blob: e758650b2c26e29fc7f5df3ae4e49e7111ec39ed [file] [log] [blame]
/*
* Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
*
* Copyright (C) 2012 Marvell
*
* Rami Rosen <rosenr@marvell.com>
* Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <linux/clk.h>
#include <linux/cpu.h>
#include <linux/etherdevice.h>
#include <linux/if_vlan.h>
#include <linux/inetdevice.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/mbus.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/phy/phy.h>
#include <linux/phy.h>
#include <linux/phylink.h>
#include <linux/platform_device.h>
#include <linux/skbuff.h>
#include <net/hwbm.h>
#include "mvneta_bm.h"
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/tso.h>
/* Registers */
#define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
#define MVNETA_RXQ_HW_BUF_ALLOC BIT(0)
#define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4
#define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30
#define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6
#define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0
#define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
#define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
#define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
#define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
#define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
#define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
#define MVNETA_RXQ_BUF_SIZE_SHIFT 19
#define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
#define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
#define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
#define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
#define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
#define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
#define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2))
#define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3
#define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8
#define MVNETA_PORT_RX_RESET 0x1cc0
#define MVNETA_PORT_RX_DMA_RESET BIT(0)
#define MVNETA_PHY_ADDR 0x2000
#define MVNETA_PHY_ADDR_MASK 0x1f
#define MVNETA_MBUS_RETRY 0x2010
#define MVNETA_UNIT_INTR_CAUSE 0x2080
#define MVNETA_UNIT_CONTROL 0x20B0
#define MVNETA_PHY_POLLING_ENABLE BIT(1)
#define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
#define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
#define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
#define MVNETA_BASE_ADDR_ENABLE 0x2290
#define MVNETA_ACCESS_PROTECT_ENABLE 0x2294
#define MVNETA_PORT_CONFIG 0x2400
#define MVNETA_UNI_PROMISC_MODE BIT(0)
#define MVNETA_DEF_RXQ(q) ((q) << 1)
#define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
#define MVNETA_TX_UNSET_ERR_SUM BIT(12)
#define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
#define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
#define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
#define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
#define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
MVNETA_DEF_RXQ_ARP(q) | \
MVNETA_DEF_RXQ_TCP(q) | \
MVNETA_DEF_RXQ_UDP(q) | \
MVNETA_DEF_RXQ_BPDU(q) | \
MVNETA_TX_UNSET_ERR_SUM | \
MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
#define MVNETA_PORT_CONFIG_EXTEND 0x2404
#define MVNETA_MAC_ADDR_LOW 0x2414
#define MVNETA_MAC_ADDR_HIGH 0x2418
#define MVNETA_SDMA_CONFIG 0x241c
#define MVNETA_SDMA_BRST_SIZE_16 4
#define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
#define MVNETA_RX_NO_DATA_SWAP BIT(4)
#define MVNETA_TX_NO_DATA_SWAP BIT(5)
#define MVNETA_DESC_SWAP BIT(6)
#define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
#define MVNETA_PORT_STATUS 0x2444
#define MVNETA_TX_IN_PRGRS BIT(1)
#define MVNETA_TX_FIFO_EMPTY BIT(8)
#define MVNETA_RX_MIN_FRAME_SIZE 0x247c
#define MVNETA_SERDES_CFG 0x24A0
#define MVNETA_SGMII_SERDES_PROTO 0x0cc7
#define MVNETA_QSGMII_SERDES_PROTO 0x0667
#define MVNETA_TYPE_PRIO 0x24bc
#define MVNETA_FORCE_UNI BIT(21)
#define MVNETA_TXQ_CMD_1 0x24e4
#define MVNETA_TXQ_CMD 0x2448
#define MVNETA_TXQ_DISABLE_SHIFT 8
#define MVNETA_TXQ_ENABLE_MASK 0x000000ff
#define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484
#define MVNETA_OVERRUN_FRAME_COUNT 0x2488
#define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4
#define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31)
#define MVNETA_ACC_MODE 0x2500
#define MVNETA_BM_ADDRESS 0x2504
#define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
#define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
#define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
#define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq)
#define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8)
#define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
/* Exception Interrupt Port/Queue Cause register
*
* Their behavior depend of the mapping done using the PCPX2Q
* registers. For a given CPU if the bit associated to a queue is not
* set, then for the register a read from this CPU will always return
* 0 and a write won't do anything
*/
#define MVNETA_INTR_NEW_CAUSE 0x25a0
#define MVNETA_INTR_NEW_MASK 0x25a4
/* bits 0..7 = TXQ SENT, one bit per queue.
* bits 8..15 = RXQ OCCUP, one bit per queue.
* bits 16..23 = RXQ FREE, one bit per queue.
* bit 29 = OLD_REG_SUM, see old reg ?
* bit 30 = TX_ERR_SUM, one bit for 4 ports
* bit 31 = MISC_SUM, one bit for 4 ports
*/
#define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
#define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
#define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
#define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
#define MVNETA_MISCINTR_INTR_MASK BIT(31)
#define MVNETA_INTR_OLD_CAUSE 0x25a8
#define MVNETA_INTR_OLD_MASK 0x25ac
/* Data Path Port/Queue Cause Register */
#define MVNETA_INTR_MISC_CAUSE 0x25b0
#define MVNETA_INTR_MISC_MASK 0x25b4
#define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
#define MVNETA_CAUSE_LINK_CHANGE BIT(1)
#define MVNETA_CAUSE_PTP BIT(4)
#define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
#define MVNETA_CAUSE_RX_OVERRUN BIT(8)
#define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
#define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
#define MVNETA_CAUSE_TX_UNDERUN BIT(11)
#define MVNETA_CAUSE_PRBS_ERR BIT(12)
#define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
#define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
#define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
#define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
#define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
#define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
#define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
#define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
#define MVNETA_INTR_ENABLE 0x25b8
#define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
#define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff
#define MVNETA_RXQ_CMD 0x2680
#define MVNETA_RXQ_DISABLE_SHIFT 8
#define MVNETA_RXQ_ENABLE_MASK 0x000000ff
#define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
#define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
#define MVNETA_GMAC_CTRL_0 0x2c00
#define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
#define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
#define MVNETA_GMAC0_PORT_1000BASE_X BIT(1)
#define MVNETA_GMAC0_PORT_ENABLE BIT(0)
#define MVNETA_GMAC_CTRL_2 0x2c08
#define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0)
#define MVNETA_GMAC2_PCS_ENABLE BIT(3)
#define MVNETA_GMAC2_PORT_RGMII BIT(4)
#define MVNETA_GMAC2_PORT_RESET BIT(6)
#define MVNETA_GMAC_STATUS 0x2c10
#define MVNETA_GMAC_LINK_UP BIT(0)
#define MVNETA_GMAC_SPEED_1000 BIT(1)
#define MVNETA_GMAC_SPEED_100 BIT(2)
#define MVNETA_GMAC_FULL_DUPLEX BIT(3)
#define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
#define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
#define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
#define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
#define MVNETA_GMAC_AN_COMPLETE BIT(11)
#define MVNETA_GMAC_SYNC_OK BIT(14)
#define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
#define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
#define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
#define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2)
#define MVNETA_GMAC_AN_BYPASS_ENABLE BIT(3)
#define MVNETA_GMAC_INBAND_RESTART_AN BIT(4)
#define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
#define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
#define MVNETA_GMAC_AN_SPEED_EN BIT(7)
#define MVNETA_GMAC_CONFIG_FLOW_CTRL BIT(8)
#define MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL BIT(9)
#define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11)
#define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
#define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
#define MVNETA_GMAC_CTRL_4 0x2c90
#define MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE BIT(1)
#define MVNETA_MIB_COUNTERS_BASE 0x3000
#define MVNETA_MIB_LATE_COLLISION 0x7c
#define MVNETA_DA_FILT_SPEC_MCAST 0x3400
#define MVNETA_DA_FILT_OTH_MCAST 0x3500
#define MVNETA_DA_FILT_UCAST_BASE 0x3600
#define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
#define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
#define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
#define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
#define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
#define MVNETA_TXQ_DEC_SENT_SHIFT 16
#define MVNETA_TXQ_DEC_SENT_MASK 0xff
#define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
#define MVNETA_TXQ_SENT_DESC_SHIFT 16
#define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
#define MVNETA_PORT_TX_RESET 0x3cf0
#define MVNETA_PORT_TX_DMA_RESET BIT(0)
#define MVNETA_TX_MTU 0x3e0c
#define MVNETA_TX_TOKEN_SIZE 0x3e14
#define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
#define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
#define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
#define MVNETA_LPI_CTRL_0 0x2cc0
#define MVNETA_LPI_CTRL_1 0x2cc4
#define MVNETA_LPI_REQUEST_ENABLE BIT(0)
#define MVNETA_LPI_CTRL_2 0x2cc8
#define MVNETA_LPI_STATUS 0x2ccc
#define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
/* Descriptor ring Macros */
#define MVNETA_QUEUE_NEXT_DESC(q, index) \
(((index) < (q)->last_desc) ? ((index) + 1) : 0)
/* Various constants */
/* Coalescing */
#define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */
#define MVNETA_RX_COAL_PKTS 32
#define MVNETA_RX_COAL_USEC 100
/* The two bytes Marvell header. Either contains a special value used
* by Marvell switches when a specific hardware mode is enabled (not
* supported by this driver) or is filled automatically by zeroes on
* the RX side. Those two bytes being at the front of the Ethernet
* header, they allow to have the IP header aligned on a 4 bytes
* boundary automatically: the hardware skips those two bytes on its
* own.
