blob: 244a31b04be703a4e46cc3234d72df2de4bd2603 [file] [log] [blame]
/*
* linux/arch/i386/kernel/time_hpet.c
* This code largely copied from arch/x86_64/kernel/time.c
* See that file for credits.
*
* 2003-06-30 Venkatesh Pallipadi - Additional changes for HPET support
*/
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <asm/timer.h>
#include <asm/fixmap.h>
#include <asm/apic.h>
#include <linux/timex.h>
#include <linux/config.h>
#include <asm/hpet.h>
#include <linux/hpet.h>
static unsigned long hpet_period; /* fsecs / HPET clock */
unsigned long hpet_tick; /* hpet clks count per tick */
unsigned long hpet_address; /* hpet memory map physical address */
static int use_hpet; /* can be used for runtime check of hpet */
static int boot_hpet_disable; /* boottime override for HPET timer */
static void __iomem * hpet_virt_address; /* hpet kernel virtual address */
#define FSEC_TO_USEC (1000000000UL)
int hpet_readl(unsigned long a)
{
return readl(hpet_virt_address + a);
}
static void hpet_writel(unsigned long d, unsigned long a)
{
writel(d, hpet_virt_address + a);
}
#ifdef CONFIG_X86_LOCAL_APIC
/*
* HPET counters dont wrap around on every tick. They just change the
* comparator value and continue. Next tick can be caught by checking
* for a change in the comparator value. Used in apic.c.
*/
static void __init wait_hpet_tick(void)
{
unsigned int start_cmp_val, end_cmp_val;
start_cmp_val = hpet_readl(HPET_T0_CMP);
do {
end_cmp_val = hpet_readl(HPET_T0_CMP);
} while (start_cmp_val == end_cmp_val);
}
#endif
static int hpet_timer_stop_set_go(unsigned long tick)
{
unsigned int cfg;
/*
* Stop the timers and reset the main counter.
*/
cfg = hpet_readl(HPET_CFG);
cfg &= ~HPET_CFG_ENABLE;
hpet_writel(cfg, HPET_CFG);
hpet_writel(0, HPET_COUNTER);
hpet_writel(0, HPET_COUNTER + 4);
/*
* Set up timer 0, as periodic with first interrupt to happen at
* hpet_tick, and period also hpet_tick.
*/
cfg = hpet_readl(HPET_T0_CFG);
cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
HPET_TN_SETVAL | HPET_TN_32BIT;
hpet_writel(cfg, HPET_T0_CFG);
/*
* The first write after writing TN_SETVAL to the config register sets
* the counter value, the second write sets the threshold.
*/
hpet_writel(tick, HPET_T0_CMP);
hpet_writel(tick, HPET_T0_CMP);
/*
* Go!
*/
cfg = hpet_readl(HPET_CFG);
cfg |= HPET_CFG_ENABLE | HPET_CFG_LEGACY;
hpet_writel(cfg, HPET_CFG);
return 0;
}
/*
* Check whether HPET was found by ACPI boot parse. If yes setup HPET
* counter 0 for kernel base timer.
*/
int __init hpet_enable(void)
{
unsigned int id;
unsigned long tick_fsec_low, tick_fsec_high; /* tick in femto sec */
unsigned long hpet_tick_rem;
if (boot_hpet_disable)
return -1;
if (!hpet_address) {
return -1;
}
hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
/*
* Read the period, compute tick and quotient.
*/
id = hpet_readl(HPET_ID);
/*
* We are checking for value '1' or more in number field if
* CONFIG_HPET_EMULATE_RTC is set because we will need an
* additional timer for RTC emulation.
* However, we can do with one timer otherwise using the
* the single HPET timer for system time.
