)
return cc;
/*
* Intentionally leak unusable memory. If the UVC fails, the memory
* used for the VM and its metadata is permanently unusable.
* This can only happen in case of a serious KVM or hardware bug; it
* is not expected to happen in normal operation.
*/
free_pages(leftover->stor_base, get_order(uv_info.guest_base_stor_len));
free_pages(leftover->old_gmap_table, CRST_ALLOC_ORDER);
vfree(leftover->stor_var);
done_fast:
atomic_dec(&kvm->mm->context.protected_count);
return 0;
}
/**
* kvm_s390_destroy_lower_2g - Destroy the first 2GB of protected guest memory.
* @kvm: the VM whose memory is to be cleared.
*
* Destroy the first 2GB of guest memory, to avoid prefix issues after reboot.
* The CPUs of the protected VM need to be destroyed beforehand.
*/
static void kvm_s390_destroy_lower_2g(struct kvm *kvm)
{
const unsigned long pages_2g = SZ_2G / PAGE_SIZE;
struct kvm_memory_slot *slot;
unsigned long len;
int srcu_idx;
srcu_idx = srcu_read_lock(&kvm->srcu);
/* Take the memslot containing guest absolute address 0 */
slot = gfn_to_memslot(kvm, 0);
/* Clear all slots or parts thereof that are below 2GB */
while (slot && slot->base_gfn < pages_2g) {
len = min_t(u64, slot->npages, pages_2g - slot->base_gfn) * PAGE_SIZE;
s390_uv_destroy_range(kvm->mm, slot->userspace_addr, slot->userspace_addr + len);
/* Take the next memslot */
slot = gfn_to_memslot(kvm, slot->base_gfn + slot->npages);
}
srcu_read_unlock(&kvm->srcu, srcu_idx);
}
static int kvm_s390_pv_deinit_vm_fast(struct kvm *kvm, u16 *rc, u16 *rrc)
{
struct uv_cb_destroy_fast uvcb = {
.header.cmd = UVC_CMD_DESTROY_SEC_CONF_FAST,
.header.len = sizeof(uvcb),
.handle = kvm_s390_pv_get_handle(kvm),
};
int cc;
cc = uv_call_sched(0, (u64)&uvcb);
if (rc)
*rc = uvcb.header.rc;
if (rrc)
*rrc = uvcb.header.rrc;
WRITE_ONCE(kvm->arch.gmap->guest_handle, 0);
KVM_UV_EVENT(kvm, 3, "PROTVIRT DESTROY VM FAST: rc %x rrc %x",
uvcb.header.rc, uvcb.header.rrc);
WARN_ONCE(cc, "protvirt destroy vm fast failed handle %llx rc %x rrc %x",
kvm_s390_pv_get_handle(kvm), uvcb.header.rc, uvcb.header.rrc);
/* Intended memory leak on "impossible" error */
if (!cc)
kvm_s390_pv_dealloc_vm(kvm);
return cc ? -EIO : 0;
}
static inline bool is_destroy_fast_available(void)
{
return test_bit_inv(BIT_UVC_CMD_DESTROY_SEC_CONF_FAST, uv_info.inst_calls_list);
}
/**
* kvm_s390_pv_set_aside - Set aside a protected VM for later teardown.
* @kvm: the VM
* @rc: return value for the RC field of the UVCB
* @rrc: return value for the RRC field of the UVCB
*
* Set aside the protected VM for a subsequent teardown. The VM will be able
* to continue immediately as a non-secure VM, and the information needed to
* properly tear down the protected VM is set aside. If another protected VM
* was already set aside without starting its teardown, this function will
* fail.
* The CPUs of the protected VM need to be destroyed beforehand.
*
* Context: kvm->lock needs to be held
*
* Return: 0 in case of success, -EINVAL if another protected VM was already set
* aside, -ENOMEM if the system ran out of memory.
*/
int kvm_s390_pv_set_aside(struct kvm *kvm, u16 *rc, u16 *rrc)
{
struct pv_vm_to_be_destroyed *priv;
int res = 0;
lockdep_assert_held(&kvm->lock);
/*
* If another protected VM was already prepared for teardown, refuse.