*/
#define MVNETA_MH_SIZE 2
#define MVNETA_VLAN_TAG_LEN 4
#define MVNETA_TX_CSUM_DEF_SIZE 1600
#define MVNETA_TX_CSUM_MAX_SIZE 9800
#define MVNETA_ACC_MODE_EXT1 1
#define MVNETA_ACC_MODE_EXT2 2
#define MVNETA_MAX_DECODE_WIN 6
/* Timeout constants */
#define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
#define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
#define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
#define MVNETA_TX_MTU_MAX 0x3ffff
/* The RSS lookup table actually has 256 entries but we do not use
* them yet
*/
#define MVNETA_RSS_LU_TABLE_SIZE 1
/* Max number of Rx descriptors */
#define MVNETA_MAX_RXD 512
/* Max number of Tx descriptors */
#define MVNETA_MAX_TXD 1024
/* Max number of allowed TCP segments for software TSO */
#define MVNETA_MAX_TSO_SEGS 100
#define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
/* descriptor aligned size */
#define MVNETA_DESC_ALIGNED_SIZE 32
/* Number of bytes to be taken into account by HW when putting incoming data
* to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
* offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
*/
#define MVNETA_RX_PKT_OFFSET_CORRECTION 64
#define MVNETA_RX_PKT_SIZE(mtu) \
ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
ETH_HLEN + ETH_FCS_LEN, \
cache_line_size())
#define IS_TSO_HEADER(txq, addr) \
((addr >= txq->tso_hdrs_phys) && \
(addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
#define MVNETA_RX_GET_BM_POOL_ID(rxd) \
(((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
enum {
ETHTOOL_STAT_EEE_WAKEUP,
ETHTOOL_STAT_SKB_ALLOC_ERR,
ETHTOOL_STAT_REFILL_ERR,
ETHTOOL_MAX_STATS,
};
struct mvneta_statistic {
unsigned short offset;
unsigned short type;
const char name[ETH_GSTRING_LEN];
};
#define T_REG_32 32
#define T_REG_64 64
#define T_SW 1
static const struct mvneta_statistic mvneta_statistics[] = {
{ 0x3000, T_REG_64, "good_octets_received", },
{ 0x3010, T_REG_32, "good_frames_received", },
{ 0x3008, T_REG_32, "bad_octets_received", },
{ 0x3014, T_REG_32, "bad_frames_received", },
{ 0x3018, T_REG_32, "broadcast_frames_received", },
{ 0x301c, T_REG_32, "multicast_frames_received", },
{ 0x3050, T_REG_32, "unrec_mac_control_received", },
{ 0x3058, T_REG_32, "good_fc_received", },
{ 0x305c, T_REG_32, "bad_fc_received", },
{ 0x3060, T_REG_32, "undersize_received", },
{ 0x3064, T_REG_32, "fragments_received", },
{ 0x3068, T_REG_32, "oversize_received", },
{ 0x306c, T_REG_32, "jabber_received", },
{ 0x3070, T_REG_32, "mac_receive_error", },
{ 0x3074, T_REG_32, "bad_crc_event", },
{ 0x3078, T_REG_32, "collision", },
{ 0x307c, T_REG_32, "late_collision", },
{ 0x2484, T_REG_32, "rx_discard", },
{ 0x2488, T_REG_32, "rx_overrun", },
{ 0x3020, T_REG_32, "frames_64_octets", },
{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
{ 0x3038, T_REG_64, "good_octets_sent", },
{ 0x3040, T_REG_32, "good_frames_sent", },
{ 0x3044, T_REG_32, "excessive_collision", },
{ 0x3048, T_REG_32, "multicast_frames_sent", },
{ 0x304c, T_REG_32, "broadcast_frames_sent", },
{ 0x3054, T_REG_32, "fc_sent", },
{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
{ ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
{ ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", },
{ ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", },
};
struct mvneta_pcpu_stats {
struct u64_stats_sync syncp;
u64 rx_packets;
u64 rx_bytes;
u64 tx_packets;
u64 tx_bytes;
};
struct mvneta_pcpu_port {
/* Pointer to the shared port */
struct mvneta_port *pp;
/* Pointer to the CPU-local NAPI struct */
struct napi_struct napi;
/* Cause of the previous interrupt */
u32 cause_rx_tx;
};
struct mvneta_port {
u8 id;
struct mvneta_pcpu_port __percpu *ports;
struct mvneta_pcpu_stats __percpu *stats;
int pkt_size;
void __iomem *base;
struct mvneta_rx_queue *rxqs;
struct mvneta_tx_queue *txqs;
struct net_device *dev;
struct hlist_node node_online;
struct hlist_node node_dead;
int rxq_def;
/* Protect the access to the percpu interrupt registers,
* ensuring that the configuration remains coherent.
*/
spinlock_t lock;
bool is_stopped;
u32 cause_rx_tx;
struct napi_struct napi;
/* Core clock */
struct clk *clk;
/* AXI clock */
struct clk *clk_bus;
u8 mcast_count[256];
u16 tx_ring_size;
u16 rx_ring_size;
phy_interface_t phy_interface;
struct device_node *dn;
unsigned int tx_csum_limit;
struct phylink *phylink;
struct phy *comphy;
struct mvneta_bm *bm_priv;
struct mvneta_bm_pool *pool_long;
struct mvneta_bm_pool *pool_short;
int bm_win_id;
bool eee_enabled;
bool eee_active;
bool tx_lpi_enabled;
u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
/* Flags for special SoC configurations */
bool neta_armada3700;
u16 rx_offset_correction;
const struct mbus_dram_target_info *dram_target_info;
};
/* The mvneta_tx_desc and mvneta_rx_desc structures describe the
* layout of the transmit and reception DMA descriptors, and their
* layout is therefore defined by the hardware design
*/
#define MVNETA_TX_L3_OFF_SHIFT 0
#define MVNETA_TX_IP_HLEN_SHIFT 8
#define MVNETA_TX_L4_UDP BIT(16)
#define MVNETA_TX_L3_IP6 BIT(17)
#define MVNETA_TXD_IP_CSUM BIT(18)
#define MVNETA_TXD_Z_PAD BIT(19)
#define MVNETA_TXD_L_DESC BIT(20)
#define MVNETA_TXD_F_DESC BIT(21)
#define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
MVNETA_TXD_L_DESC | \
MVNETA_TXD_F_DESC)
#define MVNETA_TX_L4_CSUM_FULL BIT(30)
#define MVNETA_TX_L4_CSUM_NOT BIT(31)
#define MVNETA_RXD_ERR_CRC 0x0
#define MVNETA_RXD_BM_POOL_SHIFT 13
#define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14))
#define MVNETA_RXD_ERR_SUMMARY BIT(16)
#define MVNETA_RXD_ERR_OVERRUN BIT(17)
#define MVNETA_RXD_ERR_LEN BIT(18)
#define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
#define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
#define MVNETA_RXD_L3_IP4 BIT(25)
#define MVNETA_RXD_LAST_DESC BIT(26)
#define MVNETA_RXD_FIRST_DESC BIT(27)
#define MVNETA_RXD_FIRST_LAST_DESC (MVNETA_RXD_FIRST_DESC | \
MVNETA_RXD_LAST_DESC)
#define MVNETA_RXD_L4_CSUM_OK BIT(30)
#if defined(__LITTLE_ENDIAN)
struct mvneta_tx_desc {
u32 command; /* Options used by HW for packet transmitting.*/
u16 reserved1; /* csum_l4 (for future use) */
u16 data_size; /* Data size of transmitted packet in bytes */
u32 buf_phys_addr; /* Physical addr of transmitted buffer */
u32 reserved2; /* hw_cmd - (for future use, PMT) */
u32 reserved3[4]; /* Reserved - (for future use) */
};
struct mvneta_rx_desc {
u32 status; /* Info about received packet */
u16 reserved1; /* pnc_info - (for future use, PnC) */
u16 data_size; /* Size of received packet in bytes */
u32 buf_phys_addr; /* Physical address of the buffer */
u32 reserved2; /* pnc_flow_id (for future use, PnC) */
u32 buf_cookie; /* cookie for access to RX buffer in rx path */
u16 reserved3; /* prefetch_cmd, for future use */
u16 reserved4; /* csum_l4 - (for future use, PnC) */
u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
};
#else
struct mvneta_tx_desc {
u16 data_size; /* Data size of transmitted packet in bytes */
u16 reserved1; /* csum_l4 (for future use) */
u32 command; /* Options used by HW for packet transmitting.*/
u32 reserved2; /* hw_cmd - (for future use, PMT) */
u32 buf_phys_addr; /* Physical addr of transmitted buffer */
u32 reserved3[4]; /* Reserved - (for future use) */
};
struct mvneta_rx_desc {
u16 data_size; /* Size of received packet in bytes */
u16 reserved1; /* pnc_info - (for future use, PnC) */
u32 status; /* Info about received packet */
u32 reserved2; /* pnc_flow_id (for future use, PnC) */
u32 buf_phys_addr; /* Physical address of the buffer */
u16 reserved4; /* csum_l4 - (for future use, PnC) */
u16 reserved3; /* prefetch_cmd, for future use */