*/
if (
#ifdef CONFIG_HPET_EMULATE_RTC
!(id & HPET_ID_NUMBER) ||
#endif
!(id & HPET_ID_LEGSUP))
return -1;
hpet_period = hpet_readl(HPET_PERIOD);
if ((hpet_period < HPET_MIN_PERIOD) || (hpet_period > HPET_MAX_PERIOD))
return -1;
/*
* 64 bit math
* First changing tick into fsec
* Then 64 bit div to find number of hpet clk per tick
*/
ASM_MUL64_REG(tick_fsec_low, tick_fsec_high,
KERNEL_TICK_USEC, FSEC_TO_USEC);
ASM_DIV64_REG(hpet_tick, hpet_tick_rem,
hpet_period, tick_fsec_low, tick_fsec_high);
if (hpet_tick_rem > (hpet_period >> 1))
hpet_tick++; /* rounding the result */
if (hpet_timer_stop_set_go(hpet_tick))
return -1;
use_hpet = 1;
#ifdef CONFIG_HPET
{
struct hpet_data hd;
unsigned int ntimer;
memset(&hd, 0, sizeof (hd));
ntimer = hpet_readl(HPET_ID);
ntimer = (ntimer & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
ntimer++;
/*
* Register with driver.
* Timer0 and Timer1 is used by platform.
*/
hd.hd_phys_address = hpet_address;
hd.hd_address = hpet_virt_address;
hd.hd_nirqs = ntimer;
hd.hd_flags = HPET_DATA_PLATFORM;
hpet_reserve_timer(&hd, 0);
#ifdef CONFIG_HPET_EMULATE_RTC
hpet_reserve_timer(&hd, 1);
#endif
hd.hd_irq[0] = HPET_LEGACY_8254;
hd.hd_irq[1] = HPET_LEGACY_RTC;
if (ntimer > 2) {
struct hpet __iomem *hpet;
struct hpet_timer __iomem *timer;
int i;
hpet = hpet_virt_address;
for (i = 2, timer = &hpet->hpet_timers[2]; i < ntimer;
timer++, i++)
hd.hd_irq[i] = (timer->hpet_config &
Tn_INT_ROUTE_CNF_MASK) >>
Tn_INT_ROUTE_CNF_SHIFT;
}
hpet_alloc(&hd);
}
#endif
#ifdef CONFIG_X86_LOCAL_APIC
wait_timer_tick = wait_hpet_tick;
#endif
return 0;
}
int hpet_reenable(void)
{
return hpet_timer_stop_set_go(hpet_tick);
}
int is_hpet_enabled(void)
{
return use_hpet;
}
int is_hpet_capable(void)
{
if (!boot_hpet_disable && hpet_address)
return 1;
return 0;
}
static int __init hpet_setup(char* str)
{
if (str) {
if (!strncmp("disable", str, 7))
boot_hpet_disable = 1;
}
return 1;
}
__setup("hpet=", hpet_setup);
#ifdef CONFIG_HPET_EMULATE_RTC
/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
* is enabled, we support RTC interrupt functionality in software.
* RTC has 3 kinds of interrupts:
* 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
* is updated
* 2) Alarm Interrupt - generate an interrupt at a specific time of day
* 3) Periodic Interrupt - generate periodic interrupt, with frequencies
* 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
* (1) and (2) above are implemented using polling at a frequency of
* 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
* overhead. (DEFAULT_RTC_INT_FREQ)
* For (3), we use interrupts at 64Hz or user specified periodic
* frequency, whichever is higher.
*/
#include <linux/mc146818rtc.h>
#include <linux/rtc.h>
extern irqreturn_t rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs);
#define DEFAULT_RTC_INT_FREQ 64
#define RTC_NUM_INTS 1
static unsigned long UIE_on;
static unsigned long prev_update_sec;
static unsigned long AIE_on;
static struct rtc_time alarm_time;
static unsigned long PIE_on;
static unsigned long PIE_freq = DEFAULT_RTC_INT_FREQ;
static unsigned long PIE_count;
static unsigned long hpet_rtc_int_freq; /* RTC interrupt frequency */
/*
* Timer 1 for RTC, we do not use periodic interrupt feature,
* even if HPET supports periodic interrupts on Timer 1.
* The reason being, to set up a periodic interrupt in HPET, we need to
* stop the main counter. And if we do that everytime someone diables/enables
* RTC, we will have adverse effect on main kernel timer running on Timer 0.
* So, for the time being, simulate the periodic interrupt in software.
*
* hpet_rtc_timer_init() is called for the first time and during subsequent
* interuppts reinit happens through hpet_rtc_timer_reinit().
*/
int hpet_rtc_timer_init(void)
{
unsigned int cfg, cnt;
unsigned long flags;
if (!is_hpet_enabled())
return 0;
/*
* Set the counter 1 and enable the interrupts.
