| /* |
| * Copyright 1996-2004 by Hans Reiser, licensing governed by |
| * reiserfsprogs/README |
| */ |
| |
| /* Now we have all buffers that must be used in balancing of the tree */ |
| /* Further calculations can not cause schedule(), and thus the buffer */ |
| /* tree will be stable until the balancing will be finished */ |
| /* balance the tree according to the analysis made before, */ |
| /* and using buffers obtained after all above. */ |
| |
| /** |
| ** balance_leaf_when_delete |
| ** balance_leaf |
| ** do_balance |
| ** |
| **/ |
| |
| #include "includes.h" |
| |
| /* summary: |
| if deleting something ( tb->insert_size[0] < 0 ) |
| return(balance_leaf_when_delete()); (flag d handled here) |
| else |
| if lnum is larger than 0 we put items into the left node |
| if rnum is larger than 0 we put items into the right node |
| if snum1 is larger than 0 we put items into the new node s1 |
| if snum2 is larger than 0 we put items into the new node s2 |
| Note that all *num* count new items being created. |
| |
| It would be easier to read balance_leaf() if each of these summary |
| lines was a separate procedure rather than being inlined. I think |
| that there are many passages here and in balance_leaf_when_delete() in |
| which two calls to one procedure can replace two passages, and it |
| might save cache space and improve software maintenance costs to do so. |
| |
| Vladimir made the perceptive comment that we should offload most of |
| the decision making in this function into fix_nodes/check_balance, and |
| then create some sort of structure in tb that says what actions should |
| be performed by do_balance. |
| |
| -Hans */ |
| |
| /* Balance leaf node in case of delete or cut: insert_size[0] < 0 |
| * |
| * lnum, rnum can have values >= -1 |
| * -1 means that the neighbor must be joined with S |
| * 0 means that nothing should be done with the neighbor |
| * >0 means to shift entirely or partly the specified number of items to the neighbor |
| */ |
| static int balance_leaf_when_delete( /*struct reiserfs_transaction_handle *th, */ |
| struct tree_balance *tb, int flag) |
| { |
| struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path); |
| int item_pos = PATH_LAST_POSITION(tb->tb_path); |
| int pos_in_item = tb->tb_path->pos_in_item; |
| struct buffer_info bi; |
| int n; |
| struct item_head *ih; |
| |
| ih = item_head(tbS0, item_pos); |
| buffer_info_init_tbS0(tb, &bi); |
| |
| /* Delete or truncate the item */ |
| |
| switch (flag) { |
| case M_DELETE: /* delete item in S[0] */ |
| |
| leaf_delete_items(&bi, 0, item_pos, 1, -1); |
| |
| if (!item_pos) { |
| // we have removed first item in the node - update left delimiting key |
| if (B_NR_ITEMS(tbS0)) { |
| replace_key(tb->tb_fs, tb->CFL[0], tb->lkey[0], |
| tbS0, 0); |
| } else { |
| if (!PATH_H_POSITION(tb->tb_path, 1)) |
| replace_key(tb->tb_fs, tb->CFL[0], |
| tb->lkey[0], |
| PATH_H_PPARENT(tb->tb_path, |
| 0), 0); |
| } |
| } |
| |
| break; |
| |
| case M_CUT:{ /* cut item in S[0] */ |
| if (I_IS_DIRECTORY_ITEM(ih)) { |
| /* UFS unlink semantics are such that you can only delete |
| one directory entry at a time. */ |
| /* when we cut a directory tb->insert_size[0] means number |
| of entries to be cut (always 1) */ |
| tb->insert_size[0] = -1; |
| leaf_cut_from_buffer(&bi, item_pos, |
| pos_in_item, |
| -tb->insert_size[0]); |
| |
| if (!item_pos && !pos_in_item) { |
| replace_key(tb->tb_fs, tb->CFL[0], |
| tb->lkey[0], tbS0, 0); |
| } |
| } else { |
| leaf_cut_from_buffer(&bi, item_pos, |
| pos_in_item, |
| -tb->insert_size[0]); |
| } |
| break; |
| } |
| |
| default: |
| print_tb(flag, item_pos, pos_in_item, tb, "when_del"); |
| reiserfs_panic |
| ("PAP-12040: balance_leaf_when_delete: unexpectable mode: %s(%d)", |
| (flag == |
| M_PASTE) ? "PASTE" : ((flag == |
| M_INSERT) ? "INSERT" : "UNKNOWN"), |
| flag); |
| } |
| |
| /* the rule is that no shifting occurs unless by shifting a node can be freed */ |
| n = B_NR_ITEMS(tbS0); |
| if (tb->lnum[0]) { /* L[0] takes part in balancing */ |
| if (tb->lnum[0] == -1) { /* L[0] must be joined with S[0] */ |
| if (tb->rnum[0] == -1) { /* R[0] must be also joined with S[0] */ |
| if (tb->FR[0] == PATH_H_PPARENT(tb->tb_path, 0)) { |
| /* all contents of all the 3 buffers will be in L[0] */ |
| if (PATH_H_POSITION(tb->tb_path, 1) == 0 |
| && 1 < B_NR_ITEMS(tb->FR[0])) |
| replace_key(tb->tb_fs, |
| tb->CFL[0], |
| tb->lkey[0], |
| tb->FR[0], 1); |
| |
| leaf_move_items(LEAF_FROM_S_TO_L, tb, n, |
| -1, 0); |
| leaf_move_items(LEAF_FROM_R_TO_L, tb, |
| B_NR_ITEMS(tb->R[0]), |
| -1, 0); |
| |
| reiserfs_invalidate_buffer(tb, tbS0); |
| reiserfs_invalidate_buffer(tb, tb->R[0]); |
| |
| return 0; |
| } |
| /* all contents of all the 3 buffers will be in R[0] */ |
| leaf_move_items(LEAF_FROM_S_TO_R, tb, n, -1, NULL); |
| leaf_move_items(LEAF_FROM_L_TO_R, tb, |
| B_NR_ITEMS(tb->L[0]), -1, NULL); |
| |
| /* right_delimiting_key is correct in R[0] */ |
| replace_key(tb->tb_fs, tb->CFR[0], tb->rkey[0], |
| tb->R[0], 0); |
| |