u32 buf_cookie; /* cookie for access to RX buffer in rx path */
u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
};
#endif
struct mvneta_tx_queue {
/* Number of this TX queue, in the range 0-7 */
u8 id;
/* Number of TX DMA descriptors in the descriptor ring */
int size;
/* Number of currently used TX DMA descriptor in the
* descriptor ring
*/
int count;
int pending;
int tx_stop_threshold;
int tx_wake_threshold;
/* Array of transmitted skb */
struct sk_buff **tx_skb;
/* Index of last TX DMA descriptor that was inserted */
int txq_put_index;
/* Index of the TX DMA descriptor to be cleaned up */
int txq_get_index;
u32 done_pkts_coal;
/* Virtual address of the TX DMA descriptors array */
struct mvneta_tx_desc *descs;
/* DMA address of the TX DMA descriptors array */
dma_addr_t descs_phys;
/* Index of the last TX DMA descriptor */
int last_desc;
/* Index of the next TX DMA descriptor to process */
int next_desc_to_proc;
/* DMA buffers for TSO headers */
char *tso_hdrs;
/* DMA address of TSO headers */
dma_addr_t tso_hdrs_phys;
/* Affinity mask for CPUs*/
cpumask_t affinity_mask;
};
struct mvneta_rx_queue {
/* rx queue number, in the range 0-7 */
u8 id;
/* num of rx descriptors in the rx descriptor ring */
int size;
u32 pkts_coal;
u32 time_coal;
/* Virtual address of the RX buffer */
void **buf_virt_addr;
/* Virtual address of the RX DMA descriptors array */
struct mvneta_rx_desc *descs;
/* DMA address of the RX DMA descriptors array */
dma_addr_t descs_phys;
/* Index of the last RX DMA descriptor */
int last_desc;
/* Index of the next RX DMA descriptor to process */
int next_desc_to_proc;
/* Index of first RX DMA descriptor to refill */
int first_to_refill;
u32 refill_num;
/* pointer to uncomplete skb buffer */
struct sk_buff *skb;
int left_size;
/* error counters */
u32 skb_alloc_err;
u32 refill_err;
};
static enum cpuhp_state online_hpstate;
/* The hardware supports eight (8) rx queues, but we are only allowing
* the first one to be used. Therefore, let's just allocate one queue.
*/
static int rxq_number = 8;
static int txq_number = 8;
static int rxq_def;
static int rx_copybreak __read_mostly = 256;
static int rx_header_size __read_mostly = 128;
/* HW BM need that each port be identify by a unique ID */
static int global_port_id;
#define MVNETA_DRIVER_NAME "mvneta"
#define MVNETA_DRIVER_VERSION "1.0"
/* Utility/helper methods */
/* Write helper method */
static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
{
writel(data, pp->base + offset);
}
/* Read helper method */
static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
{
return readl(pp->base + offset);
}
/* Increment txq get counter */
static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
{
txq->txq_get_index++;
if (txq->txq_get_index == txq->size)
txq->txq_get_index = 0;
}
/* Increment txq put counter */
static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
{
txq->txq_put_index++;
if (txq->txq_put_index == txq->size)
txq->txq_put_index = 0;
}
/* Clear all MIB counters */
static void mvneta_mib_counters_clear(struct mvneta_port *pp)
{
int i;
u32 dummy;
/* Perform dummy reads from MIB counters */
for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
}
/* Get System Network Statistics */
static void
mvneta_get_stats64(struct net_device *dev,
struct rtnl_link_stats64 *stats)
{
struct mvneta_port *pp = netdev_priv(dev);
unsigned int start;
int cpu;
for_each_possible_cpu(cpu) {
struct mvneta_pcpu_stats *cpu_stats;
u64 rx_packets;
u64 rx_bytes;
u64 tx_packets;
u64 tx_bytes;
cpu_stats = per_cpu_ptr(pp->stats, cpu);
do {
start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
rx_packets = cpu_stats->rx_packets;
rx_bytes = cpu_stats->rx_bytes;
tx_packets = cpu_stats->tx_packets;
tx_bytes = cpu_stats->tx_bytes;
} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
stats->rx_packets += rx_packets;
stats->rx_bytes += rx_bytes;
stats->tx_packets += tx_packets;
stats->tx_bytes += tx_bytes;
}
stats->rx_errors = dev->stats.rx_errors;
stats->rx_dropped = dev->stats.rx_dropped;
stats->tx_dropped = dev->stats.tx_dropped;
}
/* Rx descriptors helper methods */
/* Checks whether the RX descriptor having this status is both the first
* and the last descriptor for the RX packet. Each RX packet is currently
* received through a single RX descriptor, so not having each RX
* descriptor with its first and last bits set is an error
*/
static int mvneta_rxq_desc_is_first_last(u32 status)
{
return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
MVNETA_RXD_FIRST_LAST_DESC;
}
/* Add number of descriptors ready to receive new packets */
static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
struct mvneta_rx_queue *rxq,
int ndescs)
{
/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
* be added at once
*/
while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
(MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
}
mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
(ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
}
/* Get number of RX descriptors occupied by received packets */
static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
struct mvneta_rx_queue *rxq)
{
u32 val;
val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
}
/* Update num of rx desc called upon return from rx path or
* from mvneta_rxq_drop_pkts().
*/
static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
struct mvneta_rx_queue *rxq,
int rx_done, int rx_filled)
{
u32 val;
if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
val = rx_done |
(rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
return;
}
/* Only 255 descriptors can be added at once */
while ((rx_done > 0) || (rx_filled > 0)) {
if (rx_done <= 0xff) {
val = rx_done;
rx_done = 0;
} else {
val = 0xff;
rx_done -= 0xff;
}
if (rx_filled <= 0xff) {
val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
rx_filled = 0;
} else {
val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
rx_filled -= 0xff;
}
mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
}
}
/* Get pointer to next RX descriptor to be processed by SW */
static struct mvneta_rx_desc *
mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
{
int rx_desc = rxq->next_desc_to_proc;
rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
prefetch(rxq->descs + rxq->next_desc_to_proc);
return rxq->descs + rx_desc;
}
/* Change maximum receive size of the port. */
static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
{
u32 val;
val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
}
/* Set rx queue offset */
static void mvneta_rxq_offset_set(struct mvneta_port *pp,
struct mvneta_rx_queue *rxq,
int offset)
{
u32 val;
val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
/* Offset is in */
val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
}
/* Tx descriptors helper methods */
/* Update HW with number of TX descriptors to be sent */
static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
struct mvneta_tx_queue *txq,
int pend_desc)
{
u32 val;
pend_desc += txq->pending;
/* Only 255 Tx descriptors can be added at once */
do {
val = min(pend_desc, 255);
mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
pend_desc -= val;
} while (pend_desc > 0);
txq->pending = 0;
}
/* Get pointer to next TX descriptor to be processed (send) by HW */
static struct mvneta_tx_desc *
mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
{
int tx_desc = txq->next_desc_to_proc;
txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
return txq->descs + tx_desc;
}
/* Release the last allocated TX descriptor. Useful to handle DMA
* mapping failures in the TX path.