* A normal deinitialization has to be performed instead.
*/
if (kvm->arch.pv.set_aside)
return -EINVAL;
/* Guest with segment type ASCE, refuse to destroy asynchronously */
if ((kvm->arch.gmap->asce & _ASCE_TYPE_MASK) == _ASCE_TYPE_SEGMENT)
return -EINVAL;
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
if (is_destroy_fast_available()) {
res = kvm_s390_pv_deinit_vm_fast(kvm, rc, rrc);
} else {
priv->stor_var = kvm->arch.pv.stor_var;
priv->stor_base = kvm->arch.pv.stor_base;
priv->handle = kvm_s390_pv_get_handle(kvm);
priv->old_gmap_table = (unsigned long)kvm->arch.gmap->table;
WRITE_ONCE(kvm->arch.gmap->guest_handle, 0);
if (s390_replace_asce(kvm->arch.gmap))
res = -ENOMEM;
}
if (res) {
kfree(priv);
return res;
}
kvm_s390_destroy_lower_2g(kvm);
kvm_s390_clear_pv_state(kvm);
kvm->arch.pv.set_aside = priv;
*rc = UVC_RC_EXECUTED;
*rrc = 42;
return 0;
}
/**
* kvm_s390_pv_deinit_vm - Deinitialize the current protected VM
* @kvm: the KVM whose protected VM needs to be deinitialized
* @rc: the RC code of the UVC
* @rrc: the RRC code of the UVC
*
* Deinitialize the current protected VM. This function will destroy and
* cleanup the current protected VM, but it will not cleanup the guest
* memory. This function should only be called when the protected VM has
* just been created and therefore does not have any guest memory, or when
* the caller cleans up the guest memory separately.
*
* This function should not fail, but if it does, the donated memory must
* not be freed.
*
* Context: kvm->lock needs to be held
*
* Return: 0 in case of success, otherwise -EIO
*/
int kvm_s390_pv_deinit_vm(struct kvm *kvm, u16 *rc, u16 *rrc)
{
int cc;
cc = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
UVC_CMD_DESTROY_SEC_CONF, rc, rrc);
WRITE_ONCE(kvm->arch.gmap->guest_handle, 0);
if (!cc) {
atomic_dec(&kvm->mm->context.protected_count);
kvm_s390_pv_dealloc_vm(kvm);
} else {
/* Intended memory leak on "impossible" error */
s390_replace_asce(kvm->arch.gmap);
}
KVM_UV_EVENT(kvm, 3, "PROTVIRT DESTROY VM: rc %x rrc %x", *rc, *rrc);
WARN_ONCE(cc, "protvirt destroy vm failed rc %x rrc %x", *rc, *rrc);
return cc ? -EIO : 0;
}
/**
* kvm_s390_pv_deinit_cleanup_all - Clean up all protected VMs associated
* with a specific KVM.
* @kvm: the KVM to be cleaned up
* @rc: the RC code of the first failing UVC
* @rrc: the RRC code of the first failing UVC
*
* This function will clean up all protected VMs associated with a KVM.
* This includes the active one, the one prepared for deinitialization with
* kvm_s390_pv_set_aside, and any still pending in the need_cleanup list.
*
* Context: kvm->lock needs to be held unless being called from
* kvm_arch_destroy_vm.
*
* Return: 0 if all VMs are successfully cleaned up, otherwise -EIO
*/
int kvm_s390_pv_deinit_cleanup_all(struct kvm *kvm, u16 *rc, u16 *rrc)
{
struct pv_vm_to_be_destroyed *cur;
bool need_zap = false;
u16 _rc, _rrc;
int cc = 0;
/*
* Nothing to do if the counter was already 0. Otherwise make sure
* the counter does not reach 0 before calling s390_uv_destroy_range.