| reiserfs_invalidate_buffer(tb, tbS0); |
| reiserfs_invalidate_buffer(tb, tb->L[0]); |
| |
| return -1; |
| } |
| |
| /* all contents of L[0] and S[0] will be in L[0] */ |
| leaf_shift_left(tb, n, -1); |
| |
| reiserfs_invalidate_buffer(tb, tbS0); |
| |
| return 0; |
| } |
| /* a part of contents of S[0] will be in L[0] and the rest part of S[0] will be in R[0] */ |
| |
| leaf_shift_left(tb, tb->lnum[0], tb->lbytes); |
| leaf_shift_right(tb, tb->rnum[0], tb->rbytes); |
| |
| reiserfs_invalidate_buffer(tb, tbS0); |
| |
| return 0; |
| } |
| |
| if (tb->rnum[0] == -1) { |
| /* all contents of R[0] and S[0] will be in R[0] */ |
| leaf_shift_right(tb, n, -1); |
| reiserfs_invalidate_buffer(tb, tbS0); |
| return 0; |
| } |
| return 0; |
| } |
| |
| static int balance_leaf( /*struct reiserfs_transaction_handle *th, */ |
| struct tree_balance *tb, /* see reiserfs_fs.h */ |
| struct item_head *ih, /* item header of inserted item */ |
| const char *body, /* body of inserted item or bytes to paste */ |
| int flag, /* i - insert, d - delete, c - cut, p - paste |
| (see comment to do_balance) */ |
| int zeros_number, /* it is always 0 */ |
| struct item_head *insert_key, /* in our processing of one level we sometimes determine what |
| must be inserted into the next higher level. This insertion |
| consists of a key or two keys and their corresponding |
| pointers */ |
| struct buffer_head **insert_ptr /* inserted node-ptrs for the next level */ |
| ) |
| { |
| int pos_in_item = tb->tb_path->pos_in_item; /* position in item, in bytes for direct and |
| indirect items, in entries for directories (for |
| which it is an index into the array of directory |
| entry headers.) */ |
| struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path); |
| /* struct buffer_head * tbF0 = PATH_H_PPARENT (tb->tb_path, 0); |
| int S0_b_item_order = PATH_H_B_ITEM_ORDER (tb->tb_path, 0);*/ |
| int item_pos = PATH_LAST_POSITION(tb->tb_path); /* index into the array of item headers in S[0] |
| of the affected item */ |
| struct buffer_info bi; |
| struct buffer_head *S_new[2]; /* new nodes allocated to hold what could not fit into S */ |
| int snum[2]; /* number of items that will be placed into S_new (includes partially shifted items) */ |
| int sbytes[2]; /* if an item is partially shifted into S_new then |
| if it is a directory item |
| it is the number of entries from the item that are shifted into S_new |
| else |
| it is the number of bytes from the item that are shifted into S_new |
| */ |
| int n, i; |
| int ret_val; |
| |
| /* Make balance in case insert_size[0] < 0 */ |
| if (tb->insert_size[0] < 0) |
| return balance_leaf_when_delete( /*th, */ tb, flag); |
| |
| /* for indirect item pos_in_item is measured in unformatted node |
| pointers. Recalculate to bytes */ |
| if (flag != M_INSERT |
| && I_IS_INDIRECT_ITEM(item_head(tbS0, item_pos))) |
| pos_in_item *= UNFM_P_SIZE; |
| |
| if (tb->lnum[0] > 0) { |
| /* Shift lnum[0] items from S[0] to the left neighbor L[0] */ |
| if (item_pos < tb->lnum[0]) { |
| /* new item or it part falls to L[0], shift it too */ |
| n = B_NR_ITEMS(tb->L[0]); |
| |
| switch (flag) { |
| case M_INSERT: /* insert item into L[0] */ |
| |
| if (item_pos == tb->lnum[0] - 1 |
| && tb->lbytes != -1) { |
| /* part of new item falls into L[0] */ |
| int new_item_len; |
| |
| ret_val = |
| leaf_shift_left( /*th, */ tb, |
| tb->lnum[0] - 1, |
| -1); |
| /* Calculate item length to insert to S[0] */ |
| new_item_len = |
| get_ih_item_len(ih) - tb->lbytes; |
| /* Calculate and check item length to insert to L[0] */ |
| set_ih_item_len(ih, |
| get_ih_item_len(ih) - |
| new_item_len); |
| /* Insert new item into L[0] */ |
| buffer_info_init_left(tb, &bi, 0); |
| leaf_insert_into_buf(&bi, |
| n + item_pos - |
| ret_val, ih, body, |
| zeros_number > |
| get_ih_item_len(ih) |
| ? |
| get_ih_item_len(ih) |
| : zeros_number); |
| |
| /* Calculate key component, item length and body to insert into S[0] */ |
| //ih->ih_key.k_offset += tb->lbytes; |
| set_offset(key_format(&ih->ih_key), |
| &ih->ih_key, |
| get_offset(&ih->ih_key) + |
| tb->lbytes * |
| (is_indirect_ih(ih) ? tb-> |
| tb_fs->fs_blocksize / |
| UNFM_P_SIZE : 1)); |
| set_ih_item_len(ih, new_item_len); |
| if (tb->lbytes > zeros_number) { |
| body += |
| (tb->lbytes - zeros_number); |
| zeros_number = 0; |
| } else |
| zeros_number -= tb->lbytes; |
| } else { |
| /* new item in whole falls into L[0] */ |
| /* Shift lnum[0]-1 items to L[0] */ |
| ret_val = |
| leaf_shift_left(tb, tb->lnum[0] - 1, |
| tb->lbytes); |
| |
| /* Insert new item into L[0] */ |
| buffer_info_init_left(tb, &bi, 0); |
| leaf_insert_into_buf(&bi, |
| n + item_pos - |
| ret_val, ih, body, |
| zeros_number); |
| |
| tb->insert_size[0] = 0; |
| zeros_number = 0; |
| } |
| break; |
| |
| case M_PASTE: /* append item in L[0] */ |
| |
| if (item_pos == tb->lnum[0] - 1 |
| && tb->lbytes != -1) { |
| /* we must shift the part of the appended item */ |
| if (I_IS_DIRECTORY_ITEM |
| (item_head(tbS0, item_pos))) { |
| /* directory item */ |
