blob: 0a9083c613a4ee54cd816cf511f06b93e94e42ae [file] [log] [blame]
#include <ctype.h>
#include <netlink/attr.h>
#include <errno.h>
#include <stdbool.h>
#include "iw.h"
#include "nl80211.h"
void mac_addr_n2a(char *mac_addr, const unsigned char *arg)
{
int i, l;
l = 0;
for (i = 0; i < ETH_ALEN ; i++) {
if (i == 0) {
sprintf(mac_addr+l, "%02x", arg[i]);
l += 2;
} else {
sprintf(mac_addr+l, ":%02x", arg[i]);
l += 3;
}
}
}
int mac_addr_a2n(unsigned char *mac_addr, char *arg)
{
int i;
for (i = 0; i < ETH_ALEN ; i++) {
int temp;
char *cp = strchr(arg, ':');
if (cp) {
*cp = 0;
cp++;
}
if (sscanf(arg, "%x", &temp) != 1)
return -1;
if (temp < 0 || temp > 255)
return -1;
mac_addr[i] = temp;
if (!cp)
break;
arg = cp;
}
if (i < ETH_ALEN - 1)
return -1;
return 0;
}
int parse_hex_mask(char *hexmask, unsigned char **result, size_t *result_len,
unsigned char **mask)
{
size_t len = strlen(hexmask) / 2;
unsigned char *result_val;
unsigned char *result_mask = NULL;
int pos = 0;
*result_len = 0;
result_val = calloc(len + 2, 1);
if (!result_val)
goto error;
*result = result_val;
if (mask) {
result_mask = calloc(DIV_ROUND_UP(len, 8) + 2, 1);
if (!result_mask)
goto error;
*mask = result_mask;
}
while (1) {
char *cp = strchr(hexmask, ':');
if (cp) {
*cp = 0;
cp++;
}
if (result_mask && (strcmp(hexmask, "-") == 0 ||
strcmp(hexmask, "xx") == 0 ||
strcmp(hexmask, "--") == 0)) {
/* skip this byte and leave mask bit unset */
} else {
int temp, mask_pos;
char *end;
temp = strtoul(hexmask, &end, 16);
if (*end)
goto error;
if (temp < 0 || temp > 255)
goto error;
result_val[pos] = temp;
mask_pos = pos / 8;
if (result_mask)
result_mask[mask_pos] |= 1 << (pos % 8);
}
(*result_len)++;
pos++;
if (!cp)
break;
hexmask = cp;
}
return 0;
error:
free(result_val);
free(result_mask);
return -1;
}
unsigned char *parse_hex(char *hex, size_t *outlen)
{
unsigned char *result;
if (parse_hex_mask(hex, &result, outlen, NULL))
return NULL;
return result;
}
static const char *ifmodes[NL80211_IFTYPE_MAX + 1] = {
"unspecified",
"IBSS",
"managed",
"AP",
"AP/VLAN",
"WDS",
"monitor",
"mesh point",
"P2P-client",
"P2P-GO",
"P2P-device",
"outside context of a BSS",
"NAN",
};
static char modebuf[100];
const char *iftype_name(enum nl80211_iftype iftype)
{
if (iftype <= NL80211_IFTYPE_MAX && ifmodes[iftype])
return ifmodes[iftype];
sprintf(modebuf, "Unknown mode (%d)", iftype);
return modebuf;
}
static const char *commands[NL80211_CMD_MAX + 1] = {
#include "nl80211-commands.inc"
};
static char cmdbuf[100];
const char *command_name(enum nl80211_commands cmd)
{
if (cmd <= NL80211_CMD_MAX && commands[cmd])
return commands[cmd];
sprintf(cmdbuf, "Unknown command (%d)", cmd);
return cmdbuf;
}
int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
{
/* see 802.11 17.3.8.3.2 and Annex J
* there are overlapping channel numbers in 5GHz and 2GHz bands */
if (chan <= 0)
return 0; /* not supported */
switch (band) {
case NL80211_BAND_2GHZ:
if (chan == 14)
return 2484;
else if (chan < 14)
return 2407 + chan * 5;
break;
case NL80211_BAND_5GHZ:
if (chan >= 182 && chan <= 196)
return 4000 + chan * 5;
else
return 5000 + chan * 5;
break;
case NL80211_BAND_6GHZ:
/* see 802.11ax D6.1 27.3.23.2 */
if (chan == 2)
return 5935;
if (chan <= 253)
return 5950 + chan * 5;
break;
case NL80211_BAND_60GHZ:
if (chan < 7)
return 56160 + chan * 2160;
break;
default:
;
}
return 0; /* not supported */
}
int ieee80211_frequency_to_channel(int freq)
{
/* see 802.11-2007 17.3.8.3.2 and Annex J */
if (freq == 2484)
return 14;
/* see 802.11ax D6.1 27.3.23.2 and Annex E */
else if (freq == 5935)
return 2;
else if (freq < 2484)
return (freq - 2407) / 5;
else if (freq >= 4910 && freq <= 4980)
return (freq - 4000) / 5;
else if (freq < 5950)
return (freq - 5000) / 5;
else if (freq <= 45000) /* DMG band lower limit */