*/
static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
{
if (txq->next_desc_to_proc == 0)
txq->next_desc_to_proc = txq->last_desc - 1;
else
txq->next_desc_to_proc--;
}
/* Set rxq buf size */
static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
struct mvneta_rx_queue *rxq,
int buf_size)
{
u32 val;
val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
}
/* Disable buffer management (BM) */
static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
struct mvneta_rx_queue *rxq)
{
u32 val;
val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
}
/* Enable buffer management (BM) */
static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
struct mvneta_rx_queue *rxq)
{
u32 val;
val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
val |= MVNETA_RXQ_HW_BUF_ALLOC;
mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
}
/* Notify HW about port's assignment of pool for bigger packets */
static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
struct mvneta_rx_queue *rxq)
{
u32 val;
val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
}
/* Notify HW about port's assignment of pool for smaller packets */
static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
struct mvneta_rx_queue *rxq)
{
u32 val;
val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
}
/* Set port's receive buffer size for assigned BM pool */
static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
int buf_size,
u8 pool_id)
{
u32 val;
if (!IS_ALIGNED(buf_size, 8)) {
dev_warn(pp->dev->dev.parent,
"illegal buf_size value %d, round to %d\n",
buf_size, ALIGN(buf_size, 8));
buf_size = ALIGN(buf_size, 8);
}
val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
}
/* Configure MBUS window in order to enable access BM internal SRAM */
static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
u8 target, u8 attr)
{
u32 win_enable, win_protect;
int i;
win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
if (pp->bm_win_id < 0) {
/* Find first not occupied window */
for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
if (win_enable & (1 << i)) {
pp->bm_win_id = i;
break;
}
}
if (i == MVNETA_MAX_DECODE_WIN)
return -ENOMEM;
} else {
i = pp->bm_win_id;
}
mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
if (i < 4)
mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
(attr << 8) | target);
mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
win_protect |= 3 << (2 * i);
mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
win_enable &= ~(1 << i);
mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
return 0;
}
static int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
{
u32 wsize;
u8 target, attr;
int err;
/* Get BM window information */
err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
&target, &attr);
if (err < 0)
return err;
pp->bm_win_id = -1;
/* Open NETA -> BM window */
err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
target, attr);
if (err < 0) {
netdev_info(pp->dev, "fail to configure mbus window to BM\n");
return err;
}
return 0;
}
/* Assign and initialize pools for port. In case of fail
* buffer manager will remain disabled for current port.
*/
static int mvneta_bm_port_init(struct platform_device *pdev,
struct mvneta_port *pp)
{
struct device_node *dn = pdev->dev.of_node;
u32 long_pool_id, short_pool_id;
if (!pp->neta_armada3700) {
int ret;
ret = mvneta_bm_port_mbus_init(pp);
if (ret)
return ret;
}
if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
netdev_info(pp->dev, "missing long pool id\n");
return -EINVAL;
}
/* Create port's long pool depending on mtu */
pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
MVNETA_BM_LONG, pp->id,
MVNETA_RX_PKT_SIZE(pp->dev->mtu));
if (!pp->pool_long) {
netdev_info(pp->dev, "fail to obtain long pool for port\n");
return -ENOMEM;
}
pp->pool_long->port_map |= 1 << pp->id;
mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
pp->pool_long->id);
/* If short pool id is not defined, assume using single pool */
if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
short_pool_id = long_pool_id;
/* Create port's short pool */
pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
MVNETA_BM_SHORT, pp->id,
MVNETA_BM_SHORT_PKT_SIZE);
if (!pp->pool_short) {
netdev_info(pp->dev, "fail to obtain short pool for port\n");
mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
return -ENOMEM;
}
if (short_pool_id != long_pool_id) {
pp->pool_short->port_map |= 1 << pp->id;
mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
pp->pool_short->id);
}
return 0;
}
/* Update settings of a pool for bigger packets */
static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
{
struct mvneta_bm_pool *bm_pool = pp->pool_long;
struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
int num;
/* Release all buffers from long pool */
mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
if (hwbm_pool->buf_num) {
WARN(1, "cannot free all buffers in pool %d\n",
bm_pool->id);
goto bm_mtu_err;
}
bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
/* Fill entire long pool */
num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC);
if (num != hwbm_pool->size) {
WARN(1, "pool %d: %d of %d allocated\n",
bm_pool->id, num, hwbm_pool->size);
goto bm_mtu_err;
}
mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
return;
bm_mtu_err:
mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
pp->bm_priv = NULL;
mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
}
/* Start the Ethernet port RX and TX activity */
static void mvneta_port_up(struct mvneta_port *pp)
{
int queue;
u32 q_map;
/* Enable all initialized TXs. */
q_map = 0;
for (queue = 0; queue < txq_number; queue++) {
struct mvneta_tx_queue *txq = &pp->txqs[queue];
if (txq->descs)
q_map |= (1 << queue);
}
mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
q_map = 0;
/* Enable all initialized RXQs. */
for (queue = 0; queue < rxq_number; queue++) {
struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
if (rxq->descs)
q_map |= (1 << queue);
}
mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
}
/* Stop the Ethernet port activity */
static void mvneta_port_down(struct mvneta_port *pp)
{
u32 val;
int count;
/* Stop Rx port activity. Check port Rx activity. */
val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
/* Issue stop command for active channels only */
if (val != 0)
mvreg_write(pp, MVNETA_RXQ_CMD,
val << MVNETA_RXQ_DISABLE_SHIFT);
/* Wait for all Rx activity to terminate. */
count = 0;
do {
if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
netdev_warn(pp->dev,
"TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
val);
break;
}
mdelay(1);
val = mvreg_read(pp, MVNETA_RXQ_CMD);
} while (val & MVNETA_RXQ_ENABLE_MASK);
/* Stop Tx port activity. Check port Tx activity. Issue stop
* command for active channels only
*/
val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
if (val != 0)
mvreg_write(pp, MVNETA_TXQ_CMD,
(val << MVNETA_TXQ_DISABLE_SHIFT));
/* Wait for all Tx activity to terminate. */
count = 0;
do {
if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
netdev_warn(pp->dev,
"TIMEOUT for TX stopped status=0x%08x\n",
val);
break;
}
mdelay(1);
/* Check TX Command reg that all Txqs are stopped */
val = mvreg_read(pp, MVNETA_TXQ_CMD);
} while (val & MVNETA_TXQ_ENABLE_MASK);
/* Double check to verify that TX FIFO is empty */
count = 0;
do {
if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
netdev_warn(pp->dev,
"TX FIFO empty timeout status=0x%08x\n",
val);
break;
}
mdelay(1);
val = mvreg_read(pp, MVNETA_PORT_STATUS);
} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
(val & MVNETA_TX_IN_PRGRS));
udelay(200);
}
/* Enable the port by setting the port enable bit of the MAC control register */
static void mvneta_port_enable(struct mvneta_port *pp)
{
u32 val;
/* Enable port */
val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
val |= MVNETA_GMAC0_PORT_ENABLE;
mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
}
/* Disable the port and wait for about 200 usec before retuning */
static void mvneta_port_disable(struct mvneta_port *pp)
{
u32 val;
/* Reset the Enable bit in the Serial Control Register */
val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
val &= ~MVNETA_GMAC0_PORT_ENABLE;
mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
udelay(200);
}
/* Multicast tables methods */
/* Set all entries in Unicast MAC Table; queue==-1 means reject all */
static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
{
int offset;
u32 val;
if (queue == -1) {
val = 0;
} else {
val = 0x1 | (queue << 1);
val |= (val << 24) | (val << 16) | (val << 8);
}
for (offset = 0; offset <= 0xc; offset += 4)
mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
}
/* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
{
int offset;
u32 val;
if (queue == -1) {
val = 0;
} else {
val = 0x1 | (queue << 1);
val |= (val << 24) | (val << 16) | (val << 8);
}
for (offset = 0; offset <= 0xfc; offset += 4)
mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
}
/* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
{
int offset;
u32 val;
if (queue == -1) {
memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
val = 0;
} else {
memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
val = 0x1 | (queue << 1);
val |= (val << 24) | (val << 16) | (val << 8);
}
for (offset = 0; offset <= 0xfc; offset += 4)
mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
}
static void mvneta_percpu_unmask_interrupt(void *arg)
{
struct mvneta_port *pp = arg;
/* All the queue are unmasked, but actually only the ones
* mapped to this CPU will be unmasked
*/
mvreg_write(pp, MVNETA_INTR_NEW_MASK,
MVNETA_RX_INTR_MASK_ALL |
MVNETA_TX_INTR_MASK_ALL |
MVNETA_MISCINTR_INTR_MASK);
}
static void mvneta_percpu_mask_interrupt(void *arg)
{
struct mvneta_port *pp = arg;
/* All the queue are masked, but actually only the ones
* mapped to this CPU will be masked
*/
mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
}
static void mvneta_percpu_clear_intr_cause(void *arg)
{
struct mvneta_port *pp = arg;
/* All the queue are cleared, but actually only the ones
* mapped to this CPU will be cleared
*/
mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
}
/* This method sets defaults to the NETA port:
* Clears interrupt Cause and Mask registers.
* Clears all MAC tables.
* Sets defaults to all registers.
* Resets RX and TX descriptor rings.
* Resets PHY.
* This method can be called after mvneta_port_down() to return the port
* settings to defaults.
*/
static void mvneta_defaults_set(struct mvneta_port *pp)
{
int cpu;
int queue;
u32 val;
int max_cpu = num_present_cpus();
/* Clear all Cause registers */
on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
/* Mask all interrupts */
on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
/* Enable MBUS Retry bit16 */
mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
/* Set CPU queue access map. CPUs are assigned to the RX and
* TX queues modulo their number. If there is only one TX
* queue then it is assigned to the CPU associated to the
* default RX queue.