| if (tb->lbytes > pos_in_item) { |
| /* new directory entry falls into L[0] */ |
| struct item_head |
| *pasted; |
| int l_pos_in_item = |
| pos_in_item; |
| |
| /* Shift lnum[0] - 1 items in whole. Shift lbytes - 1 entries from given directory item */ |
| ret_val = |
| leaf_shift_left(tb, |
| tb-> |
| lnum |
| [0], |
| tb-> |
| lbytes |
| - |
| 1); |
| if (ret_val |
| && !item_pos) { |
| pasted = |
| item_head |
| (tb->L[0], |
| B_NR_ITEMS |
| (tb-> |
| L[0]) - |
| 1); |
| l_pos_in_item += |
| get_ih_entry_count |
| (pasted) - |
| (tb-> |
| lbytes - |
| 1); |
| } |
| |
| /* Append given directory entry to directory item */ |
| buffer_info_init_left(tb, &bi, 0); |
| leaf_paste_in_buffer |
| (&bi, |
| n + item_pos - |
| ret_val, |
| l_pos_in_item, |
| tb->insert_size[0], |
| body, |
| zeros_number); |
| |
| /* previous string prepared space for pasting new entry, following string pastes this entry */ |
| |
| /* when we have merge directory item, pos_in_item has been changed too */ |
| |
| /* paste new directory entry. 1 is entry number */ |
| leaf_paste_entries(bi. |
| bi_bh, |
| n + |
| item_pos |
| - |
| ret_val, |
| l_pos_in_item, |
| 1, |
| (struct |
| reiserfs_de_head |
| *) |
| body, |
| body |
| + |
| DEH_SIZE, |
| tb-> |
| insert_size |
| [0] |
| ); |
| tb->insert_size[0] = 0; |
| } else { |
| /* new directory item doesn't fall into L[0] */ |
| /* Shift lnum[0]-1 items in whole. Shift lbytes directory entries from directory item number lnum[0] */ |
| leaf_shift_left(tb, |
| tb-> |
| lnum[0], |
| tb-> |
| lbytes); |
| } |
| /* Calculate new position to append in item body */ |
| pos_in_item -= tb->lbytes; |
| } else { |
| /* regular object */ |
| if (tb->lbytes >= pos_in_item) { |
| /* appended item will be in L[0] in whole */ |
| int l_n, temp_n; |
| struct reiserfs_key |
| *key; |
| |
| /* this bytes number must be appended to the last item of L[h] */ |
| l_n = |
| tb->lbytes - |
| pos_in_item; |
| |
| /* Calculate new insert_size[0] */ |
| tb->insert_size[0] -= |
| l_n; |
| |
| ret_val = |
| leaf_shift_left(tb, |
| tb-> |
| lnum |
| [0], |
| get_ih_item_len |
| (item_head |
| (tbS0, |
| item_pos))); |
| /* Append to body of item in L[0] */ |
| buffer_info_init_left(tb, &bi, 0); |
| leaf_paste_in_buffer |
| (&bi, |
| n + item_pos - |
| ret_val, |
| get_ih_item_len |
| (item_head |
| (tb->L[0], |
| n + item_pos - |
| ret_val)), l_n, |
| body, |
| zeros_number > |
| l_n ? l_n : |
| zeros_number); |
| |
| /* 0-th item in S0 can be only of DIRECT type when l_n != 0 */ |
| //B_N_PKEY (tbS0, 0)->k_offset += l_n;z |
| key = leaf_key(tbS0, 0); |
| temp_n = |
| is_indirect_ih |
| (item_head |
| (tb->L[0], |
| n + item_pos - |
| ret_val)) |
| ? (int)((l_n / |
| UNFM_P_SIZE) |
| * |
| tb->tb_fs-> |
| fs_blocksize) |
| : l_n; |
| |
| set_offset(key_format |
| (key), key, |
| get_offset |
| (key) + |
| temp_n); |
| |
| //internal_key(tb->CFL[0],tb->lkey[0])->k_offset += l_n; |
| key = |
| internal_key(tb-> |
| CFL |
| [0], |
| tb-> |
| lkey |
| [0]); |
| set_offset(key_format |
| (key), key, |
| get_offset |
| (key) + |
| temp_n); |
| |
| /* Calculate new body, position in item and insert_size[0] */ |
| if (l_n > zeros_number) { |
| body += |
| (l_n - |
| zeros_number); |
| zeros_number = |
| 0; |
| } else |
| zeros_number -= |
| l_n; |
| pos_in_item = 0; |
| } else { |
| /* only part of the appended item will be in L[0] */ |
| |
| /* Calculate position in item for append in S[0] */ |
| pos_in_item -= |
| tb->lbytes; |
| |
| /* Shift lnum[0] - 1 items in whole. Shift lbytes - 1 byte from item number lnum[0] */ |
| leaf_shift_left(tb, |
| tb-> |
| lnum[0], |
| tb-> |
| lbytes); |
| } |
| } |
| } else { |
| /* appended item will be in L[0] in whole */ |
| struct item_head *pasted; |
| |
| if (!item_pos && is_left_mergeable(tb->tb_fs, tb->tb_path) == 1) { /* if we paste into first item of S[0] and it is left mergable */ |
| /* then increment pos_in_item by the size of the last item in L[0] */ |
| pasted = |
| item_head(tb->L[0], |
| n - 1); |
| if (I_IS_DIRECTORY_ITEM(pasted)) |
| pos_in_item += |
| get_ih_entry_count |
| (pasted); |
| else |
| pos_in_item += |
| get_ih_item_len |
| (pasted); |
| } |
| |
| /* Shift lnum[0] - 1 items in whole. Shift lbytes - 1 byte from item number lnum[0] */ |
| ret_val = |
| leaf_shift_left(tb, tb->lnum[0], |
| tb->lbytes); |
| /* Append to body of item in L[0] */ |
| buffer_info_init_left(tb, &bi, 0); |
| leaf_paste_in_buffer(&bi, |
| n + item_pos - |
| ret_val, |
| pos_in_item, |
| tb->insert_size[0], |
| body, |
| zeros_number); |
| |
| /* if appended item is directory, paste entry */ |
| pasted = |
| item_head(tb->L[0], |
| n + item_pos - |
| ret_val); |
| if (I_IS_DIRECTORY_ITEM(pasted)) |
| leaf_paste_entries(bi.bi_bh, |
| n + |
| item_pos - |
| ret_val, |
| pos_in_item, |
| 1, |
| (struct |
| reiserfs_de_head |
| *)body, |
| body + |
| DEH_SIZE, |
| tb-> |
| insert_size |
| [0]); |
| |
| /* if appended item is indirect item, put unformatted node into un list */ |
| if (I_IS_INDIRECT_ITEM(pasted)) |