/* see 802.11ax D6.1 27.3.23.2 */
return (freq - 5950) / 5;
else if (freq >= 58320 && freq <= 70200)
return (freq - 56160) / 2160;
else
return 0;
}
void print_ssid_escaped(const uint8_t len, const uint8_t *data)
{
int i;
for (i = 0; i < len; i++) {
if (isprint(data[i]) && data[i] != ' ' && data[i] != '\\')
printf("%c", data[i]);
else if (data[i] == ' ' &&
(i != 0 && i != len -1))
printf(" ");
else
printf("\\x%.2x", data[i]);
}
}
static int hex2num(char digit)
{
if (!isxdigit(digit))
return -1;
if (isdigit(digit))
return digit - '0';
return tolower(digit) - 'a' + 10;
}
static int hex2byte(const char *hex)
{
int d1, d2;
d1 = hex2num(hex[0]);
if (d1 < 0)
return -1;
d2 = hex2num(hex[1]);
if (d2 < 0)
return -1;
return (d1 << 4) | d2;
}
char *hex2bin(const char *hex, char *buf)
{
char *result = buf;
int d;
while (hex[0]) {
d = hex2byte(hex);
if (d < 0)
return NULL;
buf[0] = d;
buf++;
hex += 2;
}
return result;
}
static int parse_akm_suite(const char *cipher_str)
{
if (!strcmp(cipher_str, "PSK"))
return 0x000FAC02;
if (!strcmp(cipher_str, "FT/PSK"))
return 0x000FAC03;
if (!strcmp(cipher_str, "PSK/SHA-256"))
return 0x000FAC06;
return -EINVAL;
}
static int parse_cipher_suite(const char *cipher_str)
{
if (!strcmp(cipher_str, "TKIP"))
return 0x000FAC02;
if (!strcmp(cipher_str, "CCMP") || !strcmp(cipher_str, "CCMP-128"))
return 0x000FAC04;
if (!strcmp(cipher_str, "GCMP") || !strcmp(cipher_str, "GCMP-128"))
return 0x000FAC08;
if (!strcmp(cipher_str, "GCMP-256"))
return 0x000FAC09;
if (!strcmp(cipher_str, "CCMP-256"))
return 0x000FAC0A;
return -EINVAL;
}
int parse_keys(struct nl_msg *msg, char **argv[], int *argc)
{
struct nlattr *keys;
int i = 0;
bool have_default = false;
char *arg = **argv;
char keybuf[13];
int pos = 0;
if (!*argc)
return 1;
if (!memcmp(&arg[pos], "psk", 3)) {
char psk_keybuf[32];
int cipher_suite, akm_suite;
if (*argc < 4)
goto explain;
pos+=3;
if (arg[pos] != ':')
goto explain;
pos++;
NLA_PUT_U32(msg, NL80211_ATTR_WPA_VERSIONS, NL80211_WPA_VERSION_2);
if (strlen(&arg[pos]) != (sizeof(psk_keybuf) * 2) || !hex2bin(&arg[pos], psk_keybuf)) {
printf("Bad PSK\n");
return -EINVAL;
}
NLA_PUT(msg, NL80211_ATTR_PMK, 32, psk_keybuf);
NLA_PUT_U32(msg, NL80211_ATTR_AUTH_TYPE, NL80211_AUTHTYPE_OPEN_SYSTEM);
*argv += 1;
*argc -= 1;
arg = **argv;
akm_suite = parse_akm_suite(arg);
if (akm_suite < 0)
goto explain;
NLA_PUT_U32(msg, NL80211_ATTR_AKM_SUITES, akm_suite);
*argv += 1;
*argc -= 1;
arg = **argv;
cipher_suite = parse_cipher_suite(arg);
if (cipher_suite < 0)
goto explain;
NLA_PUT_U32(msg, NL80211_ATTR_CIPHER_SUITES_PAIRWISE, cipher_suite);
*argv += 1;
*argc -= 1;
arg = **argv;
cipher_suite = parse_cipher_suite(arg);
if (cipher_suite < 0)
goto explain;
NLA_PUT_U32(msg, NL80211_ATTR_CIPHER_SUITE_GROUP, cipher_suite);
*argv += 1;
*argc -= 1;
return 0;
}
NLA_PUT_FLAG(msg, NL80211_ATTR_PRIVACY);
keys = nla_nest_start(msg, NL80211_ATTR_KEYS);
if (!keys)
return -ENOBUFS;
do {
int keylen;
struct nlattr *key = nla_nest_start(msg, ++i);
char *keydata;
arg = **argv;
pos = 0;
if (!key)
return -ENOBUFS;
if (arg[pos] == 'd') {
NLA_PUT_FLAG(msg, NL80211_KEY_DEFAULT);
pos++;
if (arg[pos] == ':')
pos++;
have_default = true;
}
if (!isdigit(arg[pos]))
goto explain;
NLA_PUT_U8(msg, NL80211_KEY_IDX, arg[pos++] - '0');
if (arg[pos++] != ':')
goto explain;
keydata = arg + pos;
switch (strlen(keydata)) {
case 10:
keydata = hex2bin(keydata, keybuf);
/* fall through */
case 5:
NLA_PUT_U32(msg, NL80211_KEY_CIPHER, 0x000FAC01);
keylen = 5;
break;
case 26:
keydata = hex2bin(keydata, keybuf);
/* fall through */
case 13:
NLA_PUT_U32(msg, NL80211_KEY_CIPHER, 0x000FAC05);
keylen = 13;
break;
default:
goto explain;
}
if (!keydata)
goto explain;
NLA_PUT(msg, NL80211_KEY_DATA, keylen, keydata);
*argv += 1;
*argc -= 1;
/* one key should be TX key */
if (!have_default && !*argc)