*/
for_each_present_cpu(cpu) {
int rxq_map = 0, txq_map = 0;
int rxq, txq;
if (!pp->neta_armada3700) {
for (rxq = 0; rxq < rxq_number; rxq++)
if ((rxq % max_cpu) == cpu)
rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
for (txq = 0; txq < txq_number; txq++)
if ((txq % max_cpu) == cpu)
txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
/* With only one TX queue we configure a special case
* which will allow to get all the irq on a single
* CPU
*/
if (txq_number == 1)
txq_map = (cpu == pp->rxq_def) ?
MVNETA_CPU_TXQ_ACCESS(1) : 0;
} else {
txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
}
mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
}
/* Reset RX and TX DMAs */
mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
/* Disable Legacy WRR, Disable EJP, Release from reset */
mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
for (queue = 0; queue < txq_number; queue++) {
mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
}
mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
/* Set Port Acceleration Mode */
if (pp->bm_priv)
/* HW buffer management + legacy parser */
val = MVNETA_ACC_MODE_EXT2;
else
/* SW buffer management + legacy parser */
val = MVNETA_ACC_MODE_EXT1;
mvreg_write(pp, MVNETA_ACC_MODE, val);
if (pp->bm_priv)
mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
/* Update val of portCfg register accordingly with all RxQueue types */
val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
mvreg_write(pp, MVNETA_PORT_CONFIG, val);
val = 0;
mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
/* Build PORT_SDMA_CONFIG_REG */
val = 0;
/* Default burst size */
val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
#if defined(__BIG_ENDIAN)
val |= MVNETA_DESC_SWAP;
#endif
/* Assign port SDMA configuration */
mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
/* Disable PHY polling in hardware, since we're using the
* kernel phylib to do this.
*/
val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
val &= ~MVNETA_PHY_POLLING_ENABLE;
mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
mvneta_set_ucast_table(pp, -1);
mvneta_set_special_mcast_table(pp, -1);
mvneta_set_other_mcast_table(pp, -1);
/* Set port interrupt enable register - default enable all */
mvreg_write(pp, MVNETA_INTR_ENABLE,
(MVNETA_RXQ_INTR_ENABLE_ALL_MASK
| MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
mvneta_mib_counters_clear(pp);
}
/* Set max sizes for tx queues */
static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
{
u32 val, size, mtu;
int queue;
mtu = max_tx_size * 8;
if (mtu > MVNETA_TX_MTU_MAX)
mtu = MVNETA_TX_MTU_MAX;
/* Set MTU */
val = mvreg_read(pp, MVNETA_TX_MTU);
val &= ~MVNETA_TX_MTU_MAX;
val |= mtu;
mvreg_write(pp, MVNETA_TX_MTU, val);
/* TX token size and all TXQs token size must be larger that MTU */
val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
size = val & MVNETA_TX_TOKEN_SIZE_MAX;
if (size < mtu) {
size = mtu;
val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
val |= size;
mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
}
for (queue = 0; queue < txq_number; queue++) {
val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
if (size < mtu) {
size = mtu;
val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
val |= size;
mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
}
}
}
/* Set unicast address */
static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
int queue)
{
unsigned int unicast_reg;
unsigned int tbl_offset;
unsigned int reg_offset;
/* Locate the Unicast table entry */
last_nibble = (0xf & last_nibble);
/* offset from unicast tbl base */
tbl_offset = (last_nibble / 4) * 4;
/* offset within the above reg */
reg_offset = last_nibble % 4;
unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
if (queue == -1) {
/* Clear accepts frame bit at specified unicast DA tbl entry */
unicast_reg &= ~(0xff << (8 * reg_offset));
} else {
unicast_reg &= ~(0xff << (8 * reg_offset));
unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
}
mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
}
/* Set mac address */
static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
int queue)
{
unsigned int mac_h;
unsigned int mac_l;
if (queue != -1) {
mac_l = (addr[4] << 8) | (addr[5]);
mac_h = (addr[0] << 24) | (addr[1] << 16) |
(addr[2] << 8) | (addr[3] << 0);
mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
}
/* Accept frames of this address */
mvneta_set_ucast_addr(pp, addr[5], queue);
}
/* Set the number of packets that will be received before RX interrupt
* will be generated by HW.
*/
static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
struct mvneta_rx_queue *rxq, u32 value)
{
mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
value | MVNETA_RXQ_NON_OCCUPIED(0));
}
/* Set the time delay in usec before RX interrupt will be generated by
* HW.
*/
static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
struct mvneta_rx_queue *rxq, u32 value)
{
u32 val;
unsigned long clk_rate;
clk_rate = clk_get_rate(pp->clk);
val = (clk_rate / 1000000) * value;
mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
}
/* Set threshold for TX_DONE pkts coalescing */
static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
struct mvneta_tx_queue *txq, u32 value)
{
u32 val;
val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
}
/* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
u32 phys_addr, void *virt_addr,
struct mvneta_rx_queue *rxq)
{
int i;
rx_desc->buf_phys_addr = phys_addr;
i = rx_desc - rxq->descs;
rxq->buf_virt_addr[i] = virt_addr;
}
/* Decrement sent descriptors counter */
static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
struct mvneta_tx_queue *txq,
int sent_desc)
{
u32 val;
/* Only 255 TX descriptors can be updated at once */
while (sent_desc > 0xff) {
val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
sent_desc = sent_desc - 0xff;
}
val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
}
/* Get number of TX descriptors already sent by HW */
static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
struct mvneta_tx_queue *txq)
{
u32 val;
int sent_desc;
val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
MVNETA_TXQ_SENT_DESC_SHIFT;
return sent_desc;
}
/* Get number of sent descriptors and decrement counter.
* The number of sent descriptors is returned.
*/
static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
struct mvneta_tx_queue *txq)
{
int sent_desc;
/* Get number of sent descriptors */
sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
/* Decrement sent descriptors counter */
if (sent_desc)
mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
return sent_desc;
}
/* Set TXQ descriptors fields relevant for CSUM calculation */
static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
int ip_hdr_len, int l4_proto)
{
u32 command;
/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
* G_L4_chk, L4_type; required only for checksum
* calculation
*/
command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
if (l3_proto == htons(ETH_P_IP))
command |= MVNETA_TXD_IP_CSUM;
else
command |= MVNETA_TX_L3_IP6;
if (l4_proto == IPPROTO_TCP)
command |= MVNETA_TX_L4_CSUM_FULL;
else if (l4_proto == IPPROTO_UDP)
command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
else
command |= MVNETA_TX_L4_CSUM_NOT;
return command;
}
/* Display more error info */
static void mvneta_rx_error(struct mvneta_port *pp,
struct mvneta_rx_desc *rx_desc)
{
u32 status = rx_desc->status;
switch (status & MVNETA_RXD_ERR_CODE_MASK) {
case MVNETA_RXD_ERR_CRC:
netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
status, rx_desc->data_size);
break;
case MVNETA_RXD_ERR_OVERRUN:
netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
status, rx_desc->data_size);
break;
case MVNETA_RXD_ERR_LEN:
netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
status, rx_desc->data_size);
break;
case MVNETA_RXD_ERR_RESOURCE:
netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
status, rx_desc->data_size);
break;
}
}
/* Handle RX checksum offload based on the descriptor's status */
static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
struct sk_buff *skb)
{
if ((pp->dev->features & NETIF_F_RXCSUM) &&
(status & MVNETA_RXD_L3_IP4) &&
(status & MVNETA_RXD_L4_CSUM_OK)) {
skb->csum = 0;
skb->ip_summed = CHECKSUM_UNNECESSARY;
return;
}
skb->ip_summed = CHECKSUM_NONE;
}
/* Return tx queue pointer (find last set bit) according to <cause> returned
* form tx_done reg. <cause> must not be null. The return value is always a
* valid queue for matching the first one found in <cause>.
