blob: be27da60dc8f8d2613e4b003239ef4c3b05bbd32 [file] [log] [blame]
/*
* SGI NMI support routines
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Copyright (c) 2009-2013 Silicon Graphics, Inc. All Rights Reserved.
* Copyright (c) Mike Travis
*/
#include <linux/cpu.h>
#include <linux/delay.h>
#include <linux/kdb.h>
#include <linux/kexec.h>
#include <linux/kgdb.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <asm/apic.h>
#include <asm/current.h>
#include <asm/kdebug.h>
#include <asm/local64.h>
#include <asm/nmi.h>
#include <asm/traps.h>
#include <asm/uv/uv.h>
#include <asm/uv/uv_hub.h>
#include <asm/uv/uv_mmrs.h>
/*
* UV handler for NMI
*
* Handle system-wide NMI events generated by the global 'power nmi' command.
*
* Basic operation is to field the NMI interrupt on each cpu and wait
* until all cpus have arrived into the nmi handler. If some cpus do not
* make it into the handler, try and force them in with the IPI(NMI) signal.
*
* We also have to lessen UV Hub MMR accesses as much as possible as this
* disrupts the UV Hub's primary mission of directing NumaLink traffic and
* can cause system problems to occur.
*
* To do this we register our primary NMI notifier on the NMI_UNKNOWN
* chain. This reduces the number of false NMI calls when the perf
* tools are running which generate an enormous number of NMIs per
* second (~4M/s for 1024 cpu threads). Our secondary NMI handler is
* very short as it only checks that if it has been "pinged" with the
* IPI(NMI) signal as mentioned above, and does not read the UV Hub's MMR.
*
*/
static struct uv_hub_nmi_s **uv_hub_nmi_list;
DEFINE_PER_CPU(struct uv_cpu_nmi_s, __uv_cpu_nmi);
EXPORT_PER_CPU_SYMBOL_GPL(__uv_cpu_nmi);
static unsigned long nmi_mmr;
static unsigned long nmi_mmr_clear;
static unsigned long nmi_mmr_pending;
static atomic_t uv_in_nmi;
static atomic_t uv_nmi_cpu = ATOMIC_INIT(-1);
static atomic_t uv_nmi_cpus_in_nmi = ATOMIC_INIT(-1);
static atomic_t uv_nmi_slave_continue;
static cpumask_var_t uv_nmi_cpu_mask;
/* Values for uv_nmi_slave_continue */
#define SLAVE_CLEAR 0
#define SLAVE_CONTINUE 1
#define SLAVE_EXIT 2
/*
* Default is all stack dumps go to the console and buffer.
* Lower level to send to log buffer only.
*/
static int uv_nmi_loglevel = 7;
module_param_named(dump_loglevel, uv_nmi_loglevel, int, 0644);
/*
* The following values show statistics on how perf events are affecting
* this system.