NLA_PUT_FLAG(msg, NL80211_KEY_DEFAULT);
nla_nest_end(msg, key);
} while (*argc);
nla_nest_end(msg, keys);
return 0;
nla_put_failure:
return -ENOBUFS;
explain:
fprintf(stderr, "key must be [d:]index:data where\n"
" 'd:' means default (transmit) key\n"
" 'index:' is a single digit (0-3)\n"
" 'data' must be 5 or 13 ascii chars\n"
" or 10 or 26 hex digits\n"
"for example: d:2:6162636465 is the same as d:2:abcde\n"
"or psk:data <AKM Suite> <pairwise CIPHER> <groupwise CIPHER> where\n"
" 'data' is the PSK (output of wpa_passphrase and the CIPHER can be CCMP or GCMP\n"
"for example: psk:0123456789abcdef PSK CCMP CCMP\n"
"The allowed AKM suites are PSK, FT/PSK, PSK/SHA-256\n"
"The allowed Cipher suites are TKIP, CCMP, GCMP, GCMP-256, CCMP-256\n");
return 2;
}
enum nl80211_chan_width str_to_bw(const char *str)
{
static const struct {
const char *name;
unsigned int val;
} bwmap[] = {
{ .name = "5", .val = NL80211_CHAN_WIDTH_5, },
{ .name = "10", .val = NL80211_CHAN_WIDTH_10, },
{ .name = "20", .val = NL80211_CHAN_WIDTH_20, },
{ .name = "40", .val = NL80211_CHAN_WIDTH_40, },
{ .name = "80", .val = NL80211_CHAN_WIDTH_80, },
{ .name = "80+80", .val = NL80211_CHAN_WIDTH_80P80, },
{ .name = "160", .val = NL80211_CHAN_WIDTH_160, },
};
unsigned int i;
for (i = 0; i < ARRAY_SIZE(bwmap); i++) {
if (strcasecmp(bwmap[i].name, str) == 0)
return bwmap[i].val;
}
return NL80211_CHAN_WIDTH_20_NOHT;
}
static int parse_freqs(struct chandef *chandef, int argc, char **argv,
int *parsed)
{
uint32_t freq;
char *end;
bool need_cf1 = false, need_cf2 = false;
if (argc < 1)
return 0;
chandef->width = str_to_bw(argv[0]);
switch (chandef->width) {
case NL80211_CHAN_WIDTH_20_NOHT:
/* First argument was not understood, give up gracefully. */
return 0;
case NL80211_CHAN_WIDTH_20:
case NL80211_CHAN_WIDTH_5:
case NL80211_CHAN_WIDTH_10:
break;
case NL80211_CHAN_WIDTH_80P80:
need_cf2 = true;
/* fall through */
case NL80211_CHAN_WIDTH_40:
case NL80211_CHAN_WIDTH_80:
case NL80211_CHAN_WIDTH_160:
need_cf1 = true;
break;
case NL80211_CHAN_WIDTH_1:
case NL80211_CHAN_WIDTH_2:
case NL80211_CHAN_WIDTH_4:
case NL80211_CHAN_WIDTH_8:
case NL80211_CHAN_WIDTH_16:
/* can't happen yet */
break;
}
*parsed += 1;
if (!need_cf1)
return 0;
if (argc < 2)
return 1;
/* center freq 1 */
if (!*argv[1])
return 1;
freq = strtoul(argv[1], &end, 10);
if (*end)
return 1;
*parsed += 1;
chandef->center_freq1 = freq;
if (!need_cf2)
return 0;
if (argc < 3)
return 1;
/* center freq 2 */
if (!*argv[2])
return 1;
freq = strtoul(argv[2], &end, 10);
if (*end)
return 1;
chandef->center_freq2 = freq;
*parsed += 1;
return 0;
}
/**
* parse_freqchan - Parse frequency or channel definition
*
* @chandef: chandef structure to be filled in
* @chan: Boolean whether to parse a channel or frequency based specifier
* @argc: Number of arguments
* @argv: Array of string arguments
* @parsed: Pointer to return the number of used arguments, or NULL to error
* out if any argument is left unused.
*
* The given chandef structure will be filled in from the command line
* arguments. argc/argv will be updated so that further arguments from the
* command line can be parsed.
*
* Note that despite the fact that the function knows how many center freqs
* are needed, there's an ambiguity if the next argument after this is an
* integer argument, since the valid channel width values are interpreted
* as such, rather than a following argument. This can be avoided by the
* user by giving "NOHT" instead.
*
* The working specifier if chan is set are:
* <channel> [NOHT|HT20|HT40+|HT40-|5MHz|10MHz|80MHz|160MHz]
*
* And if frequency is set:
* <freq> [NOHT|HT20|HT40+|HT40-|5MHz|10MHz|80MHz|160MHz]
* <control freq> [5|10|20|40|80|80+80|160] [<center1_freq> [<center2_freq>]]
*
* If the mode/channel width is not given the NOHT is assumed.