*/
if (!atomic_inc_not_zero(&kvm->mm->context.protected_count))
return 0;
*rc = 1;
/* If the current VM is protected, destroy it */
if (kvm_s390_pv_get_handle(kvm)) {
cc = kvm_s390_pv_deinit_vm(kvm, rc, rrc);
need_zap = true;
}
/* If a previous protected VM was set aside, put it in the need_cleanup list */
if (kvm->arch.pv.set_aside) {
list_add(kvm->arch.pv.set_aside, &kvm->arch.pv.need_cleanup);
kvm->arch.pv.set_aside = NULL;
}
/* Cleanup all protected VMs in the need_cleanup list */
while (!list_empty(&kvm->arch.pv.need_cleanup)) {
cur = list_first_entry(&kvm->arch.pv.need_cleanup, typeof(*cur), list);
need_zap = true;
if (kvm_s390_pv_dispose_one_leftover(kvm, cur, &_rc, &_rrc)) {
cc = 1;
/*
* Only return the first error rc and rrc, so make
* sure it is not overwritten. All destroys will
* additionally be reported via KVM_UV_EVENT().
*/
if (*rc == UVC_RC_EXECUTED) {
*rc = _rc;
*rrc = _rrc;
}
}
list_del(&cur->list);
kfree(cur);
}
/*
* If the mm still has a mapping, try to mark all its pages as
* accessible. The counter should not reach zero before this
* cleanup has been performed.
*/
if (need_zap && mmget_not_zero(kvm->mm)) {
s390_uv_destroy_range(kvm->mm, 0, TASK_SIZE);
mmput(kvm->mm);
}
/* Now the counter can safely reach 0 */
atomic_dec(&kvm->mm->context.protected_count);
return cc ? -EIO : 0;
}
/**
* kvm_s390_pv_deinit_aside_vm - Teardown a previously set aside protected VM.
* @kvm: the VM previously associated with the protected VM
* @rc: return value for the RC field of the UVCB
* @rrc: return value for the RRC field of the UVCB
*
* Tear down the protected VM that had been previously prepared for teardown
* using kvm_s390_pv_set_aside_vm. Ideally this should be called by
* userspace asynchronously from a separate thread.
*
* Context: kvm->lock must not be held.
*
* Return: 0 in case of success, -EINVAL if no protected VM had been
* prepared for asynchronous teardowm, -EIO in case of other errors.
*/
int kvm_s390_pv_deinit_aside_vm(struct kvm *kvm, u16 *rc, u16 *rrc)
{
struct pv_vm_to_be_destroyed *p;
int ret = 0;
lockdep_assert_not_held(&kvm->lock);
mutex_lock(&kvm->lock);
p = kvm->arch.pv.set_aside;
kvm->arch.pv.set_aside = NULL;
mutex_unlock(&kvm->lock);
if (!p)
return -EINVAL;
/* When a fatal signal is received, stop immediately */
if (s390_uv_destroy_range_interruptible(kvm->mm, 0, TASK_SIZE_MAX))
goto done;
if (kvm_s390_pv_dispose_one_leftover(kvm, p, rc, rrc))
ret = -EIO;
kfree(p);
p = NULL;
done:
/*
* p is not NULL if we aborted because of a fatal signal, in which
* case queue the leftover for later cleanup.
*/
if (p) {
mutex_lock(&kvm->lock);
list_add(&p->list, &kvm->arch.pv.need_cleanup);
mutex_unlock(&kvm->lock);
/* Did not finish, but pretend things went well */
*rc = UVC_RC_EXECUTED;
*rrc = 42;
}
return ret;
}
static void kvm_s390_pv_mmu_notifier_release(struct mmu_notifier *subscription,
struct mm_struct *mm)
{
struct kvm *kvm = container_of(subscription, struct kvm, arch.pv.mmu_notifier);
u16 dummy;
int r;
/*
* No locking is needed since this is the last thread of the last user of this
* struct mm.
* When the struct kvm gets deinitialized, this notifier is also
* unregistered. This means that if this notifier runs, then the
* struct kvm is still valid.