*/
static int param_get_local64(char *buffer, const struct kernel_param *kp)
{
return sprintf(buffer, "%lu\n", local64_read((local64_t *)kp->arg));
}
static int param_set_local64(const char *val, const struct kernel_param *kp)
{
/* clear on any write */
local64_set((local64_t *)kp->arg, 0);
return 0;
}
static struct kernel_param_ops param_ops_local64 = {
.get = param_get_local64,
.set = param_set_local64,
};
#define param_check_local64(name, p) __param_check(name, p, local64_t)
static local64_t uv_nmi_count;
module_param_named(nmi_count, uv_nmi_count, local64, 0644);
static local64_t uv_nmi_misses;
module_param_named(nmi_misses, uv_nmi_misses, local64, 0644);
static local64_t uv_nmi_ping_count;
module_param_named(ping_count, uv_nmi_ping_count, local64, 0644);
static local64_t uv_nmi_ping_misses;
module_param_named(ping_misses, uv_nmi_ping_misses, local64, 0644);
/*
* Following values allow tuning for large systems under heavy loading
*/
static int uv_nmi_initial_delay = 100;
module_param_named(initial_delay, uv_nmi_initial_delay, int, 0644);
static int uv_nmi_slave_delay = 100;
module_param_named(slave_delay, uv_nmi_slave_delay, int, 0644);
static int uv_nmi_loop_delay = 100;
module_param_named(loop_delay, uv_nmi_loop_delay, int, 0644);
static int uv_nmi_trigger_delay = 10000;
module_param_named(trigger_delay, uv_nmi_trigger_delay, int, 0644);
static int uv_nmi_wait_count = 100;
module_param_named(wait_count, uv_nmi_wait_count, int, 0644);
static int uv_nmi_retry_count = 500;
module_param_named(retry_count, uv_nmi_retry_count, int, 0644);
/*
* Valid NMI Actions:
* "dump" - dump process stack for each cpu
* "ips" - dump IP info for each cpu
* "kdump" - do crash dump
* "kdb" - enter KDB (default)
* "kgdb" - enter KGDB
*/
static char uv_nmi_action[8] = "kdb";
module_param_string(action, uv_nmi_action, sizeof(uv_nmi_action), 0644);
static inline bool uv_nmi_action_is(const char *action)
{
return (strncmp(uv_nmi_action, action, strlen(action)) == 0);
}
/* Setup which NMI support is present in system */
static void uv_nmi_setup_mmrs(void)
{
if (uv_read_local_mmr(UVH_NMI_MMRX_SUPPORTED)) {
uv_write_local_mmr(UVH_NMI_MMRX_REQ,
1UL << UVH_NMI_MMRX_REQ_SHIFT);
nmi_mmr = UVH_NMI_MMRX;
nmi_mmr_clear = UVH_NMI_MMRX_CLEAR;
nmi_mmr_pending = 1UL << UVH_NMI_MMRX_SHIFT;
pr_info("UV: SMI NMI support: %s\n", UVH_NMI_MMRX_TYPE);
} else {
nmi_mmr = UVH_NMI_MMR;
nmi_mmr_clear = UVH_NMI_MMR_CLEAR;
nmi_mmr_pending = 1UL << UVH_NMI_MMR_SHIFT;
pr_info("UV: SMI NMI support: %s\n", UVH_NMI_MMR_TYPE);
}
}
/* Read NMI MMR and check if NMI flag was set by BMC. */
static inline int uv_nmi_test_mmr(struct uv_hub_nmi_s *hub_nmi)
{
hub_nmi->nmi_value = uv_read_local_mmr(nmi_mmr);
atomic_inc(&hub_nmi->read_mmr_count);
return !!(hub_nmi->nmi_value & nmi_mmr_pending);
}
static inline void uv_local_mmr_clear_nmi(void)
{
uv_write_local_mmr(nmi_mmr_clear, nmi_mmr_pending);
}
/*
* If first cpu in on this hub, set hub_nmi "in_nmi" and "owner" values and
* return true. If first cpu in on the system, set global "in_nmi" flag.