*
* Return: Number of used arguments, zero or negative error number otherwise
*/
int parse_freqchan(struct chandef *chandef, bool chan, int argc, char **argv,
int *parsed)
{
char *end;
static const struct chanmode chanmode[] = {
{ .name = "HT20",
.width = NL80211_CHAN_WIDTH_20,
.freq1_diff = 0,
.chantype = NL80211_CHAN_HT20 },
{ .name = "HT40+",
.width = NL80211_CHAN_WIDTH_40,
.freq1_diff = 10,
.chantype = NL80211_CHAN_HT40PLUS },
{ .name = "HT40-",
.width = NL80211_CHAN_WIDTH_40,
.freq1_diff = -10,
.chantype = NL80211_CHAN_HT40MINUS },
{ .name = "NOHT",
.width = NL80211_CHAN_WIDTH_20_NOHT,
.freq1_diff = 0,
.chantype = NL80211_CHAN_NO_HT },
{ .name = "5MHz",
.width = NL80211_CHAN_WIDTH_5,
.freq1_diff = 0,
.chantype = -1 },
{ .name = "10MHz",
.width = NL80211_CHAN_WIDTH_10,
.freq1_diff = 0,
.chantype = -1 },
{ .name = "80MHz",
.width = NL80211_CHAN_WIDTH_80,
.freq1_diff = 0,
.chantype = -1 },
{ .name = "160MHz",
.width = NL80211_CHAN_WIDTH_160,
.freq1_diff = 0,
.chantype = -1 },
};
const struct chanmode *chanmode_selected = NULL;
unsigned int freq;
unsigned int i;
int _parsed = 0;
int res = 0;
if (argc < 1)
return 1;
if (!argv[0])
goto out;
freq = strtoul(argv[0], &end, 10);
if (*end) {
res = 1;
goto out;
}
_parsed += 1;
memset(chandef, 0, sizeof(struct chandef));
if (chan) {
enum nl80211_band band;
band = freq <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
freq = ieee80211_channel_to_frequency(freq, band);
}
chandef->control_freq = freq;
/* Assume 20MHz NOHT channel for now. */
chandef->center_freq1 = freq;
/* Try to parse HT mode definitions */
if (argc > 1) {
for (i = 0; i < ARRAY_SIZE(chanmode); i++) {
if (strcasecmp(chanmode[i].name, argv[1]) == 0) {
chanmode_selected = &chanmode[i];
_parsed += 1;
break;
}
}
}
/* channel mode given, use it and return. */
if (chanmode_selected) {
chandef->center_freq1 = get_cf1(chanmode_selected, freq);
chandef->width = chanmode_selected->width;
goto out;
}
/* This was a only a channel definition, nothing further may follow. */
if (chan)
goto out;
res = parse_freqs(chandef, argc - 1, argv + 1, &_parsed);
out:
/* Error out if parsed is NULL. */
if (!parsed && _parsed != argc)
return 1;
if (parsed)
*parsed = _parsed;
return res;
}
int put_chandef(struct nl_msg *msg, struct chandef *chandef)
{
NLA_PUT_U32(msg, NL80211_ATTR_WIPHY_FREQ, chandef->control_freq);
NLA_PUT_U32(msg, NL80211_ATTR_CHANNEL_WIDTH, chandef->width);
switch (chandef->width) {
case NL80211_CHAN_WIDTH_20_NOHT:
NLA_PUT_U32(msg,
NL80211_ATTR_WIPHY_CHANNEL_TYPE,
NL80211_CHAN_NO_HT);
break;
case NL80211_CHAN_WIDTH_20:
NLA_PUT_U32(msg,
NL80211_ATTR_WIPHY_CHANNEL_TYPE,
NL80211_CHAN_HT20);
break;
case NL80211_CHAN_WIDTH_40:
if (chandef->control_freq > chandef->center_freq1)
NLA_PUT_U32(msg,
NL80211_ATTR_WIPHY_CHANNEL_TYPE,
NL80211_CHAN_HT40MINUS);
else
NLA_PUT_U32(msg,
NL80211_ATTR_WIPHY_CHANNEL_TYPE,
NL80211_CHAN_HT40PLUS);
break;
default:
break;
}
if (chandef->center_freq1)
NLA_PUT_U32(msg,
NL80211_ATTR_CENTER_FREQ1,
chandef->center_freq1);
if (chandef->center_freq2)
NLA_PUT_U32(msg,
NL80211_ATTR_CENTER_FREQ2,
chandef->center_freq2);
return 0;
nla_put_failure:
return -ENOBUFS;
}
static void print_mcs_index(const __u8 *mcs)
{
int mcs_bit, prev_bit = -2, prev_cont = 0;
for (mcs_bit = 0; mcs_bit <= 76; mcs_bit++) {
unsigned int mcs_octet = mcs_bit/8;
unsigned int MCS_RATE_BIT = 1 << mcs_bit % 8;
bool mcs_rate_idx_set;
mcs_rate_idx_set = !!(mcs[mcs_octet] & MCS_RATE_BIT);
if (!mcs_rate_idx_set)
continue;
if (prev_bit != mcs_bit - 1) {
if (prev_bit != -2)
printf("%d, ", prev_bit);
else
printf(" ");
printf("%d", mcs_bit);
prev_cont = 0;
} else if (!prev_cont) {
printf("-");
prev_cont = 1;
}
prev_bit = mcs_bit;
}
if (prev_cont)
printf("%d", prev_bit);
printf("\n");
}
/*
* There are only 4 possible values, we just use a case instead of computing it,
* but technically this can also be computed through the formula:
*
* Max AMPDU length = (2 ^ (13 + exponent)) - 1 bytes
*/
static __u32 compute_ampdu_length(__u8 exponent)
{
switch (exponent) {
case 0: return 8191; /* (2 ^(13 + 0)) -1 */
case 1: return 16383; /* (2 ^(13 + 1)) -1 */
case 2: return 32767; /* (2 ^(13 + 2)) -1 */
case 3: return 65535; /* (2 ^(13 + 3)) -1 */
default: return 0;
}
}
static const char *print_ampdu_space(__u8 space)
{
switch (space) {
case 0: return "No restriction";
case 1: return "1/4 usec";
case 2: return "1/2 usec";
case 3: return "1 usec";
case 4: return "2 usec";
case 5: return "4 usec";
case 6: return "8 usec";
case 7: return "16 usec";
default:
return "BUG (spacing more than 3 bits!)";
}
}
void print_ampdu_length(__u8 exponent)
{
__u32 max_ampdu_length;
max_ampdu_length = compute_ampdu_length(exponent);
if (max_ampdu_length) {
printf("\t\tMaximum RX AMPDU length %d bytes (exponent: 0x0%02x)\n",
max_ampdu_length, exponent);
} else {
printf("\t\tMaximum RX AMPDU length: unrecognized bytes "
"(exponent: %d)\n", exponent);
}
}
void print_ampdu_spacing(__u8 spacing)
{
printf("\t\tMinimum RX AMPDU time spacing: %s (0x%02x)\n",
print_ampdu_space(spacing), spacing);
}
void print_ht_capability(__u16 cap)
{
#define PRINT_HT_CAP(_cond, _str) \
do { \
if (_cond) \
printf("\t\t\t" _str "\n"); \
} while (0)
printf("\t\tCapabilities: 0x%02x\n", cap);
PRINT_HT_CAP((cap & BIT(0)), "RX LDPC");
PRINT_HT_CAP((cap & BIT(1)), "HT20/HT40");
PRINT_HT_CAP(!(cap & BIT(1)), "HT20");
PRINT_HT_CAP(((cap >> 2) & 0x3) == 0, "Static SM Power Save");
PRINT_HT_CAP(((cap >> 2) & 0x3) == 1, "Dynamic SM Power Save");
PRINT_HT_CAP(((cap >> 2) & 0x3) == 3, "SM Power Save disabled");
PRINT_HT_CAP((cap & BIT(4)), "RX Greenfield");
PRINT_HT_CAP((cap & BIT(5)), "RX HT20 SGI");
PRINT_HT_CAP((cap & BIT(6)), "RX HT40 SGI");
PRINT_HT_CAP((cap & BIT(7)), "TX STBC");
PRINT_HT_CAP(((cap >> 8) & 0x3) == 0, "No RX STBC");
PRINT_HT_CAP(((cap >> 8) & 0x3) == 1, "RX STBC 1-stream");
PRINT_HT_CAP(((cap >> 8) & 0x3) == 2, "RX STBC 2-streams");
PRINT_HT_CAP(((cap >> 8) & 0x3) == 3, "RX STBC 3-streams");
PRINT_HT_CAP((cap & BIT(10)), "HT Delayed Block Ack");
PRINT_HT_CAP(!(cap & BIT(11)), "Max AMSDU length: 3839 bytes");
PRINT_HT_CAP((cap & BIT(11)), "Max AMSDU length: 7935 bytes");
/*
* For beacons and probe response this would mean the BSS
* does or does not allow the usage of DSSS/CCK HT40.