*/
r = kvm_s390_cpus_from_pv(kvm, &dummy, &dummy);
if (!r && is_destroy_fast_available() && kvm_s390_pv_get_handle(kvm))
kvm_s390_pv_deinit_vm_fast(kvm, &dummy, &dummy);
}
static const struct mmu_notifier_ops kvm_s390_pv_mmu_notifier_ops = {
.release = kvm_s390_pv_mmu_notifier_release,
};
int kvm_s390_pv_init_vm(struct kvm *kvm, u16 *rc, u16 *rrc)
{
struct uv_cb_cgc uvcb = {
.header.cmd = UVC_CMD_CREATE_SEC_CONF,
.header.len = sizeof(uvcb)
};
int cc, ret;
u16 dummy;
ret = kvm_s390_pv_alloc_vm(kvm);
if (ret)
return ret;
/* Inputs */
uvcb.guest_stor_origin = 0; /* MSO is 0 for KVM */
uvcb.guest_stor_len = kvm->arch.pv.guest_len;
uvcb.guest_asce = kvm->arch.gmap->asce;
uvcb.guest_sca = virt_to_phys(kvm->arch.sca);
uvcb.conf_base_stor_origin =
virt_to_phys((void *)kvm->arch.pv.stor_base);
uvcb.conf_virt_stor_origin = (u64)kvm->arch.pv.stor_var;
cc = uv_call_sched(0, (u64)&uvcb);
*rc = uvcb.header.rc;
*rrc = uvcb.header.rrc;
KVM_UV_EVENT(kvm, 3, "PROTVIRT CREATE VM: handle %llx len %llx rc %x rrc %x",
uvcb.guest_handle, uvcb.guest_stor_len, *rc, *rrc);
/* Outputs */
kvm->arch.pv.handle = uvcb.guest_handle;
atomic_inc(&kvm->mm->context.protected_count);
if (cc) {
if (uvcb.header.rc & UVC_RC_NEED_DESTROY) {
kvm_s390_pv_deinit_vm(kvm, &dummy, &dummy);
} else {
atomic_dec(&kvm->mm->context.protected_count);
kvm_s390_pv_dealloc_vm(kvm);
}
return -EIO;
}
kvm->arch.gmap->guest_handle = uvcb.guest_handle;
/* Add the notifier only once. No races because we hold kvm->lock */
if (kvm->arch.pv.mmu_notifier.ops != &kvm_s390_pv_mmu_notifier_ops) {
kvm->arch.pv.mmu_notifier.ops = &kvm_s390_pv_mmu_notifier_ops;
mmu_notifier_register(&kvm->arch.pv.mmu_notifier, kvm->mm);
}
return 0;
}
int kvm_s390_pv_set_sec_parms(struct kvm *kvm, void *hdr, u64 length, u16 *rc,
u16 *rrc)
{
struct uv_cb_ssc uvcb = {
.header.cmd = UVC_CMD_SET_SEC_CONF_PARAMS,
.header.len = sizeof(uvcb),
.sec_header_origin = (u64)hdr,
.sec_header_len = length,
.guest_handle = kvm_s390_pv_get_handle(kvm),
};
int cc = uv_call(0, (u64)&uvcb);
*rc = uvcb.header.rc;
*rrc = uvcb.header.rrc;
KVM_UV_EVENT(kvm, 3, "PROTVIRT VM SET PARMS: rc %x rrc %x",
*rc, *rrc);
return cc ? -EINVAL : 0;
}
static int unpack_one(struct kvm *kvm, unsigned long addr, u64 tweak,
u64 offset, u16 *rc, u16 *rrc)
{
struct uv_cb_unp uvcb = {
.header.cmd = UVC_CMD_UNPACK_IMG,
.header.len = sizeof(uvcb),
.guest_handle = kvm_s390_pv_get_handle(kvm),
.gaddr = addr,
.tweak[0] = tweak,
.tweak[1] = offset,
};
int ret = gmap_make_secure(kvm->arch.gmap, addr, &uvcb);
*rc = uvcb.header.rc;
*rrc = uvcb.header.rrc;
if (ret && ret != -EAGAIN)
KVM_UV_EVENT(kvm, 3, "PROTVIRT VM UNPACK: failed addr %llx with rc %x rrc %x",
uvcb.gaddr, *rc, *rrc);
return ret;
}
int kvm_s390_pv_unpack(struct kvm *kvm, unsigned long addr, unsigned long size,
unsigned long tweak, u16 *rc, u16 *rrc)
{
u64 offset = 0;
int ret = 0;
if (addr & ~PAGE_MASK || !size || size & ~PAGE_MASK)
return -EINVAL;
KVM_UV_EVENT(kvm, 3, "PROTVIRT VM UNPACK: start addr %lx size %lx",
addr, size);
while (offset < size) {
