blob: 0648c6996d43a94031d135163d4a693132dcc2b4 [file] [log] [blame]
/*
* Copyright (c) 2012 Linutronix GmbH
* Author: Richard Weinberger <richard@nod.at>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
*/
#include <linux/crc32.h>
#include "ubi.h"
/**
* ubi_calc_fm_size - calculates the fastmap size in bytes for an UBI device.
* @ubi: UBI device description object
*/
size_t ubi_calc_fm_size(struct ubi_device *ubi)
{
size_t size;
size = sizeof(struct ubi_fm_hdr) + \
sizeof(struct ubi_fm_scan_pool) + \
sizeof(struct ubi_fm_scan_pool) + \
(ubi->peb_count * sizeof(struct ubi_fm_ec)) + \
(sizeof(struct ubi_fm_eba) + \
(ubi->peb_count * sizeof(__be32))) + \
sizeof(struct ubi_fm_volhdr) * UBI_MAX_VOLUMES;
return roundup(size, ubi->leb_size);
}
/**
* new_fm_vhdr - allocate a new volume header for fastmap usage.
* @ubi: UBI device description object
* @vol_id: the VID of the new header
*
* Returns a new struct ubi_vid_hdr on success.
* NULL indicates out of memory.
*/
static struct ubi_vid_hdr *new_fm_vhdr(struct ubi_device *ubi, int vol_id)
{
struct ubi_vid_hdr *new;
new = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
if (!new)
goto out;
new->vol_type = UBI_VID_DYNAMIC;
new->vol_id = cpu_to_be32(vol_id);
/* UBI implementations without fastmap support have to delete the
* fastmap.
*/
new->compat = UBI_COMPAT_DELETE;
out:
return new;
}
/**
* add_aeb - create and add a attach erase block to a given list.
* @ai: UBI attach info object
* @list: the target list
* @pnum: PEB number of the new attach erase block
* @ec: erease counter of the new LEB
* @scrub: scrub this PEB after attaching
*
* Returns 0 on success, < 0 indicates an internal error.
*/
static int add_aeb(struct ubi_attach_info *ai, struct list_head *list,
int pnum, int ec, int scrub)
{
struct ubi_ainf_peb *aeb;
aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
if (!aeb)
return -ENOMEM;
aeb->pnum = pnum;
aeb->ec = ec;
aeb->lnum = -1;
aeb->scrub = scrub;
aeb->copy_flag = aeb->sqnum = 0;
ai->ec_sum += aeb->ec;
ai->ec_count++;
if (ai->max_ec < aeb->ec)
ai->max_ec = aeb->ec;
if (ai->min_ec > aeb->ec)
ai->min_ec = aeb->ec;
list_add_tail(&aeb->u.list, list);
return 0;
}
/**
* add_vol - create and add a new volume to ubi_attach_info.
* @ai: ubi_attach_info object
* @vol_id: VID of the new volume
* @used_ebs: number of used EBS
* @data_pad: data padding value of the new volume
* @vol_type: volume type
* @last_eb_bytes: number of bytes in the last LEB
*
* Returns the new struct ubi_ainf_volume on success.
* NULL indicates an error.
*/
static struct ubi_ainf_volume *add_vol(struct ubi_attach_info *ai, int vol_id,
int used_ebs, int data_pad, u8 vol_type,
int last_eb_bytes)
{
struct ubi_ainf_volume *av;
struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
while (*p) {
parent = *p;
av = rb_entry(parent, struct ubi_ainf_volume, rb);
if (vol_id > av->vol_id)
p = &(*p)->rb_left;
else if (vol_id > av->vol_id)
p = &(*p)->rb_right;
}
av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
if (!av)
goto out;
av->highest_lnum = av->leb_count = 0;
av->vol_id = vol_id;
av->used_ebs = used_ebs;
av->data_pad = data_pad;
av->last_data_size = last_eb_bytes;
av->compat = 0;
av->vol_type = vol_type;
av->root = RB_ROOT;
dbg_bld("found volume (ID %i)", vol_id);
rb_link_node(&av->rb, parent, p);
rb_insert_color(&av->rb, &ai->volumes);
out:
return av;
}
/**
* assign_aeb_to_av - assigns a SEB to a given ainf_volume and removes it
* from it's original list.