* Otherwise it means the STA does or does not use
* DSSS/CCK HT40.
*/
PRINT_HT_CAP((cap & BIT(12)), "DSSS/CCK HT40");
PRINT_HT_CAP(!(cap & BIT(12)), "No DSSS/CCK HT40");
/* BIT(13) is reserved */
PRINT_HT_CAP((cap & BIT(14)), "40 MHz Intolerant");
PRINT_HT_CAP((cap & BIT(15)), "L-SIG TXOP protection");
#undef PRINT_HT_CAP
}
void print_ht_mcs(const __u8 *mcs)
{
/* As defined in 7.3.2.57.4 Supported MCS Set field */
unsigned int tx_max_num_spatial_streams, max_rx_supp_data_rate;
bool tx_mcs_set_defined, tx_mcs_set_equal, tx_unequal_modulation;
max_rx_supp_data_rate = (mcs[10] | ((mcs[11] & 0x3) << 8));
tx_mcs_set_defined = !!(mcs[12] & (1 << 0));
tx_mcs_set_equal = !(mcs[12] & (1 << 1));
tx_max_num_spatial_streams = ((mcs[12] >> 2) & 3) + 1;
tx_unequal_modulation = !!(mcs[12] & (1 << 4));
if (max_rx_supp_data_rate)
printf("\t\tHT Max RX data rate: %d Mbps\n", max_rx_supp_data_rate);
/* XXX: else see 9.6.0e.5.3 how to get this I think */
if (tx_mcs_set_defined) {
if (tx_mcs_set_equal) {
printf("\t\tHT TX/RX MCS rate indexes supported:");
print_mcs_index(mcs);
} else {
printf("\t\tHT RX MCS rate indexes supported:");
print_mcs_index(mcs);
if (tx_unequal_modulation)
printf("\t\tTX unequal modulation supported\n");
else
printf("\t\tTX unequal modulation not supported\n");
printf("\t\tHT TX Max spatial streams: %d\n",
tx_max_num_spatial_streams);
printf("\t\tHT TX MCS rate indexes supported may differ\n");
}
} else {
printf("\t\tHT RX MCS rate indexes supported:");
print_mcs_index(mcs);
printf("\t\tHT TX MCS rate indexes are undefined\n");
}
}
void print_vht_info(__u32 capa, const __u8 *mcs)
{
__u16 tmp;
int i;
printf("\t\tVHT Capabilities (0x%.8x):\n", capa);
#define PRINT_VHT_CAPA(_bit, _str) \
do { \
if (capa & BIT(_bit)) \
printf("\t\t\t" _str "\n"); \
} while (0)
printf("\t\t\tMax MPDU length: ");
switch (capa & 3) {
case 0: printf("3895\n"); break;
case 1: printf("7991\n"); break;
case 2: printf("11454\n"); break;
case 3: printf("(reserved)\n");
}
printf("\t\t\tSupported Channel Width: ");
switch ((capa >> 2) & 3) {
case 0: printf("neither 160 nor 80+80\n"); break;
case 1: printf("160 MHz\n"); break;
case 2: printf("160 MHz, 80+80 MHz\n"); break;
case 3: printf("(reserved)\n");
}
PRINT_VHT_CAPA(4, "RX LDPC");
PRINT_VHT_CAPA(5, "short GI (80 MHz)");
PRINT_VHT_CAPA(6, "short GI (160/80+80 MHz)");
PRINT_VHT_CAPA(7, "TX STBC");
/* RX STBC */
PRINT_VHT_CAPA(11, "SU Beamformer");
PRINT_VHT_CAPA(12, "SU Beamformee");
/* compressed steering */
/* # of sounding dimensions */
PRINT_VHT_CAPA(19, "MU Beamformer");
PRINT_VHT_CAPA(20, "MU Beamformee");
PRINT_VHT_CAPA(21, "VHT TXOP PS");
PRINT_VHT_CAPA(22, "+HTC-VHT");
/* max A-MPDU */
/* VHT link adaptation */
PRINT_VHT_CAPA(28, "RX antenna pattern consistency");
PRINT_VHT_CAPA(29, "TX antenna pattern consistency");
printf("\t\tVHT RX MCS set:\n");
tmp = mcs[0] | (mcs[1] << 8);
for (i = 1; i <= 8; i++) {
printf("\t\t\t%d streams: ", i);
switch ((tmp >> ((i-1)*2) ) & 3) {
case 0: printf("MCS 0-7\n"); break;
case 1: printf("MCS 0-8\n"); break;
case 2: printf("MCS 0-9\n"); break;
case 3: printf("not supported\n"); break;
}
}
tmp = mcs[2] | (mcs[3] << 8);
printf("\t\tVHT RX highest supported: %d Mbps\n", tmp & 0x1fff);
printf("\t\tVHT TX MCS set:\n");
tmp = mcs[4] | (mcs[5] << 8);
for (i = 1; i <= 8; i++) {
printf("\t\t\t%d streams: ", i);
switch ((tmp >> ((i-1)*2) ) & 3) {
case 0: printf("MCS 0-7\n"); break;