*/
static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
u32 cause)
{
int queue = fls(cause) - 1;
return &pp->txqs[queue];
}
/* Free tx queue skbuffs */
static void mvneta_txq_bufs_free(struct mvneta_port *pp,
struct mvneta_tx_queue *txq, int num,
struct netdev_queue *nq)
{
unsigned int bytes_compl = 0, pkts_compl = 0;
int i;
for (i = 0; i < num; i++) {
struct mvneta_tx_desc *tx_desc = txq->descs +
txq->txq_get_index;
struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
if (skb) {
bytes_compl += skb->len;
pkts_compl++;
}
mvneta_txq_inc_get(txq);
if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
dma_unmap_single(pp->dev->dev.parent,
tx_desc->buf_phys_addr,
tx_desc->data_size, DMA_TO_DEVICE);
if (!skb)
continue;
dev_kfree_skb_any(skb);
}
netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
}
/* Handle end of transmission */
static void mvneta_txq_done(struct mvneta_port *pp,
struct mvneta_tx_queue *txq)
{
struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
int tx_done;
tx_done = mvneta_txq_sent_desc_proc(pp, txq);
if (!tx_done)
return;
mvneta_txq_bufs_free(pp, txq, tx_done, nq);
txq->count -= tx_done;
if (netif_tx_queue_stopped(nq)) {
if (txq->count <= txq->tx_wake_threshold)
netif_tx_wake_queue(nq);
}
}
/* Refill processing for SW buffer management */
/* Allocate page per descriptor */
static int mvneta_rx_refill(struct mvneta_port *pp,
struct mvneta_rx_desc *rx_desc,
struct mvneta_rx_queue *rxq,
gfp_t gfp_mask)
{
dma_addr_t phys_addr;
struct page *page;
page = __dev_alloc_page(gfp_mask);
if (!page)
return -ENOMEM;
/* map page for use */
phys_addr = dma_map_page(pp->dev->dev.parent, page, 0, PAGE_SIZE,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
__free_page(page);
return -ENOMEM;
}
phys_addr += pp->rx_offset_correction;
mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq);
return 0;
}
/* Handle tx checksum */
static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
{
if (skb->ip_summed == CHECKSUM_PARTIAL) {
int ip_hdr_len = 0;
__be16 l3_proto = vlan_get_protocol(skb);
u8 l4_proto;
if (l3_proto == htons(ETH_P_IP)) {
struct iphdr *ip4h = ip_hdr(skb);
/* Calculate IPv4 checksum and L4 checksum */
ip_hdr_len = ip4h->ihl;
l4_proto = ip4h->protocol;
} else if (l3_proto == htons(ETH_P_IPV6)) {
struct ipv6hdr *ip6h = ipv6_hdr(skb);
/* Read l4_protocol from one of IPv6 extra headers */
if (skb_network_header_len(skb) > 0)
ip_hdr_len = (skb_network_header_len(skb) >> 2);
l4_proto = ip6h->nexthdr;
} else
return MVNETA_TX_L4_CSUM_NOT;
return mvneta_txq_desc_csum(skb_network_offset(skb),
l3_proto, ip_hdr_len, l4_proto);
}
return MVNETA_TX_L4_CSUM_NOT;
}
/* Drop packets received by the RXQ and free buffers */
static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
struct mvneta_rx_queue *rxq)
{
int rx_done, i;
rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
if (rx_done)
mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
if (pp->bm_priv) {
for (i = 0; i < rx_done; i++) {
struct mvneta_rx_desc *rx_desc =
mvneta_rxq_next_desc_get(rxq);
u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
struct mvneta_bm_pool *bm_pool;
bm_pool = &pp->bm_priv->bm_pools[pool_id];
/* Return dropped buffer to the pool */
mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
rx_desc->buf_phys_addr);
}
return;
}
for (i = 0; i < rxq->size; i++) {
struct mvneta_rx_desc *rx_desc = rxq->descs + i;
void *data = rxq->buf_virt_addr[i];
if (!data || !(rx_desc->buf_phys_addr))
continue;
dma_unmap_page(pp->dev->dev.parent, rx_desc->buf_phys_addr,
PAGE_SIZE, DMA_FROM_DEVICE);
__free_page(data);
}
}
static inline
int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq)
{
struct mvneta_rx_desc *rx_desc;
int curr_desc = rxq->first_to_refill;
int i;
for (i = 0; (i < rxq->refill_num) && (i < 64); i++) {
rx_desc = rxq->descs + curr_desc;
if (!(rx_desc->buf_phys_addr)) {
if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) {
pr_err("Can't refill queue %d. Done %d from %d\n",
rxq->id, i, rxq->refill_num);
rxq->refill_err++;
break;
}
}
curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc);
}
rxq->refill_num -= i;
rxq->first_to_refill = curr_desc;
return i;
}
/* Main rx processing when using software buffer management */
static int mvneta_rx_swbm(struct napi_struct *napi,
struct mvneta_port *pp, int budget,
struct mvneta_rx_queue *rxq)
{
struct net_device *dev = pp->dev;
int rx_todo, rx_proc;
int refill = 0;
u32 rcvd_pkts = 0;
u32 rcvd_bytes = 0;
/* Get number of received packets */
rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);
rx_proc = 0;
/* Fairness NAPI loop */
while ((rcvd_pkts < budget) && (rx_proc < rx_todo)) {
struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
unsigned char *data;
struct page *page;
dma_addr_t phys_addr;
u32 rx_status, index;
int rx_bytes, skb_size, copy_size;
int frag_num, frag_size, frag_offset;
index = rx_desc - rxq->descs;
page = (struct page *)rxq->buf_virt_addr[index];
data = page_address(page);
/* Prefetch header */
prefetch(data);
phys_addr = rx_desc->buf_phys_addr;
rx_status = rx_desc->status;
rx_proc++;
rxq->refill_num++;
if (rx_status & MVNETA_RXD_FIRST_DESC) {
/* Check errors only for FIRST descriptor */
if (rx_status & MVNETA_RXD_ERR_SUMMARY) {
mvneta_rx_error(pp, rx_desc);
dev->stats.rx_errors++;
/* leave the descriptor untouched */
continue;
}
rx_bytes = rx_desc->data_size -
(ETH_FCS_LEN + MVNETA_MH_SIZE);
/* Allocate small skb for each new packet */
skb_size = max(rx_copybreak, rx_header_size);
rxq->skb = netdev_alloc_skb_ip_align(dev, skb_size);
if (unlikely(!rxq->skb)) {
netdev_err(dev,
"Can't allocate skb on queue %d\n",
rxq->id);
dev->stats.rx_dropped++;
rxq->skb_alloc_err++;
continue;
}
copy_size = min(skb_size, rx_bytes);
/* Copy data from buffer to SKB, skip Marvell header */
memcpy(rxq->skb->data, data + MVNETA_MH_SIZE,
copy_size);
skb_put(rxq->skb, copy_size);
rxq->left_size = rx_bytes - copy_size;
mvneta_rx_csum(pp, rx_status, rxq->skb);
if (rxq->left_size == 0) {
int size = copy_size + MVNETA_MH_SIZE;
dma_sync_single_range_for_cpu(dev->dev.parent,
phys_addr, 0,
size,
DMA_FROM_DEVICE);
/* leave the descriptor and buffer untouched */
} else {
/* refill descriptor with new buffer later */
rx_desc->buf_phys_addr = 0;
frag_num = 0;
frag_offset = copy_size + MVNETA_MH_SIZE;
frag_size = min(rxq->left_size,
(int)(PAGE_SIZE - frag_offset));
skb_add_rx_frag(rxq->skb, frag_num, page,
frag_offset, frag_size,
PAGE_SIZE);
dma_unmap_page(dev->dev.parent, phys_addr,
PAGE_SIZE, DMA_FROM_DEVICE);
rxq->left_size -= frag_size;
}
} else {
/* Middle or Last descriptor */
if (unlikely(!rxq->skb)) {
pr_debug("no skb for rx_status 0x%x\n",
rx_status);
continue;
}
if (!rxq->left_size) {
/* last descriptor has only FCS */
/* and can be discarded */
dma_sync_single_range_for_cpu(dev->dev.parent,
phys_addr, 0,
ETH_FCS_LEN,
DMA_FROM_DEVICE);
/* leave the descriptor and buffer untouched */
} else {
/* refill descriptor with new buffer later */
rx_desc->buf_phys_addr = 0;
frag_num = skb_shinfo(rxq->skb)->nr_frags;
frag_offset = 0;
frag_size = min(rxq->left_size,
(int)(PAGE_SIZE - frag_offset));
skb_add_rx_frag(rxq->skb, frag_num, page,
frag_offset, frag_size,
PAGE_SIZE);
dma_unmap_page(dev->dev.parent, phys_addr,
PAGE_SIZE, DMA_FROM_DEVICE);
rxq->left_size -= frag_size;
}
} /* Middle or Last descriptor */
if (!(rx_status & MVNETA_RXD_LAST_DESC))
/* no last descriptor this time */
continue;
if (rxq->left_size) {
pr_err("get last desc, but left_size (%d) != 0\n",
rxq->left_size);
dev_kfree_skb_any(rxq->skb);
rxq->left_size = 0;
rxq->skb = NULL;
continue;
}
rcvd_pkts++;
rcvd_bytes += rxq->skb->len;
/* Linux processing */
rxq->skb->protocol = eth_type_trans(rxq->skb, dev);
napi_gro_receive(napi, rxq->skb);
/* clean uncomplete skb pointer in queue */
rxq->skb = NULL;
rxq->left_size = 0;
}
if (rcvd_pkts) {
struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
u64_stats_update_begin(&stats->syncp);
stats->rx_packets += rcvd_pkts;
stats->rx_bytes += rcvd_bytes;
u64_stats_update_end(&stats->syncp);
}
/* return some buffers to hardware queue, one at a time is too slow */
refill = mvneta_rx_refill_queue(pp, rxq);
/* Update rxq management counters */
mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill);
return rcvd_pkts;
}
/* Main rx processing when using hardware buffer management */