*/
static int uv_set_in_nmi(int cpu, struct uv_hub_nmi_s *hub_nmi)
{
int first = atomic_add_unless(&hub_nmi->in_nmi, 1, 1);
if (first) {
atomic_set(&hub_nmi->cpu_owner, cpu);
if (atomic_add_unless(&uv_in_nmi, 1, 1))
atomic_set(&uv_nmi_cpu, cpu);
atomic_inc(&hub_nmi->nmi_count);
}
return first;
}
/* Check if this is a system NMI event */
static int uv_check_nmi(struct uv_hub_nmi_s *hub_nmi)
{
int cpu = smp_processor_id();
int nmi = 0;
local64_inc(&uv_nmi_count);
uv_cpu_nmi.queries++;
do {
nmi = atomic_read(&hub_nmi->in_nmi);
if (nmi)
break;
if (raw_spin_trylock(&hub_nmi->nmi_lock)) {
/* check hub MMR NMI flag */
if (uv_nmi_test_mmr(hub_nmi)) {
uv_set_in_nmi(cpu, hub_nmi);
nmi = 1;
break;
}
/* MMR NMI flag is clear */
raw_spin_unlock(&hub_nmi->nmi_lock);
} else {
/* wait a moment for the hub nmi locker to set flag */
cpu_relax();
udelay(uv_nmi_slave_delay);
/* re-check hub in_nmi flag */
nmi = atomic_read(&hub_nmi->in_nmi);
if (nmi)
break;
}
/* check if this BMC missed setting the MMR NMI flag */
if (!nmi) {
nmi = atomic_read(&uv_in_nmi);
if (nmi)
uv_set_in_nmi(cpu, hub_nmi);
}
} while (0);
if (!nmi)
local64_inc(&uv_nmi_misses);
return nmi;
}
/* Need to reset the NMI MMR register, but only once per hub. */
static inline void uv_clear_nmi(int cpu)
{
struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi;
if (cpu == atomic_read(&hub_nmi->cpu_owner)) {
atomic_set(&hub_nmi->cpu_owner, -1);
atomic_set(&hub_nmi->in_nmi, 0);
uv_local_mmr_clear_nmi();
raw_spin_unlock(&hub_nmi->nmi_lock);
}
}
/* Print non-responding cpus */
static void uv_nmi_nr_cpus_pr(char *fmt)
{
static char cpu_list[1024];
int len = sizeof(cpu_list);
int c = cpumask_weight(uv_nmi_cpu_mask);
int n = cpulist_scnprintf(cpu_list, len, uv_nmi_cpu_mask);
if (n >= len-1)
strcpy(&cpu_list[len - 6], "...\n");
printk(fmt, c, cpu_list);
}
/* Ping non-responding cpus attemping to force them into the NMI handler */
static void uv_nmi_nr_cpus_ping(void)
{
int cpu;
for_each_cpu(cpu, uv_nmi_cpu_mask)
atomic_set(&uv_cpu_nmi_per(cpu).pinging, 1);
apic->send_IPI_mask(uv_nmi_cpu_mask, APIC_DM_NMI);
}
/* Clean up flags for cpus that ignored both NMI and ping */
static void uv_nmi_cleanup_mask(void)
{
int cpu;
for_each_cpu(cpu, uv_nmi_cpu_mask) {
atomic_set(&uv_cpu_nmi_per(cpu).pinging, 0);
atomic_set(&uv_cpu_nmi_per(cpu).state, UV_NMI_STATE_OUT);
cpumask_clear_cpu(cpu, uv_nmi_cpu_mask);
}
}
/* Loop waiting as cpus enter nmi handler */
static int uv_nmi_wait_cpus(int first)
{
int i, j, k, n = num_online_cpus();
int last_k = 0, waiting = 0;
if (first) {
cpumask_copy(uv_nmi_cpu_mask, cpu_online_mask);
k = 0;
} else {
k = n - cpumask_weight(uv_nmi_cpu_mask);
}
udelay(uv_nmi_initial_delay);
for (i = 0; i < uv_nmi_retry_count; i++) {
int loop_delay = uv_nmi_loop_delay;
for_each_cpu(j, uv_nmi_cpu_mask) {
if (atomic_read(&uv_cpu_nmi_per(j).state)) {
cpumask_clear_cpu(j, uv_nmi_cpu_mask);
if (++k >= n)
break;
}
}
if (k >= n) { /* all in? */
k = n;
break;
}
if (last_k != k) { /* abort if no new cpus coming in */
last_k = k;
waiting = 0;