case 1: printf("MCS 0-8\n"); break;
case 2: printf("MCS 0-9\n"); break;
case 3: printf("not supported\n"); break;
}
}
tmp = mcs[6] | (mcs[7] << 8);
printf("\t\tVHT TX highest supported: %d Mbps\n", tmp & 0x1fff);
}
void print_he_info(struct nlattr *nl_iftype)
{
struct nlattr *tb[NL80211_BAND_IFTYPE_ATTR_MAX + 1];
struct nlattr *tb_flags[NL80211_IFTYPE_MAX + 1];
char *iftypes[NUM_NL80211_IFTYPES] = {
"Unspec", "Adhoc", "Station", "AP", "AP/VLAN", "WDS", "Monitor",
"Mesh", "P2P/Client", "P2P/Go", "P2P/Device", "OCB", "NAN",
};
__u16 mac_cap[3] = { 0 };
__u16 phy_cap[6] = { 0 };
__u16 mcs_set[6] = { 0 };
__u8 ppet[25] = { 0 };
size_t len;
int i;
#define PRINT_HE_CAP(_var, _idx, _bit, _str) \
do { \
if (_var[_idx] & BIT(_bit)) \
printf("\t\t\t\t" _str "\n"); \
} while (0)
#define PRINT_HE_CAP_MASK(_var, _idx, _shift, _mask, _str) \
do { \
if ((_var[_idx] >> _shift) & _mask) \
printf("\t\t\t\t" _str ": %d\n", (_var[_idx] >> _shift) & _mask); \
} while (0)
#define PRINT_HE_MAC_CAP(...) PRINT_HE_CAP(mac_cap, __VA_ARGS__)
#define PRINT_HE_MAC_CAP_MASK(...) PRINT_HE_CAP_MASK(mac_cap, __VA_ARGS__)
#define PRINT_HE_PHY_CAP(...) PRINT_HE_CAP(phy_cap, __VA_ARGS__)
#define PRINT_HE_PHY_CAP0(_idx, _bit, ...) PRINT_HE_CAP(phy_cap, _idx, _bit + 8, __VA_ARGS__)
#define PRINT_HE_PHY_CAP_MASK(...) PRINT_HE_CAP_MASK(phy_cap, __VA_ARGS__)
nla_parse(tb, NL80211_BAND_IFTYPE_ATTR_MAX,
nla_data(nl_iftype), nla_len(nl_iftype), NULL);
if (!tb[NL80211_BAND_IFTYPE_ATTR_IFTYPES])
return;
if (nla_parse_nested(tb_flags, NL80211_IFTYPE_MAX,
tb[NL80211_BAND_IFTYPE_ATTR_IFTYPES], NULL))
return;
printf("\t\tHE Iftypes:");
for (i = 0; i < NUM_NL80211_IFTYPES; i++)
if (nla_get_flag(tb_flags[i]) && iftypes[i])
printf(" %s", iftypes[i]);
printf("\n");
if (tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_MAC]) {
len = nla_len(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_MAC]);
if (len > sizeof(mac_cap))
len = sizeof(mac_cap);
memcpy(mac_cap,
nla_data(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_MAC]),
len);
}
printf("\t\t\tHE MAC Capabilities (0x");
for (i = 0; i < 3; i++)
printf("%04x", mac_cap[i]);
printf("):\n");
PRINT_HE_MAC_CAP(0, 0, "+HTC HE Supported");
PRINT_HE_MAC_CAP(0, 1, "TWT Requester");
PRINT_HE_MAC_CAP(0, 2, "TWT Responder");
PRINT_HE_MAC_CAP_MASK(0, 3, 0x3, "Dynamic BA Fragementation Level");
PRINT_HE_MAC_CAP_MASK(0, 5, 0x7, "Maximum number of MSDUS Fragments");
PRINT_HE_MAC_CAP_MASK(0, 8, 0x3, "Minimum Payload size of 128 bytes");
PRINT_HE_MAC_CAP_MASK(0, 10, 0x3, "Trigger Frame MAC Padding Duration");
PRINT_HE_MAC_CAP_MASK(0, 12, 0x7, "Multi-TID Aggregation Support");
PRINT_HE_MAC_CAP(1, 1, "All Ack");
PRINT_HE_MAC_CAP(1, 2, "TRS");
PRINT_HE_MAC_CAP(1, 3, "BSR");
PRINT_HE_MAC_CAP(1, 4, "Broadcast TWT");
PRINT_HE_MAC_CAP(1, 5, "32-bit BA Bitmap");
PRINT_HE_MAC_CAP(1, 6, "MU Cascading");
PRINT_HE_MAC_CAP(1, 7, "Ack-Enabled Aggregation");
PRINT_HE_MAC_CAP(1, 9, "OM Control");
PRINT_HE_MAC_CAP(1, 10, "OFDMA RA");
PRINT_HE_MAC_CAP_MASK(1, 11, 0x3, "Maximum A-MPDU Length Exponent");
PRINT_HE_MAC_CAP(1, 13, "A-MSDU Fragmentation");
PRINT_HE_MAC_CAP(1, 14, "Flexible TWT Scheduling");
PRINT_HE_MAC_CAP(1, 15, "RX Control Frame to MultiBSS");
PRINT_HE_MAC_CAP(2, 0, "BSRP BQRP A-MPDU Aggregation");
PRINT_HE_MAC_CAP(2, 1, "QTP");
PRINT_HE_MAC_CAP(2, 2, "BQR");
PRINT_HE_MAC_CAP(2, 3, "SRP Responder Role");
PRINT_HE_MAC_CAP(2, 4, "NDP Feedback Report");