static int mvneta_rx_hwbm(struct napi_struct *napi,
struct mvneta_port *pp, int rx_todo,
struct mvneta_rx_queue *rxq)
{
struct net_device *dev = pp->dev;
int rx_done;
u32 rcvd_pkts = 0;
u32 rcvd_bytes = 0;
/* Get number of received packets */
rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
if (rx_todo > rx_done)
rx_todo = rx_done;
rx_done = 0;
/* Fairness NAPI loop */
while (rx_done < rx_todo) {
struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
struct mvneta_bm_pool *bm_pool = NULL;
struct sk_buff *skb;
unsigned char *data;
dma_addr_t phys_addr;
u32 rx_status, frag_size;
int rx_bytes, err;
u8 pool_id;
rx_done++;
rx_status = rx_desc->status;
rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
phys_addr = rx_desc->buf_phys_addr;
pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
bm_pool = &pp->bm_priv->bm_pools[pool_id];
if (!mvneta_rxq_desc_is_first_last(rx_status) ||
(rx_status & MVNETA_RXD_ERR_SUMMARY)) {
err_drop_frame_ret_pool:
/* Return the buffer to the pool */
mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
rx_desc->buf_phys_addr);
err_drop_frame:
dev->stats.rx_errors++;
mvneta_rx_error(pp, rx_desc);
/* leave the descriptor untouched */
continue;
}
if (rx_bytes <= rx_copybreak) {
/* better copy a small frame and not unmap the DMA region */
skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
if (unlikely(!skb))
goto err_drop_frame_ret_pool;
dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev,
rx_desc->buf_phys_addr,
MVNETA_MH_SIZE + NET_SKB_PAD,
rx_bytes,
DMA_FROM_DEVICE);
skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
rx_bytes);
skb->protocol = eth_type_trans(skb, dev);
mvneta_rx_csum(pp, rx_status, skb);
napi_gro_receive(napi, skb);
rcvd_pkts++;
rcvd_bytes += rx_bytes;
/* Return the buffer to the pool */
mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
rx_desc->buf_phys_addr);
/* leave the descriptor and buffer untouched */
continue;
}
/* Refill processing */
err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
if (err) {
netdev_err(dev, "Linux processing - Can't refill\n");
rxq->refill_err++;
goto err_drop_frame_ret_pool;
}
frag_size = bm_pool->hwbm_pool.frag_size;
skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
/* After refill old buffer has to be unmapped regardless
* the skb is successfully built or not.
*/
dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
bm_pool->buf_size, DMA_FROM_DEVICE);
if (!skb)
goto err_drop_frame;
rcvd_pkts++;
rcvd_bytes += rx_bytes;
/* Linux processing */
skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
skb_put(skb, rx_bytes);
skb->protocol = eth_type_trans(skb, dev);
mvneta_rx_csum(pp, rx_status, skb);
napi_gro_receive(napi, skb);
}
if (rcvd_pkts) {
struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
u64_stats_update_begin(&stats->syncp);
stats->rx_packets += rcvd_pkts;
stats->rx_bytes += rcvd_bytes;
u64_stats_update_end(&stats->syncp);
}
/* Update rxq management counters */
mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
return rx_done;
}
static inline void
mvneta_tso_put_hdr(struct sk_buff *skb,
struct mvneta_port *pp, struct mvneta_tx_queue *txq)
{
struct mvneta_tx_desc *tx_desc;
int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
txq->tx_skb[txq->txq_put_index] = NULL;
tx_desc = mvneta_txq_next_desc_get(txq);
tx_desc->data_size = hdr_len;
tx_desc->command = mvneta_skb_tx_csum(pp, skb);
tx_desc->command |= MVNETA_TXD_F_DESC;
tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
txq->txq_put_index * TSO_HEADER_SIZE;
mvneta_txq_inc_put(txq);
}
static inline int
mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
struct sk_buff *skb, char *data, int size,
bool last_tcp, bool is_last)
{
struct mvneta_tx_desc *tx_desc;
tx_desc = mvneta_txq_next_desc_get(txq);
tx_desc->data_size = size;
tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
size, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(dev->dev.parent,
tx_desc->buf_phys_addr))) {
mvneta_txq_desc_put(txq);
return -ENOMEM;
}
tx_desc->command = 0;
txq->tx_skb[txq->txq_put_index] = NULL;
if (last_tcp) {
/* last descriptor in the TCP packet */
tx_desc->command = MVNETA_TXD_L_DESC;
/* last descriptor in SKB */
if (is_last)
txq->tx_skb[txq->txq_put_index] = skb;
}
mvneta_txq_inc_put(txq);
return 0;
}
static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
struct mvneta_tx_queue *txq)
{
int total_len, data_left;
int desc_count = 0;
struct mvneta_port *pp = netdev_priv(dev);
struct tso_t tso;
int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
int i;
/* Count needed descriptors */
if ((txq->count + tso_count_descs(skb)) >= txq->size)
return 0;
if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
pr_info("*** Is this even possible???!?!?\n");
return 0;
}
/* Initialize the TSO handler, and prepare the first payload */
tso_start(skb, &tso);
total_len = skb->len - hdr_len;
while (total_len > 0) {
char *hdr;
data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
total_len -= data_left;
desc_count++;
/* prepare packet headers: MAC + IP + TCP */
hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
mvneta_tso_put_hdr(skb, pp, txq);
while (data_left > 0) {
int size;
desc_count++;
size = min_t(int, tso.size, data_left);
if (mvneta_tso_put_data(dev, txq, skb,
tso.data, size,
size == data_left,
total_len == 0))
goto err_release;
data_left -= size;
tso_build_data(skb, &tso, size);
}
}
return desc_count;
err_release:
/* Release all used data descriptors; header descriptors must not
* be DMA-unmapped.
*/
for (i = desc_count - 1; i >= 0; i--) {
struct mvneta_tx_desc *tx_desc = txq->descs + i;
if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
dma_unmap_single(pp->dev->dev.parent,
tx_desc->buf_phys_addr,
tx_desc->data_size,
DMA_TO_DEVICE);
mvneta_txq_desc_put(txq);
}
return 0;
}
/* Handle tx fragmentation processing */
static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
struct mvneta_tx_queue *txq)
{
struct mvneta_tx_desc *tx_desc;
int i, nr_frags = skb_shinfo(skb)->nr_frags;
for (i = 0; i < nr_frags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
void *addr = page_address(frag->page.p) + frag->page_offset;
tx_desc = mvneta_txq_next_desc_get(txq);
tx_desc->data_size = frag->size;
tx_desc->buf_phys_addr =
dma_map_single(pp->dev->dev.parent, addr,
tx_desc->data_size, DMA_TO_DEVICE);
if (dma_mapping_error(pp->dev->dev.parent,
tx_desc->buf_phys_addr)) {
mvneta_txq_desc_put(txq);
goto error;
}
if (i == nr_frags - 1) {
/* Last descriptor */
tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
txq->tx_skb[txq->txq_put_index] = skb;
} else {
/* Descriptor in the middle: Not First, Not Last */
tx_desc->command = 0;
txq->tx_skb[txq->txq_put_index] = NULL;
}
mvneta_txq_inc_put(txq);
}
return 0;
error:
/* Release all descriptors that were used to map fragments of
* this packet, as well as the corresponding DMA mappings
*/
for (i = i - 1; i >= 0; i--) {
tx_desc = txq->descs + i;
dma_unmap_single(pp->dev->dev.parent,
tx_desc->buf_phys_addr,
tx_desc->data_size,
DMA_TO_DEVICE);
mvneta_txq_desc_put(txq);
}
return -ENOMEM;
}
/* Main tx processing */
static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev)
{
struct mvneta_port *pp = netdev_priv(dev);
u16 txq_id = skb_get_queue_mapping(skb);
struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
struct mvneta_tx_desc *tx_desc;
int len = skb->len;
int frags = 0;
u32 tx_cmd;
if (!netif_running(dev))
goto out;
if (skb_is_gso(skb)) {
frags = mvneta_tx_tso(skb, dev, txq);
goto out;
}
frags = skb_shinfo(skb)->nr_frags + 1;
/* Get a descriptor for the first part of the packet */
tx_desc = mvneta_txq_next_desc_get(txq);
tx_cmd = mvneta_skb_tx_csum(pp, skb);
tx_desc->data_size = skb_headlen(skb);
tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
tx_desc->data_size,
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(dev->dev.parent,
tx_desc->buf_phys_addr))) {
mvneta_txq_desc_put(txq);
frags = 0;
goto out;
}
if (frags == 1) {
/* First and Last descriptor */
tx_cmd |= MVNETA_TXD_FLZ_DESC;
tx_desc->command = tx_cmd;
txq->tx_skb[txq->txq_put_index] = skb;
mvneta_txq_inc_put(txq);
} else {
/* First but not Last */
tx_cmd |= MVNETA_TXD_F_DESC;
txq->tx_skb[txq->txq_put_index] = NULL;
mvneta_txq_inc_put(txq);
tx_desc->command = tx_cmd;
/* Continue with other skb fragments */
if (mvneta_tx_frag_process(pp, skb, txq)) {
dma_unmap_single(dev->dev.parent,