} else if (++waiting > uv_nmi_wait_count)
break;
/* extend delay if waiting only for cpu 0 */
if (waiting && (n - k) == 1 &&
cpumask_test_cpu(0, uv_nmi_cpu_mask))
loop_delay *= 100;
udelay(loop_delay);
}
atomic_set(&uv_nmi_cpus_in_nmi, k);
return n - k;
}
/* Wait until all slave cpus have entered UV NMI handler */
static void uv_nmi_wait(int master)
{
/* indicate this cpu is in */
atomic_set(&uv_cpu_nmi.state, UV_NMI_STATE_IN);
/* if not the first cpu in (the master), then we are a slave cpu */
if (!master)
return;
do {
/* wait for all other cpus to gather here */
if (!uv_nmi_wait_cpus(1))
break;
/* if not all made it in, send IPI NMI to them */
uv_nmi_nr_cpus_pr(KERN_ALERT
"UV: Sending NMI IPI to %d non-responding CPUs: %s\n");
uv_nmi_nr_cpus_ping();
/* if all cpus are in, then done */
if (!uv_nmi_wait_cpus(0))
break;
uv_nmi_nr_cpus_pr(KERN_ALERT
"UV: %d CPUs not in NMI loop: %s\n");
} while (0);
pr_alert("UV: %d of %d CPUs in NMI\n",
atomic_read(&uv_nmi_cpus_in_nmi), num_online_cpus());
}
static void uv_nmi_dump_cpu_ip_hdr(void)
{
printk(KERN_DEFAULT
"\nUV: %4s %6s %-32s %s (Note: PID 0 not listed)\n",
"CPU", "PID", "COMMAND", "IP");
}
static void uv_nmi_dump_cpu_ip(int cpu, struct pt_regs *regs)
{
printk(KERN_DEFAULT "UV: %4d %6d %-32.32s ",
cpu, current->pid, current->comm);
printk_address(regs->ip);
}
/* Dump this cpu's state */
static void uv_nmi_dump_state_cpu(int cpu, struct pt_regs *regs)
{
const char *dots = " ................................. ";
if (uv_nmi_action_is("ips")) {
if (cpu == 0)
uv_nmi_dump_cpu_ip_hdr();
if (current->pid != 0)
uv_nmi_dump_cpu_ip(cpu, regs);
} else if (uv_nmi_action_is("dump")) {
printk(KERN_DEFAULT
"UV:%sNMI process trace for CPU %d\n", dots, cpu);
show_regs(regs);
}
atomic_set(&uv_cpu_nmi.state, UV_NMI_STATE_DUMP_DONE);
}
/* Trigger a slave cpu to dump it's state */
static void uv_nmi_trigger_dump(int cpu)
{
int retry = uv_nmi_trigger_delay;
if (atomic_read(&uv_cpu_nmi_per(cpu).state) != UV_NMI_STATE_IN)
return;
atomic_set(&uv_cpu_nmi_per(cpu).state, UV_NMI_STATE_DUMP);
do {
cpu_relax();
udelay(10);
if (atomic_read(&uv_cpu_nmi_per(cpu).state)
!= UV_NMI_STATE_DUMP)
return;
} while (--retry > 0);
pr_crit("UV: CPU %d stuck in process dump function\n", cpu);
atomic_set(&uv_cpu_nmi_per(cpu).state, UV_NMI_STATE_DUMP_DONE);
}
/* Wait until all cpus ready to exit */
static void uv_nmi_sync_exit(int master)
{
atomic_dec(&uv_nmi_cpus_in_nmi);
if (master) {
while (atomic_read(&uv_nmi_cpus_in_nmi) > 0)
cpu_relax();
atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR);
} else {
while (atomic_read(&uv_nmi_slave_continue))
cpu_relax();
}
}
/* Walk through cpu list and dump state of each */
static void uv_nmi_dump_state(int cpu, struct pt_regs *regs, int master)
{
if (master) {
int tcpu;
int ignored = 0;
int saved_console_loglevel = console_loglevel;
pr_alert("UV: tracing %s for %d CPUs from CPU %d\n",
uv_nmi_action_is("ips") ? "IPs" : "processes",
atomic_read(&uv_nmi_cpus_in_nmi), cpu);
console_loglevel = uv_nmi_loglevel;
atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
for_each_online_cpu(tcpu) {
if (cpumask_test_cpu(tcpu, uv_nmi_cpu_mask))
ignored++;
else if (tcpu == cpu)
uv_nmi_dump_state_cpu(tcpu, regs);
else
uv_nmi_trigger_dump(tcpu);
}
if (ignored)
printk(KERN_DEFAULT "UV: %d CPUs ignored NMI\n",
ignored);
console_loglevel = saved_console_loglevel;
pr_alert("UV: process trace complete\n");
} else {
while (!atomic_read(&uv_nmi_slave_continue))
cpu_relax();
while (atomic_read(&uv_cpu_nmi.state) != UV_NMI_STATE_DUMP)
cpu_relax();
uv_nmi_dump_state_cpu(cpu, regs);
}
uv_nmi_sync_exit(master);
}
static void uv_nmi_touch_watchdogs(void)
{
touch_softlockup_watchdog_sync();
clocksource_touch_watchdog();
rcu_cpu_stall_reset();
touch_nmi_watchdog();
}
#if defined(CONFIG_KEXEC)
static atomic_t uv_nmi_kexec_failed;
static void uv_nmi_kdump(int cpu, int master, struct pt_regs *regs)
{
/* Call crash to dump system state */
if (master) {
pr_emerg("UV: NMI executing crash_kexec on CPU%d\n", cpu);
crash_kexec(regs);
pr_emerg("UV: crash_kexec unexpectedly returned, ");
if (!kexec_crash_image) {
pr_cont("crash kernel not loaded\n");
atomic_set(&uv_nmi_kexec_failed, 1);
uv_nmi_sync_exit(1);
return;
}
pr_cont("kexec busy, stalling cpus while waiting\n");
}
/* If crash exec fails the slaves should return, otherwise stall */
while (atomic_read(&uv_nmi_kexec_failed) == 0)
mdelay(10);
/* Crash kernel most likely not loaded, return in an orderly fashion */
uv_nmi_sync_exit(0);
}
#else /* !CONFIG_KEXEC */
static inline void uv_nmi_kdump(int cpu, int master, struct pt_regs *regs)
{
if (master)
pr_err("UV: NMI kdump: KEXEC not supported in this kernel\n");
}
#endif /* !CONFIG_KEXEC */
#ifdef CONFIG_KGDB
#ifdef CONFIG_KGDB_KDB
static inline int uv_nmi_kdb_reason(void)
{
return KDB_REASON_SYSTEM_NMI;
}
#else /* !CONFIG_KGDB_KDB */
static inline int uv_nmi_kdb_reason(void)
{
/* Insure user is expecting to attach gdb remote */
if (uv_nmi_action_is("kgdb"))
return 0;
pr_err("UV: NMI error: KDB is not enabled in this kernel\n");
return -1;
}
#endif /* CONFIG_KGDB_KDB */
/*
* Call KGDB/KDB from NMI handler
*
* Note that if both KGDB and KDB are configured, then the action of 'kgdb' or
* 'kdb' has no affect on which is used. See the KGDB documention for further
* information.
*/
static void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master)
{
if (master) {
int reason = uv_nmi_kdb_reason();
int ret;
if (reason < 0)
return;
/* call KGDB NMI handler as MASTER */
ret = kgdb_nmicallin(cpu, X86_TRAP_NMI, regs, reason,
&uv_nmi_slave_continue);
if (ret) {
pr_alert("KGDB returned error, is kgdboc set?\n");
atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
}
} else {
/* wait for KGDB signal that it's ready for slaves to enter */
int sig;
do {
cpu_relax();
sig = atomic_read(&uv_nmi_slave_continue);
} while (!sig);
/* call KGDB as slave */
if (sig == SLAVE_CONTINUE)
kgdb_nmicallback(cpu, regs);
}
uv_nmi_sync_exit(master);
}
#else /* !CONFIG_KGDB */
static inline void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master)
{