| set_ih_free_space(pasted, 0); |
| |
| tb->insert_size[0] = 0; |
| zeros_number = 0; |
| } |
| break; |
| default: /* cases d and t */ |
| reiserfs_panic |
| ("PAP-12130: balance_leaf: lnum > 0: unexpectable mode: %s(%d)", |
| (flag == |
| M_DELETE) ? "DELETE" : ((flag == |
| M_CUT) ? "CUT" : |
| "UNKNOWN"), flag); |
| } |
| } else { |
| /* new item doesn't fall into L[0] */ |
| leaf_shift_left(tb, tb->lnum[0], tb->lbytes); |
| } |
| } |
| |
| /* tb->lnum[0] > 0 */ |
| /* Calculate new item position */ |
| item_pos -= (tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0)); |
| |
| if (tb->rnum[0] > 0) { |
| /* shift rnum[0] items from S[0] to the right neighbor R[0] */ |
| n = B_NR_ITEMS(tbS0); |
| switch (flag) { |
| |
| case M_INSERT: /* insert item */ |
| if (n - tb->rnum[0] < item_pos) { |
| /* new item or its part falls to R[0] */ |
| if (item_pos == n - tb->rnum[0] + 1 |
| && tb->rbytes != -1) { |
| /* part of new item falls into R[0] */ |
| loff_t old_key_comp, old_len, |
| r_zeros_number; |
| const char *r_body; |
| loff_t multiplyer; |
| |
| leaf_shift_right(tb, tb->rnum[0] - 1, |
| -1); |
| |
| /* Remember key component and item length */ |
| old_key_comp = get_offset(&ih->ih_key); |
| old_len = get_ih_item_len(ih); |
| |
| multiplyer = |
| is_indirect_ih(ih) ? tb->tb_fs-> |
| fs_blocksize / UNFM_P_SIZE : 1; |
| /* Calculate key component and item length to insert into R[0] */ |
| //ih->ih_key.k_offset += (old_len - tb->rbytes); |
| set_offset(key_format(&ih->ih_key), |
| &ih->ih_key, |
| old_key_comp + (old_len - |
| tb->rbytes) * |
| multiplyer); |
| |
| set_ih_item_len(ih, tb->rbytes); |
| /* Insert part of the item into R[0] */ |
| buffer_info_init_right(tb, &bi, 0); |
| if (old_len - tb->rbytes > zeros_number) { |
| r_zeros_number = 0; |
| r_body = |
| body + old_len - |
| tb->rbytes - zeros_number; |
| } else { /* zeros_number is always 0 */ |
| r_body = body; |
| r_zeros_number = |
| zeros_number - old_len - |
| tb->rbytes; |
| zeros_number -= r_zeros_number; |
| } |
| |
| leaf_insert_into_buf(&bi, 0, |
| ih, r_body, |
| r_zeros_number); |
| |
| /* Replace right delimiting key by first key in R[0] */ |
| replace_key(tb->tb_fs, tb->CFR[0], |
| tb->rkey[0], tb->R[0], 0); |
| |
| /* Calculate key component and item length to insert into S[0] */ |
| //ih->ih_key.k_offset = old_key_comp; |
| set_offset(key_format(&ih->ih_key), |
| &ih->ih_key, old_key_comp); |
| |
| set_ih_item_len(ih, |
| old_len - tb->rbytes); |
| |
| tb->insert_size[0] -= tb->rbytes; |
| |
| } else { |
| /* whole new item falls into R[0] */ |
| |
| /* Shift rnum[0]-1 items to R[0] */ |
| ret_val = |
| leaf_shift_right(tb, |
| tb->rnum[0] - 1, |
| tb->rbytes); |
| |
| /* Insert new item into R[0] */ |
| buffer_info_init_right(tb, &bi, 0); |
| leaf_insert_into_buf(&bi, |
| item_pos - n + |
| tb->rnum[0] - 1, |
| ih, body, |
| zeros_number); |
| |
| /* If we insert new item in the begin of R[0] change the right delimiting key */ |
| if (item_pos - n + tb->rnum[0] - 1 == 0) { |
| replace_key(tb->tb_fs, |
| tb->CFR[0], |
| tb->rkey[0], |
| tb->R[0], 0); |
| } |
| zeros_number = tb->insert_size[0] = 0; |
| } |
| } else { |
| /* new item or part of it doesn't fall into R[0] */ |
| leaf_shift_right(tb, tb->rnum[0], tb->rbytes); |
| } |
| break; |
| |
| case M_PASTE: /* append item */ |
| |
| if (n - tb->rnum[0] <= item_pos) { /* pasted item or part of it falls to R[0] */ |
| if (item_pos == n - tb->rnum[0] |
| && tb->rbytes != -1) { |
| /* we must shift the part of the appended item */ |
| if (I_IS_DIRECTORY_ITEM |
| (item_head(tbS0, item_pos))) { |
| /* we append to directory item */ |
| int entry_count; |
| |
| entry_count = |
| get_ih_entry_count |
| (item_head |
| (tbS0, item_pos)); |
| if (entry_count - tb->rbytes < |
| pos_in_item) { |
| /* new directory entry falls into R[0] */ |
| int paste_entry_position; |
| |
| /* Shift rnum[0]-1 items in whole. Shift rbytes-1 directory entries from directory item number rnum[0] */ |
| leaf_shift_right(tb, |
| tb-> |
| rnum |
| [0], |
| tb-> |
| rbytes |
| - 1); |
| |
| /* Paste given directory entry to directory item */ |
| paste_entry_position = |
| pos_in_item - |
| entry_count + |
| tb->rbytes - 1; |
| |
| buffer_info_init_right(tb, &bi, 0); |
| leaf_paste_in_buffer |
| (&bi, 0, |
| paste_entry_position, |
| tb->insert_size[0], |
| body, |
| zeros_number); |
| /* paste entry */ |
| leaf_paste_entries(bi. |
| bi_bh, |
| 0, |
| paste_entry_position, |
| 1, |
| (struct |
| reiserfs_de_head |
| *) |
| body, |
| body |
| + |
| DEH_SIZE, |
| tb-> |
| insert_size |
| [0] |
| ); |
| |
| if (paste_entry_position |
| == 0) { |
| /* change delimiting keys */ |
| replace_key(tb-> |
| tb_fs, |
| tb-> |
| CFR |
| [0], |
| tb-> |
| rkey |
| [0], |
| tb-> |
| R |
| [0], |
| 0); |
| } |
| |
| tb->insert_size[0] = 0; |
| pos_in_item++; |
| } else { |
| /* new directory entry doesn't fall into R[0] */ |
| leaf_shift_right(tb, |
| tb-> |
| rnum |
| [0], |
| tb-> |
| rbytes); |
| } |
| } else { |
| /* regular object */ |
| |
| int n_shift, n_rem, |