*/
if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
hpet_rtc_int_freq = PIE_freq;
else
hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
local_irq_save(flags);
cnt = hpet_readl(HPET_COUNTER);
cnt += ((hpet_tick*HZ)/hpet_rtc_int_freq);
hpet_writel(cnt, HPET_T1_CMP);
local_irq_restore(flags);
cfg = hpet_readl(HPET_T1_CFG);
cfg |= HPET_TN_ENABLE | HPET_TN_SETVAL | HPET_TN_32BIT;
hpet_writel(cfg, HPET_T1_CFG);
return 1;
}
static void hpet_rtc_timer_reinit(void)
{
unsigned int cfg, cnt;
if (!(PIE_on | AIE_on | UIE_on))
return;
if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
hpet_rtc_int_freq = PIE_freq;
else
hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
/* It is more accurate to use the comparator value than current count.*/
cnt = hpet_readl(HPET_T1_CMP);
cnt += hpet_tick*HZ/hpet_rtc_int_freq;
hpet_writel(cnt, HPET_T1_CMP);
cfg = hpet_readl(HPET_T1_CFG);
cfg |= HPET_TN_ENABLE | HPET_TN_SETVAL | HPET_TN_32BIT;
hpet_writel(cfg, HPET_T1_CFG);
return;
}
/*
* The functions below are called from rtc driver.
* Return 0 if HPET is not being used.
* Otherwise do the necessary changes and return 1.
*/
int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
{
if (!is_hpet_enabled())
return 0;
if (bit_mask & RTC_UIE)
UIE_on = 0;
if (bit_mask & RTC_PIE)
PIE_on = 0;
if (bit_mask & RTC_AIE)
AIE_on = 0;
return 1;
}
int hpet_set_rtc_irq_bit(unsigned long bit_mask)
{
int timer_init_reqd = 0;
if (!is_hpet_enabled())
return 0;
if (!(PIE_on | AIE_on | UIE_on))
timer_init_reqd = 1;
if (bit_mask & RTC_UIE) {
UIE_on = 1;
}
if (bit_mask & RTC_PIE) {
PIE_on = 1;
PIE_count = 0;
}
if (bit_mask & RTC_AIE) {
AIE_on = 1;
}
if (timer_init_reqd)
hpet_rtc_timer_init();
return 1;
}
int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
{
if (!is_hpet_enabled())
return 0;
alarm_time.tm_hour = hrs;
alarm_time.tm_min = min;
alarm_time.tm_sec = sec;
return 1;
}
int hpet_set_periodic_freq(unsigned long freq)
{
if (!is_hpet_enabled())
return 0;
PIE_freq = freq;
PIE_count = 0;
return 1;
}
int hpet_rtc_dropped_irq(void)
{
if (!is_hpet_enabled())
return 0;
return 1;
}
irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct rtc_time curr_time;
unsigned long rtc_int_flag = 0;
int call_rtc_interrupt = 0;
hpet_rtc_timer_reinit();
if (UIE_on | AIE_on) {
rtc_get_rtc_time(&curr_time);
}
if (UIE_on) {
if (curr_time.tm_sec != prev_update_sec) {
/* Set update int info, call real rtc int routine */
call_rtc_interrupt = 1;
rtc_int_flag = RTC_UF;
prev_update_sec = curr_time.tm_sec;
}
}
if (PIE_on) {
PIE_count++;
if (PIE_count >= hpet_rtc_int_freq/PIE_freq) {
/* Set periodic int info, call real rtc int routine */
call_rtc_interrupt = 1;
rtc_int_flag |= RTC_PF;
PIE_count = 0;
}
}
if (AIE_on) {
if ((curr_time.tm_sec == alarm_time.tm_sec) &&
(curr_time.tm_min == alarm_time.tm_min) &&
(curr_time.tm_hour == alarm_time.tm_hour)) {
/* Set alarm int info, call real rtc int routine */
call_rtc_interrupt = 1;
rtc_int_flag |= RTC_AF;
}
}
if (call_rtc_interrupt) {
rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
rtc_interrupt(rtc_int_flag, dev_id, regs);
}
return IRQ_HANDLED;
}
#endif