PRINT_HE_MAC_CAP(2, 5, "OPS");
PRINT_HE_MAC_CAP(2, 6, "A-MSDU in A-MPDU");
PRINT_HE_MAC_CAP_MASK(2, 7, 7, "Multi-TID Aggregation TX");
PRINT_HE_MAC_CAP(2, 10, "HE Subchannel Selective Transmission");
PRINT_HE_MAC_CAP(2, 11, "UL 2x996-Tone RU");
PRINT_HE_MAC_CAP(2, 12, "OM Control UL MU Data Disable RX");
if (tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_PHY]) {
len = nla_len(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_PHY]);
if (len > sizeof(phy_cap) - 1)
len = sizeof(phy_cap) - 1;
memcpy(&((__u8 *)phy_cap)[1],
nla_data(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_PHY]),
len);
}
printf("\t\t\tHE PHY Capabilities: (0x");
for (i = 0; i < 11; i++)
printf("%02x", ((__u8 *)phy_cap)[i + 1]);
printf("):\n");
PRINT_HE_PHY_CAP0(0, 1, "HE40/2.4GHz");
PRINT_HE_PHY_CAP0(0, 2, "HE40/HE80/5GHz");
PRINT_HE_PHY_CAP0(0, 3, "HE160/5GHz");
PRINT_HE_PHY_CAP0(0, 4, "HE160/HE80+80/5GHz");
PRINT_HE_PHY_CAP0(0, 5, "242 tone RUs/2.4GHz");
PRINT_HE_PHY_CAP0(0, 6, "242 tone RUs/5GHz");
PRINT_HE_PHY_CAP_MASK(1, 0, 0xf, "Punctured Preamble RX");
PRINT_HE_PHY_CAP_MASK(1, 4, 0x1, "Device Class");
PRINT_HE_PHY_CAP(1, 5, "LDPC Coding in Payload");
PRINT_HE_PHY_CAP(1, 6, "HE SU PPDU with 1x HE-LTF and 0.8us GI");
PRINT_HE_PHY_CAP_MASK(1, 7, 0x3, "Midamble Rx Max NSTS");
PRINT_HE_PHY_CAP(1, 9, "NDP with 4x HE-LTF and 3.2us GI");
PRINT_HE_PHY_CAP(1, 10, "STBC Tx <= 80MHz");
PRINT_HE_PHY_CAP(1, 11, "STBC Rx <= 80MHz");
PRINT_HE_PHY_CAP(1, 12, "Doppler Tx");
PRINT_HE_PHY_CAP(1, 13, "Doppler Rx");
PRINT_HE_PHY_CAP(1, 14, "Full Bandwidth UL MU-MIMO");
PRINT_HE_PHY_CAP(1, 15, "Partial Bandwidth UL MU-MIMO");
PRINT_HE_PHY_CAP_MASK(2, 0, 0x3, "DCM Max Constellation");
PRINT_HE_PHY_CAP_MASK(2, 2, 0x1, "DCM Max NSS Tx");
PRINT_HE_PHY_CAP_MASK(2, 3, 0x3, "DCM Max Constellation Rx");
PRINT_HE_PHY_CAP_MASK(2, 5, 0x1, "DCM Max NSS Rx");
PRINT_HE_PHY_CAP(2, 6, "Rx HE MU PPDU from Non-AP STA");
PRINT_HE_PHY_CAP(2, 7, "SU Beamformer");
PRINT_HE_PHY_CAP(2, 8, "SU Beamformee");
PRINT_HE_PHY_CAP(2, 9, "MU Beamformer");
PRINT_HE_PHY_CAP_MASK(2, 10, 0x7, "Beamformee STS <= 80Mhz");
PRINT_HE_PHY_CAP_MASK(2, 13, 0x7, "Beamformee STS > 80Mhz");
PRINT_HE_PHY_CAP_MASK(3, 0, 0x7, "Sounding Dimensions <= 80Mhz");
PRINT_HE_PHY_CAP_MASK(3, 3, 0x7, "Sounding Dimensions > 80Mhz");
PRINT_HE_PHY_CAP(3, 6, "Ng = 16 SU Feedback");
PRINT_HE_PHY_CAP(3, 7, "Ng = 16 MU Feedback");
PRINT_HE_PHY_CAP(3, 8, "Codebook Size SU Feedback");
PRINT_HE_PHY_CAP(3, 9, "Codebook Size MU Feedback");
PRINT_HE_PHY_CAP(3, 10, "Triggered SU Beamforming Feedback");
PRINT_HE_PHY_CAP(3, 11, "Triggered MU Beamforming Feedback");
PRINT_HE_PHY_CAP(3, 12, "Triggered CQI Feedback");
PRINT_HE_PHY_CAP(3, 13, "Partial Bandwidth Extended Range");
PRINT_HE_PHY_CAP(3, 14, "Partial Bandwidth DL MU-MIMO");
PRINT_HE_PHY_CAP(3, 15, "PPE Threshold Present");
PRINT_HE_PHY_CAP(4, 0, "SRP-based SR");
PRINT_HE_PHY_CAP(4, 1, "Power Boost Factor ar");
PRINT_HE_PHY_CAP(4, 2, "HE SU PPDU & HE PPDU 4x HE-LTF 0.8us GI");
PRINT_HE_PHY_CAP_MASK(4, 3, 0x7, "Max NC");
PRINT_HE_PHY_CAP(4, 6, "STBC Tx > 80MHz");
PRINT_HE_PHY_CAP(4, 7, "STBC Rx > 80MHz");
PRINT_HE_PHY_CAP(4, 8, "HE ER SU PPDU 4x HE-LTF 0.8us GI");
PRINT_HE_PHY_CAP(4, 9, "20MHz in 40MHz HE PPDU 2.4GHz");
PRINT_HE_PHY_CAP(4, 10, "20MHz in 160/80+80MHz HE PPDU");
PRINT_HE_PHY_CAP(4, 11, "80MHz in 160/80+80MHz HE PPDU");
PRINT_HE_PHY_CAP(4, 12, "HE ER SU PPDU 1x HE-LTF 0.8us GI");