tx_desc->buf_phys_addr,
tx_desc->data_size,
DMA_TO_DEVICE);
mvneta_txq_desc_put(txq);
frags = 0;
goto out;
}
}
out:
if (frags > 0) {
struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
netdev_tx_sent_queue(nq, len);
txq->count += frags;
if (txq->count >= txq->tx_stop_threshold)
netif_tx_stop_queue(nq);
if (!netdev_xmit_more() || netif_xmit_stopped(nq) ||
txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
mvneta_txq_pend_desc_add(pp, txq, frags);
else
txq->pending += frags;
u64_stats_update_begin(&stats->syncp);
stats->tx_packets++;
stats->tx_bytes += len;
u64_stats_update_end(&stats->syncp);
} else {
dev->stats.tx_dropped++;
dev_kfree_skb_any(skb);
}
return NETDEV_TX_OK;
}
/* Free tx resources, when resetting a port */
static void mvneta_txq_done_force(struct mvneta_port *pp,
struct mvneta_tx_queue *txq)
{
struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
int tx_done = txq->count;
mvneta_txq_bufs_free(pp, txq, tx_done, nq);
/* reset txq */
txq->count = 0;
txq->txq_put_index = 0;
txq->txq_get_index = 0;
}
/* Handle tx done - called in softirq context. The <cause_tx_done> argument
* must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
*/
static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
{
struct mvneta_tx_queue *txq;
struct netdev_queue *nq;
int cpu = smp_processor_id();
while (cause_tx_done) {
txq = mvneta_tx_done_policy(pp, cause_tx_done);
nq = netdev_get_tx_queue(pp->dev, txq->id);
__netif_tx_lock(nq, cpu);
if (txq->count)
mvneta_txq_done(pp, txq);
__netif_tx_unlock(nq);
cause_tx_done &= ~((1 << txq->id));
}
}
/* Compute crc8 of the specified address, using a unique algorithm ,
* according to hw spec, different than generic crc8 algorithm
*/
static int mvneta_addr_crc(unsigned char *addr)
{
int crc = 0;
int i;
for (i = 0; i < ETH_ALEN; i++) {
int j;
crc = (crc ^ addr[i]) << 8;
for (j = 7; j >= 0; j--) {
if (crc & (0x100 << j))
crc ^= 0x107 << j;
}
}
return crc;
}
/* This method controls the net device special MAC multicast support.
* The Special Multicast Table for MAC addresses supports MAC of the form
* 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
* The MAC DA[7:0] bits are used as a pointer to the Special Multicast
* Table entries in the DA-Filter table. This method set the Special
* Multicast Table appropriate entry.
*/
static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
unsigned char last_byte,
int queue)
{
unsigned int smc_table_reg;
unsigned int tbl_offset;
unsigned int reg_offset;
/* Register offset from SMC table base */
tbl_offset = (last_byte / 4);
/* Entry offset within the above reg */
reg_offset = last_byte % 4;
smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
+ tbl_offset * 4));
if (queue == -1)
smc_table_reg &= ~(0xff << (8 * reg_offset));
else {
smc_table_reg &= ~(0xff << (8 * reg_offset));
smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
}
mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
smc_table_reg);
}
/* This method controls the network device Other MAC multicast support.
* The Other Multicast Table is used for multicast of another type.
* A CRC-8 is used as an index to the Other Multicast Table entries
* in the DA-Filter table.
* The method gets the CRC-8 value from the calling routine and
* sets the Other Multicast Table appropriate entry according to the
* specified CRC-8 .
*/
static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
unsigned char crc8,
int queue)
{
unsigned int omc_table_reg;
unsigned int tbl_offset;
unsigned int reg_offset;
tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
reg_offset = crc8 % 4; /* Entry offset within the above reg */
omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
if (queue == -1) {
/* Clear accepts frame bit at specified Other DA table entry */
omc_table_reg &= ~(0xff << (8 * reg_offset));
} else {
omc_table_reg &= ~(0xff << (8 * reg_offset));
omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
}
mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
}
/* The network device supports multicast using two tables:
* 1) Special Multicast Table for MAC addresses of the form
* 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
* The MAC DA[7:0] bits are used as a pointer to the Special Multicast
* Table entries in the DA-Filter table.
* 2) Other Multicast Table for multicast of another type. A CRC-8 value
* is used as an index to the Other Multicast Table entries in the
* DA-Filter table.
*/
static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
int queue)
{
unsigned char crc_result = 0;
if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
return 0;
}
crc_result = mvneta_addr_crc(p_addr);
if (queue == -1) {
if (pp->mcast_count[crc_result] == 0) {
netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
crc_result);
return -EINVAL;
}
pp->mcast_count[crc_result]--;
if (pp->mcast_count[crc_result] != 0) {
netdev_info(pp->dev,
"After delete there are %d valid Mcast for crc8=0x%02x\n",
pp->mcast_count[crc_result], crc_result);
return -EINVAL;
}
} else
pp->mcast_count[crc_result]++;
mvneta_set_other_mcast_addr(pp, crc_result, queue);
return 0;
}
/* Configure Fitering mode of Ethernet port */
static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
int is_promisc)
{
u32 port_cfg_reg, val;
port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
val = mvreg_read(pp, MVNETA_TYPE_PRIO);
/* Set / Clear UPM bit in port configuration register */
if (is_promisc) {
/* Accept all Unicast addresses */
port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
val |= MVNETA_FORCE_UNI;
mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
} else {
/* Reject all Unicast addresses */
port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
val &= ~MVNETA_FORCE_UNI;
}
mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
mvreg_write(pp, MVNETA_TYPE_PRIO, val);
}
/* register unicast and multicast addresses */
static void mvneta_set_rx_mode(struct net_device *dev)
{
struct mvneta_port *pp = netdev_priv(dev);
struct netdev_hw_addr *ha;
if (dev->flags & IFF_PROMISC) {
/* Accept all: Multicast + Unicast */
mvneta_rx_unicast_promisc_set(pp, 1);
mvneta_set_ucast_table(pp, pp->rxq_def);
mvneta_set_special_mcast_table(pp, pp->rxq_def);
mvneta_set_other_mcast_table(pp, pp->rxq_def);
} else {
/* Accept single Unicast */
mvneta_rx_unicast_promisc_set(pp, 0);
mvneta_set_ucast_table(pp, -1);
mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
if (dev->flags & IFF_ALLMULTI) {
/* Accept all multicast */
mvneta_set_special_mcast_table(pp, pp->rxq_def);
mvneta_set_other_mcast_table(pp, pp->rxq_def);
} else {
/* Accept only initialized multicast */
mvneta_set_special_mcast_table(pp, -1);
mvneta_set_other_mcast_table(pp, -1);
if (!netdev_mc_empty(dev)) {
netdev_for_each_mc_addr(ha, dev) {
mvneta_mcast_addr_set(pp, ha->addr,
pp->rxq_def);
}
}
}
}
}
/* Interrupt handling - the callback for request_irq() */
static irqreturn_t mvneta_isr(int irq, void *dev_id)
{
struct mvneta_port *pp = (struct mvneta_port *)dev_id;
mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
napi_schedule(&pp->napi);
return IRQ_HANDLED;
}
/* Interrupt handling - the callback for request_percpu_irq() */
static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
{
struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
disable_percpu_irq(port->pp->dev->irq);
napi_schedule(&port->napi);
return IRQ_HANDLED;
}
static void mvneta_link_change(struct mvneta_port *pp)
{
u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP));
}
/* NAPI handler
* Bits 0 - 7 of the causeRxTx register indicate that are transmitted
* packets on the corresponding TXQ (Bit 0 is for TX queue 1).
* Bits 8 -15 of the cause Rx Tx register indicate that are received
* packets on the corresponding RXQ (Bit 8 is for RX queue 0).
* Each CPU has its own causeRxTx register
*/
static int mvneta_poll(struct napi_struct *napi, int budget)
{
int rx_done = 0;
u32 cause_rx_tx;
int rx_queue;
struct mvneta_port *pp = netdev_priv(napi->dev);
struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
if (!netif_running(pp->dev)) {
napi_complete(napi);
return rx_done;
}
/* Read cause register */
cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
MVNETA_CAUSE_LINK_CHANGE))
mvneta_link_change(pp);
}
/* Release Tx descriptors */
if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
}