ret = unpack_one(kvm, addr, tweak, offset, rc, rrc);
if (ret == -EAGAIN) {
cond_resched();
if (fatal_signal_pending(current))
break;
continue;
}
if (ret)
break;
addr += PAGE_SIZE;
offset += PAGE_SIZE;
}
if (!ret)
KVM_UV_EVENT(kvm, 3, "%s", "PROTVIRT VM UNPACK: successful");
return ret;
}
int kvm_s390_pv_set_cpu_state(struct kvm_vcpu *vcpu, u8 state)
{
struct uv_cb_cpu_set_state uvcb = {
.header.cmd = UVC_CMD_CPU_SET_STATE,
.header.len = sizeof(uvcb),
.cpu_handle = kvm_s390_pv_cpu_get_handle(vcpu),
.state = state,
};
int cc;
cc = uv_call(0, (u64)&uvcb);
KVM_UV_EVENT(vcpu->kvm, 3, "PROTVIRT SET CPU %d STATE %d rc %x rrc %x",
vcpu->vcpu_id, state, uvcb.header.rc, uvcb.header.rrc);
if (cc)
return -EINVAL;
return 0;
}
int kvm_s390_pv_dump_cpu(struct kvm_vcpu *vcpu, void *buff, u16 *rc, u16 *rrc)
{
struct uv_cb_dump_cpu uvcb = {
.header.cmd = UVC_CMD_DUMP_CPU,
.header.len = sizeof(uvcb),
.cpu_handle = vcpu->arch.pv.handle,
.dump_area_origin = (u64)buff,
};
int cc;
cc = uv_call_sched(0, (u64)&uvcb);
*rc = uvcb.header.rc;
*rrc = uvcb.header.rrc;
return cc;
}
/* Size of the cache for the storage state dump data. 1MB for now */
#define DUMP_BUFF_LEN HPAGE_SIZE
/**
* kvm_s390_pv_dump_stor_state
*
* @kvm: pointer to the guest's KVM struct
* @buff_user: Userspace pointer where we will write the results to
* @gaddr: Starting absolute guest address for which the storage state
* is requested.
* @buff_user_len: Length of the buff_user buffer
* @rc: Pointer to where the uvcb return code is stored
* @rrc: Pointer to where the uvcb return reason code is stored
*
* Stores buff_len bytes of tweak component values to buff_user
* starting with the 1MB block specified by the absolute guest address
* (gaddr). The gaddr pointer will be updated with the last address
* for which data was written when returning to userspace. buff_user
* might be written to even if an error rc is returned. For instance
* if we encounter a fault after writing the first page of data.
*
* Context: kvm->lock needs to be held
*
* Return:
* 0 on success
* -ENOMEM if allocating the cache fails
* -EINVAL if gaddr is not aligned to 1MB
* -EINVAL if buff_user_len is not aligned to uv_info.conf_dump_storage_state_len
* -EINVAL if the UV call fails, rc and rrc will be set in this case
* -EFAULT if copying the result to buff_user failed
*/
int kvm_s390_pv_dump_stor_state(struct kvm *kvm, void __user *buff_user,
u64 *gaddr, u64 buff_user_len, u16 *rc, u16 *rrc)
{
struct uv_cb_dump_stor_state uvcb = {
.header.cmd = UVC_CMD_DUMP_CONF_STOR_STATE,
.header.len = sizeof(uvcb),
.config_handle = kvm->arch.pv.handle,
.gaddr = *gaddr,
.dump_area_origin = 0,
};
const u64 increment_len = uv_info.conf_dump_storage_state_len;
size_t buff_kvm_size;
size_t size_done = 0;
u8 *buff_kvm = NULL;
int cc, ret;
ret = -EINVAL;
/* UV call processes 1MB guest storage chunks at a time */
if (!IS_ALIGNED(*gaddr, HPAGE_SIZE))
goto out;
/*
* We provide the storage state for 1MB chunks of guest
* storage. The buffer will need to be aligned to
* conf_dump_storage_state_len so we don't end on a partial
* chunk.