| r_zeros_number; |
| const char *r_body; |
| struct reiserfs_key *key; |
| |
| /* Calculate number of bytes which must be shifted from appended item */ |
| if ((n_shift = |
| tb->rbytes - |
| tb->insert_size[0]) < 0) |
| n_shift = 0; |
| |
| leaf_shift_right(tb, |
| tb->rnum[0], |
| n_shift); |
| |
| /* Calculate number of bytes which must remain in body after appending to R[0] */ |
| if ((n_rem = |
| tb->insert_size[0] - |
| tb->rbytes) < 0) |
| n_rem = 0; |
| |
| { |
| unsigned long temp_rem = |
| n_rem; |
| |
| if (is_indirect_key |
| (leaf_key |
| (tb->R[0], 0))) |
| temp_rem = |
| (n_rem / |
| UNFM_P_SIZE) |
| * |
| tb->tb_fs-> |
| fs_blocksize; |
| |
| //leaf_key(tb->R[0],0)->k_offset += n_rem; |
| key = |
| leaf_key(tb->R[0], |
| 0); |
| set_offset(key_format |
| (key), key, |
| get_offset |
| (key) + |
| temp_rem); |
| |
| //internal_key(tb->CFR[0],tb->rkey[0])->k_offset += n_rem; |
| key = |
| internal_key(tb-> |
| CFR |
| [0], |
| tb-> |
| rkey |
| [0]); |
| set_offset(key_format |
| (key), key, |
| get_offset |
| (key) + |
| temp_rem); |
| } |
| |
| mark_buffer_dirty(tb->CFR[0]); |
| |
| /* Append part of body into R[0] */ |
| buffer_info_init_right(tb, &bi, 0); |
| if (n_rem > zeros_number) { |
| r_zeros_number = 0; |
| r_body = |
| body + n_rem - |
| zeros_number; |
| } else { |
| r_body = body; |
| r_zeros_number = |
| zeros_number - |
| n_rem; |
| zeros_number -= |
| r_zeros_number; |
| } |
| |
| leaf_paste_in_buffer(&bi, 0, |
| n_shift, |
| tb-> |
| insert_size |
| [0] - |
| n_rem, |
| r_body, |
| r_zeros_number); |
| |
| if (I_IS_INDIRECT_ITEM |
| (item_head |
| (tb->R[0], 0))) { |
| set_ih_free_space |
| (item_head |
| (tb->R[0], 0), 0); |
| } |
| |
| tb->insert_size[0] = n_rem; |
| if (!n_rem) |
| pos_in_item++; |
| } |
| } else { |
| /* pasted item falls into R[0] entirely */ |
| |
| struct item_head *pasted; |
| |
| ret_val = |
| leaf_shift_right(tb, tb->rnum[0], |
| tb->rbytes); |
| |
| /* append item in R[0] */ |
| if (pos_in_item >= 0) { |
| buffer_info_init_right(tb, &bi, 0); |
| leaf_paste_in_buffer(&bi, |
| item_pos - |
| n + |
| tb-> |
| rnum[0], |
| pos_in_item, |
| tb-> |
| insert_size |
| [0], body, |
| zeros_number); |
| } |
| |
| /* paste new entry, if item is directory item */ |
| pasted = |
| item_head(tb->R[0], |
| item_pos - n + |
| tb->rnum[0]); |
| if (I_IS_DIRECTORY_ITEM(pasted) |
| && pos_in_item >= 0) { |
| leaf_paste_entries(bi.bi_bh, |
| item_pos - |
| n + |
| tb->rnum[0], |
| pos_in_item, |
| 1, |
| (struct |
| reiserfs_de_head |
| *)body, |
| body + |
| DEH_SIZE, |
| tb-> |
| insert_size |
| [0]); |
| if (!pos_in_item) { |
| /* update delimiting keys */ |
| replace_key(tb->tb_fs, |
| tb->CFR[0], |
| tb->rkey[0], |
| tb->R[0], |
| 0); |
| } |
| } |
| |
| if (I_IS_INDIRECT_ITEM(pasted)) |
| set_ih_free_space(pasted, 0); |
| zeros_number = tb->insert_size[0] = 0; |
| } |
| } else { |
| /* new item doesn't fall into R[0] */ |
| leaf_shift_right(tb, tb->rnum[0], tb->rbytes); |
| } |
| break; |
| |
| default: /* cases d and t */ |
| reiserfs_panic |
| ("PAP-12175: balance_leaf: rnum > 0: unexpectable mode: %s(%d)", |
| (flag == |
| M_DELETE) ? "DELETE" : ((flag == |
| M_CUT) ? "CUT" : |
| "UNKNOWN"), flag); |
| } |
| |
| } |
| |
| /* tb->rnum[0] > 0 */ |
| /* if while adding to a node we discover that it is possible to split |
| it in two, and merge the left part into the left neighbor and the |
| right part into the right neighbor, eliminating the node */ |
| if (tb->blknum[0] == 0) { /* node S[0] is empty now */ |
| /* if insertion was done before 0-th position in R[0], right |
| delimiting key of the tb->L[0]'s and left delimiting key are |
| not set correctly */ |
| if (tb->CFL[0]) { |
| if (!tb->CFR[0]) |
| reiserfs_panic(tb->tb_fs, |
| "vs-12195: balance_leaf: CFR not initialized"); |
| copy_key(internal_key(tb->CFL[0], tb->lkey[0]), |
| internal_key(tb->CFR[0], tb->rkey[0])); |
| mark_buffer_dirty(tb->CFL[0]); |
| } |
| |
| reiserfs_invalidate_buffer(tb, tbS0); |
| return 0; |
| } |
| |
| /* Fill new nodes that appear in place of S[0] */ |
| |
| /* I am told that this copying is because we need an array to enable |
| the looping code. -Hans */ |
| snum[0] = tb->s1num, snum[1] = tb->s2num; |
| sbytes[0] = tb->s1bytes; |
| sbytes[1] = tb->s2bytes; |
| for (i = tb->blknum[0] - 2; i >= 0; i--) { |
| /* here we shift from S to S_new nodes */ |
| S_new[i] = get_FEB(tb); |
| |
| /* set block_head's level to leaf level */ |
| set_blkh_level(B_BLK_HEAD(S_new[i]), DISK_LEAF_NODE_LEVEL); |
| |
| n = B_NR_ITEMS(tbS0); |
| |
| switch (flag) { |
| case M_INSERT: /* insert item */ |
| |
| if (n - snum[i] < item_pos) { |
| /* new item or it's part falls to first new node S_new[i] */ |
| if (item_pos == n - snum[i] + 1 |
| && sbytes[i] != -1) { |
| /* part of new item falls into S_new[i] */ |
| int old_key_comp, old_len, |
| r_zeros_number; |
| const char *r_body; |
| loff_t multiplyer; |
| |
| /* Move snum[i]-1 items from S[0] to S_new[i] */ |
| leaf_move_items(LEAF_FROM_S_TO_SNEW, tb, |
| snum[i] - 1, -1, |
| S_new[i]); |