pr_err("UV: NMI error: KGDB is not enabled in this kernel\n");
}
#endif /* !CONFIG_KGDB */
/*
* UV NMI handler
*/
int uv_handle_nmi(unsigned int reason, struct pt_regs *regs)
{
struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi;
int cpu = smp_processor_id();
int master = 0;
unsigned long flags;
local_irq_save(flags);
/* If not a UV System NMI, ignore */
if (!atomic_read(&uv_cpu_nmi.pinging) && !uv_check_nmi(hub_nmi)) {
local_irq_restore(flags);
return NMI_DONE;
}
/* Indicate we are the first CPU into the NMI handler */
master = (atomic_read(&uv_nmi_cpu) == cpu);
/* If NMI action is "kdump", then attempt to do it */
if (uv_nmi_action_is("kdump"))
uv_nmi_kdump(cpu, master, regs);
/* Pause as all cpus enter the NMI handler */
uv_nmi_wait(master);
/* Dump state of each cpu */
if (uv_nmi_action_is("ips") || uv_nmi_action_is("dump"))
uv_nmi_dump_state(cpu, regs, master);
/* Call KGDB/KDB if enabled */
else if (uv_nmi_action_is("kdb") || uv_nmi_action_is("kgdb"))
uv_call_kgdb_kdb(cpu, regs, master);
/* Clear per_cpu "in nmi" flag */
atomic_set(&uv_cpu_nmi.state, UV_NMI_STATE_OUT);
/* Clear MMR NMI flag on each hub */
uv_clear_nmi(cpu);
/* Clear global flags */
if (master) {
if (cpumask_weight(uv_nmi_cpu_mask))
uv_nmi_cleanup_mask();
atomic_set(&uv_nmi_cpus_in_nmi, -1);
atomic_set(&uv_nmi_cpu, -1);
atomic_set(&uv_in_nmi, 0);
}
uv_nmi_touch_watchdogs();
local_irq_restore(flags);
return NMI_HANDLED;
}
/*
* NMI handler for pulling in CPUs when perf events are grabbing our NMI
*/
static int uv_handle_nmi_ping(unsigned int reason, struct pt_regs *regs)
{
int ret;
uv_cpu_nmi.queries++;
if (!atomic_read(&uv_cpu_nmi.pinging)) {
local64_inc(&uv_nmi_ping_misses);
return NMI_DONE;
}
uv_cpu_nmi.pings++;
local64_inc(&uv_nmi_ping_count);
ret = uv_handle_nmi(reason, regs);
atomic_set(&uv_cpu_nmi.pinging, 0);
return ret;
}
static void uv_register_nmi_notifier(void)
{
if (register_nmi_handler(NMI_UNKNOWN, uv_handle_nmi, 0, "uv"))
pr_warn("UV: NMI handler failed to register\n");
if (register_nmi_handler(NMI_LOCAL, uv_handle_nmi_ping, 0, "uvping"))
pr_warn("UV: PING NMI handler failed to register\n");
}
void uv_nmi_init(void)
{
unsigned int value;
/*
* Unmask NMI on all cpus
*/
value = apic_read(APIC_LVT1) | APIC_DM_NMI;
value &= ~APIC_LVT_MASKED;
apic_write(APIC_LVT1, value);
}
void uv_nmi_setup(void)
{
int size = sizeof(void *) * (1 << NODES_SHIFT);
int cpu, nid;
/* Setup hub nmi info */
uv_nmi_setup_mmrs();
uv_hub_nmi_list = kzalloc(size, GFP_KERNEL);
pr_info("UV: NMI hub list @ 0x%p (%d)\n", uv_hub_nmi_list, size);
BUG_ON(!uv_hub_nmi_list);
size = sizeof(struct uv_hub_nmi_s);
for_each_present_cpu(cpu) {
nid = cpu_to_node(cpu);
if (uv_hub_nmi_list[nid] == NULL) {
uv_hub_nmi_list[nid] = kzalloc_node(size,
GFP_KERNEL, nid);
BUG_ON(!uv_hub_nmi_list[nid]);
raw_spin_lock_init(&(uv_hub_nmi_list[nid]->nmi_lock));
atomic_set(&uv_hub_nmi_list[nid]->cpu_owner, -1);
}
uv_hub_nmi_per(cpu) = uv_hub_nmi_list[nid];
}
BUG_ON(!alloc_cpumask_var(&uv_nmi_cpu_mask, GFP_KERNEL));
uv_register_nmi_notifier();
}