PRINT_HE_PHY_CAP(4, 13, "Midamble Rx 2x & 1x HE-LTF");
PRINT_HE_PHY_CAP_MASK(4, 14, 0x3, "DCM Max BW");
PRINT_HE_PHY_CAP(5, 0, "Longer Than 16HE SIG-B OFDM Symbols");
PRINT_HE_PHY_CAP(5, 1, "Non-Triggered CQI Feedback");
PRINT_HE_PHY_CAP(5, 2, "TX 1024-QAM");
PRINT_HE_PHY_CAP(5, 3, "RX 1024-QAM");
PRINT_HE_PHY_CAP(5, 4, "RX Full BW SU Using HE MU PPDU with Compression SIGB");
PRINT_HE_PHY_CAP(5, 5, "RX Full BW SU Using HE MU PPDU with Non-Compression SIGB");
if (tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_MCS_SET]) {
len = nla_len(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_MCS_SET]);
if (len > sizeof(mcs_set))
len = sizeof(mcs_set);
memcpy(mcs_set,
nla_data(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_MCS_SET]),
len);
}
for (i = 0; i < 3; i++) {
__u8 phy_cap_support[] = { BIT(1) | BIT(2), BIT(3), BIT(4) };
char *bw[] = { "<= 80", "160", "80+80" };
int j;
if ((phy_cap[0] & (phy_cap_support[i] << 8)) == 0)
continue;
for (j = 0; j < 2; j++) {
int k;
printf("\t\t\tHE %s MCS and NSS set %s MHz\n", j ? "TX" : "RX", bw[i]);
for (k = 0; k < 8; k++) {
__u16 mcs = mcs_set[(i * 2) + j];
mcs >>= k * 2;
mcs &= 0x3;
printf("\t\t\t\t\t %d streams: ", k + 1);
if (mcs == 3)
printf("not supported\n");
else
printf("MCS 0-%d\n", 7 + (mcs * 2));
}
}
}
len = 0;
if (tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_PPE]) {
len = nla_len(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_PPE]);
if (len > sizeof(ppet))
len = sizeof(ppet);
memcpy(ppet,
nla_data(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_PPE]),
len);
}
if (len && (phy_cap[3] & BIT(15))) {
size_t i;
printf("\t\t\tPPE Threshold ");
for (i = 0; i < len; i++)
if (ppet[i])
printf("0x%02x ", ppet[i]);
printf("\n");
}
}
void iw_hexdump(const char *prefix, const __u8 *buf, size_t size)
{
size_t i;
printf("%s: ", prefix);
for (i = 0; i < size; i++) {
if (i && i % 16 == 0)
printf("\n%s: ", prefix);
printf("%02x ", buf[i]);
}
printf("\n\n");
}
int get_cf1(const struct chanmode *chanmode, unsigned long freq)
{
unsigned int cf1 = freq, j;
unsigned int vht80[] = { 5180, 5260, 5500, 5580, 5660, 5745 };
unsigned int vht160[] = { 5180, 5500 };
switch (chanmode->width) {
case NL80211_CHAN_WIDTH_80:
/* setup center_freq1 */
for (j = 0; j < ARRAY_SIZE(vht80); j++) {
if (freq >= vht80[j] && freq < vht80[j] + 80)
break;
}
if (j == ARRAY_SIZE(vht80))
break;
cf1 = vht80[j] + 30;
break;
case NL80211_CHAN_WIDTH_160:
/* setup center_freq1 */
for (j = 0; j < ARRAY_SIZE(vht160); j++) {
if (freq >= vht160[j] && freq < vht160[j] + 160)
break;
}
if (j == ARRAY_SIZE(vht160))
break;
cf1 = vht160[j] + 70;
break;
default:
cf1 = freq + chanmode->freq1_diff;
break;
}
return cf1;
}
int parse_random_mac_addr(struct nl_msg *msg, char *addrs)
{
char *a_addr, *a_mask, *sep;
unsigned char addr[ETH_ALEN], mask[ETH_ALEN];
if (!*addrs) {
/* randomise all but the multicast bit */
NLA_PUT(msg, NL80211_ATTR_MAC, ETH_ALEN,
"\x00\x00\x00\x00\x00\x00");
NLA_PUT(msg, NL80211_ATTR_MAC_MASK, ETH_ALEN,
"\x01\x00\x00\x00\x00\x00");
return 0;
}
if (*addrs != '=')
return 1;
addrs++;
sep = strchr(addrs, '/');
a_addr = addrs;
if (!sep)
return 1;
*sep = 0;
a_mask = sep + 1;
if (mac_addr_a2n(addr, a_addr) || mac_addr_a2n(mask, a_mask))
return 1;
NLA_PUT(msg, NL80211_ATTR_MAC, ETH_ALEN, addr);
NLA_PUT(msg, NL80211_ATTR_MAC_MASK, ETH_ALEN, mask);
return 0;
nla_put_failure:
return -ENOBUFS;
}