| |
| /* Remember key component and item length */ |
| old_key_comp = get_offset(&ih->ih_key); |
| old_len = get_ih_item_len(ih); |
| multiplyer = |
| is_indirect_ih(ih) ? tb->tb_fs-> |
| fs_blocksize / UNFM_P_SIZE : 1; |
| |
| /* Calculate key component and item length to insert into S_new[i] */ |
| //ih->ih_key.k_offset += (old_len - sbytes[i]); |
| set_offset(key_format(&ih->ih_key), |
| &ih->ih_key, |
| old_key_comp + (old_len - |
| sbytes[i]) * |
| multiplyer); |
| |
| set_ih_item_len(ih, sbytes[i]); |
| |
| /* Insert part of the item into S_new[i] before 0-th item */ |
| buffer_info_init_bh(tb, &bi, S_new[i]); |
| |
| if (old_len - sbytes[i] > zeros_number) { |
| r_zeros_number = 0; |
| r_body = |
| body + (old_len - |
| sbytes[i]) - |
| zeros_number; |
| } else { |
| r_body = body; |
| r_zeros_number = |
| zeros_number - (old_len - |
| sbytes[i]); |
| zeros_number -= r_zeros_number; |
| } |
| |
| leaf_insert_into_buf(&bi, 0, ih, |
| r_body, |
| r_zeros_number); |
| |
| /* Calculate key component and item length to insert into S[i] */ |
| //ih->ih_key.k_offset = old_key_comp; |
| set_offset(key_format(&ih->ih_key), |
| &ih->ih_key, old_key_comp); |
| set_ih_item_len(ih, |
| old_len - sbytes[i]); |
| tb->insert_size[0] -= sbytes[i]; |
| } else { /* whole new item falls into S_new[i] */ |
| |
| /* Shift snum[0] - 1 items to S_new[i] (sbytes[i] of split item) */ |
| leaf_move_items(LEAF_FROM_S_TO_SNEW, tb, |
| snum[i] - 1, sbytes[i], |
| S_new[i]); |
| |
| /* Insert new item into S_new[i] */ |
| buffer_info_init_bh(tb, &bi, S_new[i]); |
| leaf_insert_into_buf(&bi, |
| item_pos - n + |
| snum[i] - 1, ih, |
| body, |
| zeros_number); |
| zeros_number = tb->insert_size[0] = 0; |
| } |
| } |
| |
| else { /* new item or it part don't falls into S_new[i] */ |
| |
| leaf_move_items(LEAF_FROM_S_TO_SNEW, tb, |
| snum[i], sbytes[i], S_new[i]); |
| } |
| break; |
| |
| case M_PASTE: /* append item */ |
| |
| if (n - snum[i] <= item_pos) { /* pasted item or part if it falls to S_new[i] */ |
| if (item_pos == n - snum[i] && sbytes[i] != -1) { /* we must shift part of the appended item */ |
| struct item_head *aux_ih; |
| |
| if (I_IS_DIRECTORY_ITEM |
| (aux_ih = |
| item_head(tbS0, item_pos))) { |
| /* we append to directory item */ |
| |
| int entry_count; |
| |
| entry_count = |
| get_ih_entry_count(aux_ih); |
| |
| if (entry_count - sbytes[i] < |
| pos_in_item |
| && pos_in_item <= |
| entry_count) { |
| /* new directory entry falls into S_new[i] */ |
| |
| /* Shift snum[i]-1 items in whole. Shift sbytes[i] directory entries from directory item number snum[i] */ |
| leaf_move_items |
| (LEAF_FROM_S_TO_SNEW, |
| tb, snum[i], |
| sbytes[i] - 1, |
| S_new[i]); |
| |
| /* Paste given directory entry to directory item */ |
| buffer_info_init_bh(tb, &bi, S_new[i]); |
| leaf_paste_in_buffer |
| (&bi, 0, |
| pos_in_item - |
| entry_count + |
| sbytes[i] - 1, |
| tb->insert_size[0], |
| body, |
| zeros_number); |
| /* paste new directory entry */ |
| leaf_paste_entries(bi. |
| bi_bh, |
| 0, |
| pos_in_item |
| - |
| entry_count |
| + |
| sbytes |
| [i] - |
| 1, 1, |
| (struct |
| reiserfs_de_head |
| *) |
| body, |
| body |
| + |
| DEH_SIZE, |
| tb-> |
| insert_size |
| [0] |
| ); |
| tb->insert_size[0] = 0; |
| pos_in_item++; |
| } else { /* new directory entry doesn't fall into S_new[i] */ |
| leaf_move_items |
| (LEAF_FROM_S_TO_SNEW, |
| tb, snum[i], |
| sbytes[i], |
| S_new[i]); |
| } |
| } else { /* regular object */ |
| |
| int n_shift, n_rem, |
| r_zeros_number; |
| const char *r_body; |
| struct item_head *tmp; |
| |
| /* Calculate number of bytes which must be shifted from appended item */ |
| n_shift = |
| sbytes[i] - |
| tb->insert_size[0]; |
| if (n_shift < 0) |
| n_shift = 0; |
| leaf_move_items |
| (LEAF_FROM_S_TO_SNEW, tb, |
| snum[i], n_shift, |
| S_new[i]); |
| |
| /* Calculate number of bytes which must remain in body after append to S_new[i] */ |
| n_rem = |
| tb->insert_size[0] - |
| sbytes[i]; |
| if (n_rem < 0) |
| n_rem = 0; |
| /* Append part of body into S_new[0] */ |
| buffer_info_init_bh(tb, &bi, S_new[i]); |
| |
| if (n_rem > zeros_number) { |
| r_zeros_number = 0; |
| r_body = |
| body + n_rem - |
| zeros_number; |
| } else { |
| r_body = body; |
| r_zeros_number = |
| zeros_number - |
| n_rem; |
| zeros_number -= |
| r_zeros_number; |
| } |
| |
| leaf_paste_in_buffer(&bi, 0, |
| n_shift, |
| tb-> |
| insert_size |
| [0] - |
| n_rem, |
| r_body, |
| r_zeros_number); |
| tmp = |
| item_head(S_new[i], 0); |
| if (I_IS_INDIRECT_ITEM(tmp)) { |
| /* |
| if (n_rem) |
| reiserfs_panic ("PAP-12230: balance_leaf: " |
| "invalid action with indirect item"); |
| set_ih_free_space (tmp, 0); |
| */ |
| set_ih_free_space(tmp, |
| 0); |
| set_offset(key_format |
| (&tmp-> |
| ih_key), |
| &tmp->ih_key, |
| get_offset |
| (&tmp-> |
| ih_key) + |
| (n_rem / |
| UNFM_P_SIZE) |
| * |
| tb->tb_fs-> |
| fs_blocksize); |
| } else |
| set_offset(key_format |
| (&tmp-> |
| ih_key), |
| &tmp->ih_key, |
| get_offset |
| (&tmp-> |
| ih_key) + |
| n_rem); |