*/
if (!buff_user_len ||
!IS_ALIGNED(buff_user_len, increment_len))
goto out;
/*
* Allocate a buffer from which we will later copy to the user
* process. We don't want userspace to dictate our buffer size
* so we limit it to DUMP_BUFF_LEN.
*/
ret = -ENOMEM;
buff_kvm_size = min_t(u64, buff_user_len, DUMP_BUFF_LEN);
buff_kvm = vzalloc(buff_kvm_size);
if (!buff_kvm)
goto out;
ret = 0;
uvcb.dump_area_origin = (u64)buff_kvm;
/* We will loop until the user buffer is filled or an error occurs */
do {
/* Get 1MB worth of guest storage state data */
cc = uv_call_sched(0, (u64)&uvcb);
/* All or nothing */
if (cc) {
ret = -EINVAL;
break;
}
size_done += increment_len;
uvcb.dump_area_origin += increment_len;
buff_user_len -= increment_len;
uvcb.gaddr += HPAGE_SIZE;
/* KVM Buffer full, time to copy to the process */
if (!buff_user_len || size_done == DUMP_BUFF_LEN) {
if (copy_to_user(buff_user, buff_kvm, size_done)) {
ret = -EFAULT;
break;
}
buff_user += size_done;
size_done = 0;
uvcb.dump_area_origin = (u64)buff_kvm;
}
} while (buff_user_len);
/* Report back where we ended dumping */
*gaddr = uvcb.gaddr;
/* Lets only log errors, we don't want to spam */
out:
if (ret)
KVM_UV_EVENT(kvm, 3,
"PROTVIRT DUMP STORAGE STATE: addr %llx ret %d, uvcb rc %x rrc %x",
uvcb.gaddr, ret, uvcb.header.rc, uvcb.header.rrc);
*rc = uvcb.header.rc;
*rrc = uvcb.header.rrc;
vfree(buff_kvm);
return ret;
}
/**
* kvm_s390_pv_dump_complete
*
* @kvm: pointer to the guest's KVM struct
* @buff_user: Userspace pointer where we will write the results to
* @rc: Pointer to where the uvcb return code is stored
* @rrc: Pointer to where the uvcb return reason code is stored
*
* Completes the dumping operation and writes the completion data to
* user space.
*
* Context: kvm->lock needs to be held
*
* Return:
* 0 on success
* -ENOMEM if allocating the completion buffer fails
* -EINVAL if the UV call fails, rc and rrc will be set in this case
* -EFAULT if copying the result to buff_user failed
*/
int kvm_s390_pv_dump_complete(struct kvm *kvm, void __user *buff_user,
u16 *rc, u16 *rrc)
{
struct uv_cb_dump_complete complete = {
.header.len = sizeof(complete),
.header.cmd = UVC_CMD_DUMP_COMPLETE,
.config_handle = kvm_s390_pv_get_handle(kvm),
};
u64 *compl_data;
int ret;
/* Allocate dump area */
compl_data = vzalloc(uv_info.conf_dump_finalize_len);
if (!compl_data)
return -ENOMEM;
complete.dump_area_origin = (u64)compl_data;
ret = uv_call_sched(0, (u64)&complete);
*rc = complete.header.rc;
*rrc = complete.header.rrc;
KVM_UV_EVENT(kvm, 3, "PROTVIRT DUMP COMPLETE: rc %x rrc %x",
complete.header.rc, complete.header.rrc);
if (!ret) {
/*
* kvm_s390_pv_dealloc_vm() will also (mem)set
* this to false on a reboot or other destroy
* operation for this vm.
*/
kvm->arch.pv.dumping = false;
kvm_s390_vcpu_unblock_all(kvm);
ret = copy_to_user(buff_user, compl_data, uv_info.conf_dump_finalize_len);
if (ret)
ret = -EFAULT;
}
vfree(compl_data);
/* If the UVC returned an error, translate it to -EINVAL */
if (ret > 0)
ret = -EINVAL;
return ret;
}