| |
| //leaf_key(S_new[i],0)->k_offset += n_rem; |
| // |
| |
| tb->insert_size[0] = n_rem; |
| if (!n_rem) |
| pos_in_item++; |
| } |
| } else |
| /* item falls wholly into S_new[i] */ |
| { |
| struct item_head *pasted; |
| |
| leaf_move_items(LEAF_FROM_S_TO_SNEW, tb, |
| snum[i], sbytes[i], |
| S_new[i]); |
| /* paste into item */ |
| buffer_info_init_bh(tb, &bi, S_new[i]); |
| leaf_paste_in_buffer(&bi, |
| item_pos - n + |
| snum[i], |
| pos_in_item, |
| tb->insert_size[0], |
| body, |
| zeros_number); |
| |
| pasted = |
| item_head(S_new[i], |
| item_pos - n + |
| snum[i]); |
| if (I_IS_DIRECTORY_ITEM(pasted)) { |
| leaf_paste_entries(bi.bi_bh, |
| item_pos - |
| n + snum[i], |
| pos_in_item, |
| 1, |
| (struct |
| reiserfs_de_head |
| *)body, |
| body + |
| DEH_SIZE, |
| tb-> |
| insert_size |
| [0]); |
| } |
| |
| /* if we paste to indirect item update ih_free_space */ |
| if (I_IS_INDIRECT_ITEM(pasted)) |
| set_ih_free_space(pasted, 0); |
| zeros_number = tb->insert_size[0] = 0; |
| } |
| } else { |
| /* pasted item doesn't fall into S_new[i] */ |
| leaf_move_items(LEAF_FROM_S_TO_SNEW, tb, |
| snum[i], sbytes[i], S_new[i]); |
| } |
| break; |
| |
| default: /* cases d and t */ |
| reiserfs_panic |
| ("PAP-12245: balance_leaf: blknum > 2: unexpectable mode: %s(%d)", |
| (flag == |
| M_DELETE) ? "DELETE" : ((flag == |
| M_CUT) ? "CUT" : |
| "UNKNOWN"), flag); |
| } |
| |
| memcpy(insert_key + i, leaf_key(S_new[i], 0), KEY_SIZE); |
| insert_ptr[i] = S_new[i]; |
| } |
| |
| /* if the affected item was not wholly shifted then we perform all |
| necessary operations on that part or whole of the affected item which |
| remains in S */ |
| if (0 <= item_pos && item_pos < tb->s0num) { |
| /* if we must insert or append into buffer S[0] */ |
| |
| switch (flag) { |
| case M_INSERT: /* insert item into S[0] */ |
| buffer_info_init_tbS0(tb, &bi); |
| leaf_insert_into_buf(&bi, item_pos, ih, body, |
| zeros_number); |
| |
| /* If we insert the first key change the delimiting key */ |
| if (item_pos == 0) { |
| if (tb->CFL[0]) /* can be 0 in reiserfsck */ |
| replace_key(tb->tb_fs, tb->CFL[0], |
| tb->lkey[0], tbS0, 0); |
| } |
| break; |
| |
| case M_PASTE:{ /* append item in S[0] */ |
| struct item_head *pasted; |
| |
| pasted = item_head(tbS0, item_pos); |
| /* when directory, may be new entry already pasted */ |
| if (I_IS_DIRECTORY_ITEM(pasted)) { |
| if (pos_in_item >= 0 |
| && pos_in_item <= |
| get_ih_entry_count(pasted)) { |
| /* prepare space */ |
| buffer_info_init_tbS0(tb, &bi); |
| leaf_paste_in_buffer(&bi, |
| item_pos, |
| pos_in_item, |
| tb-> |
| insert_size |
| [0], body, |
| zeros_number); |
| |
| /* paste entry */ |
| leaf_paste_entries(bi.bi_bh, |
| item_pos, |
| pos_in_item, |
| 1, |
| (struct |
| reiserfs_de_head |
| *)body, |
| body + |
| DEH_SIZE, |
| tb-> |
| insert_size |
| [0]); |
| if (!item_pos && !pos_in_item) { |
| if (tb->CFL[0]) // can be 0 in reiserfsck |
| replace_key(tb-> |
| tb_fs, |
| tb-> |
| CFL |
| [0], |
| tb-> |
| lkey |
| [0], |
| tbS0, |
| 0); |
| } |
| tb->insert_size[0] = 0; |
| } |
| } else { /* regular object */ |
| if (pos_in_item == |
| get_ih_item_len(pasted)) { |
| buffer_info_init_tbS0(tb, &bi); |
| leaf_paste_in_buffer(&bi, |
| item_pos, |
| pos_in_item, |
| tb-> |
| insert_size |
| [0], body, |
| zeros_number); |
| |
| if (I_IS_INDIRECT_ITEM(pasted)) { |
| set_ih_free_space |
| (pasted, 0); |
| } |
| tb->insert_size[0] = 0; |
| } |
| } |
| } /* case M_PASTE: */ |
| } |
| } |
| |
| return 0; |
| } /* Leaf level of the tree is balanced (end of balance_leaf) */ |
| |
| void make_empty_leaf(struct buffer_head *bh) |
| { |
| set_blkh_nr_items(B_BLK_HEAD(bh), 0); |
| set_blkh_free_space(B_BLK_HEAD(bh), MAX_FREE_SPACE(bh->b_size)); |
| set_blkh_level(B_BLK_HEAD(bh), DISK_LEAF_NODE_LEVEL); |
| } |
| |
| /* Make empty node */ |
| void make_empty_node(struct buffer_info *bi) |
| { |
| make_empty_leaf(bi->bi_bh); |
| |
| if (bi->bi_parent) |
| set_dc_child_size(B_N_CHILD(bi->bi_parent, bi->bi_position), 0); |
| } |
| |
| /* Get first empty buffer */ |
| struct buffer_head *get_FEB(struct tree_balance *tb) |
| { |
| int i; |
| struct buffer_head *first_b; |
| struct buffer_info bi; |
| |
| for (i = 0; i < MAX_FEB_SIZE; i++) |
| if (tb->FEB[i] != NULL) |
| break; |
| |
| if (i == MAX_FEB_SIZE) |
| reiserfs_panic("vs-12300: get_FEB: FEB list is empty"); |
| |
| first_b = tb->FEB[i]; |
| buffer_info_init_bh(tb, &bi, first_b); |
| make_empty_node(&bi); |
| misc_set_bit(BH_Uptodate, &first_b->b_state); |
| |
| tb->FEB[i] = NULL; |
| tb->used[i] = first_b; |
| |
| return (first_b); |
| } |
| |
| /* Replace n_dest'th key in buffer dest by n_src'th key of buffer src.*/ |
| void replace_key(reiserfs_filsys_t fs, |
| struct buffer_head *dest, int n_dest, |
| struct buffer_head *src, int n_src) |
| { |
| if (dest) { |
| if (is_leaf_node(src)) |
| /* source buffer contains leaf node */ |
| memcpy(internal_key(dest, n_dest), |
| item_head(src, n_src), KEY_SIZE); |
| else |
| memcpy(internal_key(dest, n_dest), |
| internal_key(src, n_src), KEY_SIZE); |
| |
| mark_buffer_dirty(dest); |
| } |
| } |
| |
| void reiserfs_invalidate_buffer(struct tree_balance *tb, struct buffer_head *bh) |
| { |
| struct buffer_head *to_be_forgotten; |
| set_blkh_level(B_BLK_HEAD(bh), FREE_LEVEL); |
| misc_clear_bit(BH_Dirty, &bh->b_state); |
| |
| to_be_forgotten = find_buffer(bh->b_dev, bh->b_blocknr, bh->b_size); |
| if (to_be_forgotten) { |
| to_be_forgotten->b_count++; |
| bforget(to_be_forgotten); |
| } |
| |
| reiserfs_free_block(tb->tb_fs, bh->b_blocknr); |
| } |
| |
| int get_left_neighbor_position(const struct tree_balance *tb, int h) |
| { |
| int Sh_position = PATH_H_POSITION(tb->tb_path, h + 1); |
| |
| if (Sh_position == 0) |
| return B_NR_ITEMS(tb->FL[h]); |
| else |
| return Sh_position - 1; |
| } |
| |
| int get_right_neighbor_position(const struct tree_balance *tb, int h) |
| { |
| int Sh_position = PATH_H_POSITION(tb->tb_path, h + 1); |
| |
| if (Sh_position == B_NR_ITEMS(PATH_H_PPARENT(tb->tb_path, h))) |
| return 0; |
| else |
| return Sh_position + 1; |
| } |
| |
| /* Now we have all of the buffers that must be used in balancing of the tree. |
| We rely on the assumption that schedule() will not occur while do_balance |
| works. ( Only interrupt handlers are acceptable.) We balance the tree |
| according to the analysis made before this, using buffers already obtained. |
| For SMP support it will someday be necessary to add ordered locking of |
| tb. */ |
| |
| /* Some interesting rules of balancing: |
| |
| we delete a maximum of two nodes per level per balancing: we never delete R, when we delete two |
| of three nodes L, S, R then we move them into R. |
| |
| we only delete L if we are deleting two nodes, if we delete only one node we delete S |
| |
| if we shift leaves then we shift as much as we can: this is a deliberate policy of extremism in |
| node packing which results in higher average utilization after repeated random balance |
| operations at the cost of more memory copies and more balancing as a result of small insertions |
| to full nodes. |
| |
| if we shift internal nodes we try to evenly balance the node utilization, with consequent less |
| balancing at the cost of lower utilization. |
| |
| one could argue that the policy for directories in leaves should be that of internal nodes, but |
| we will wait until another day to evaluate this.... It would be nice to someday measure and |
| prove these assumptions as to what is optimal.... |
| |
| */ |
| |
| void do_balance(struct tree_balance *tb, /* tree_balance structure */ |
| struct item_head *ih, /* item header of inserted item */ |
| const char *body, /* body of inserted item or bytes to paste */ |
| int flag, /* i - insert, d - delete |
| c - cut, p - paste |
| |
| Cut means delete part of an item (includes |
| removing an entry from a directory). |
| |
| Delete means delete whole item. |
| |
| Insert means add a new item into the tree. |
| |
| Paste means to append to the end of an existing |
| file or to insert a directory entry. */ |
| int zeros_num) |
| { |
| //int pos_in_item = tb->tb_path->pos_in_item; |
| int child_pos, /* position of a child node in its parent */ |
| h; /* level of the tree being processed */ |
| struct item_head insert_key[2]; /* in our processing of one level we |
| sometimes determine what must be |
| inserted into the next higher level. |
| This insertion consists of a key or two |
| keys and their corresponding pointers */ |
| struct buffer_head *insert_ptr[2]; /* inserted node-ptrs for the next |
| level */ |
| |
| /* if we have no real work to do */ |
| if (!tb->insert_size[0]) { |
| unfix_nodes( /*th, */ tb); |
| return; |
| } |
| |
| if (flag == M_INTERNAL) { |
| insert_ptr[0] = (struct buffer_head *)body; |
| /* we must prepare insert_key */ |
| |
| if (PATH_H_B_ITEM_ORDER(tb->tb_path, 0) /*LAST_POSITION (tb->tb_path) */ |
| /*item_pos */ == -1) { |
| /* get delimiting key from buffer in tree */ |
| copy_key(&insert_key[0].ih_key, |
| leaf_key(PATH_PLAST_BUFFER(tb->tb_path), 0)); |
| /*insert_ptr[0]->b_item_order = 0; */ |
| } else { |
| /* get delimiting key from new buffer */ |
| copy_key(&insert_key[0].ih_key, |
| leaf_key((struct buffer_head *)body, 0)); |
| /*insert_ptr[0]->b_item_order = item_pos; */ |
| } |
| |
| /* and insert_ptr instead of balance_leaf */ |
| child_pos = PATH_H_B_ITEM_ORDER(tb->tb_path, 0) /*item_pos */ ; |
| } else |
| /* balance leaf returns 0 except if combining L R and S into one node. |
| see balance_internal() for explanation of this line of code. */ |
| child_pos = PATH_H_B_ITEM_ORDER(tb->tb_path, 0) + |
| balance_leaf( /*th, */ tb /*, pos_in_item */ , ih, body, |
| flag, zeros_num, insert_key, insert_ptr); |
| |
| /* Balance internal level of the tree. */ |
| for (h = 1; h < MAX_HEIGHT && tb->insert_size[h]; h++) |
| child_pos = |
| balance_internal( /*th, */ tb, h, child_pos, insert_key, |
| insert_ptr); |
| |
| /* Release all (except for S[0]) non NULL buffers fixed by fix_nodes() */ |
| unfix_nodes( /*th, */ tb); |
| } |