* @ai: ubi_attach_info object
* @aeb: the to be assigned SEB
* @av: target scan volume
*/
static void assign_aeb_to_av(struct ubi_attach_info *ai,
struct ubi_ainf_peb *aeb,
struct ubi_ainf_volume *av)
{
struct ubi_ainf_peb *tmp_aeb;
struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
p = &av->root.rb_node;
while (*p) {
parent = *p;
tmp_aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
if (aeb->lnum != tmp_aeb->lnum) {
if (aeb->lnum < tmp_aeb->lnum)
p = &(*p)->rb_left;
else
p = &(*p)->rb_right;
continue;
} else
break;
}
list_del(&aeb->u.list);
av->leb_count++;
rb_link_node(&aeb->u.rb, parent, p);
rb_insert_color(&aeb->u.rb, &av->root);
}
/**
* update_vol - inserts or updates a LEB which was found a pool.
* @ubi: the UBI device object
* @ai: attach info object
* @av: the volume this LEB belongs to
* @new_vh: the volume header derived from new_aeb
* @new_aeb: the AEB to be examined
*
* Returns 0 on success, < 0 indicates an internal error.
*/
static int update_vol(struct ubi_device *ubi, struct ubi_attach_info *ai,
struct ubi_ainf_volume *av, struct ubi_vid_hdr *new_vh,
struct ubi_ainf_peb *new_aeb)
{
struct rb_node **p = &av->root.rb_node, *parent = NULL;
struct ubi_ainf_peb *aeb, *victim;
int cmp_res;
while (*p) {
parent = *p;
aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
if (be32_to_cpu(new_vh->lnum) != aeb->lnum) {
if (be32_to_cpu(new_vh->lnum) < aeb->lnum)
p = &(*p)->rb_left;
else
p = &(*p)->rb_right;
continue;
}
/* This case can happen if the fastmap gets written
* because of a volume change (creation, deletion, ..).
* Then a PEB can be within the persistent EBA and the pool.
*/
if (aeb->pnum == new_aeb->pnum) {
ubi_assert(aeb->lnum == new_aeb->lnum);
kmem_cache_free(ai->aeb_slab_cache, new_aeb);
return 0;
}
cmp_res = ubi_compare_lebs(ubi, aeb, new_aeb->pnum, new_vh);
if (cmp_res < 0)
return cmp_res;
/* new_aeb is newer */
if (cmp_res & 1) {
victim = kmem_cache_alloc(ai->aeb_slab_cache,
GFP_KERNEL);
if (!victim)
return -ENOMEM;
victim->ec = aeb->ec;
victim->pnum = aeb->pnum;
list_add_tail(&victim->u.list, &ai->erase);
if (av->highest_lnum == be32_to_cpu(new_vh->lnum))
av->last_data_size = \
be32_to_cpu(new_vh->data_size);
dbg_bld("vol %i: AEB %i's PEB %i is the newer",
av->vol_id, aeb->lnum, new_aeb->pnum);
aeb->ec = new_aeb->ec;
aeb->pnum = new_aeb->pnum;
aeb->copy_flag = new_vh->copy_flag;
aeb->scrub = new_aeb->scrub;
kmem_cache_free(ai->aeb_slab_cache, new_aeb);
/* new_aeb is older */
} else {
dbg_bld("vol %i: AEB %i's PEB %i is old, dropping it",
av->vol_id, aeb->lnum, new_aeb->pnum);
list_add_tail(&new_aeb->u.list, &ai->erase);
}
return 0;
}
/* This LEB is new, let's add it to the volume */
if (av->highest_lnum <= be32_to_cpu(new_vh->lnum)) {
av->highest_lnum = be32_to_cpu(new_vh->lnum);
av->last_data_size = be32_to_cpu(new_vh->data_size);
}
if (av->vol_type == UBI_STATIC_VOLUME)
av->used_ebs = be32_to_cpu(new_vh->used_ebs);
av->leb_count++;
rb_link_node(&new_aeb->u.rb, parent, p);
rb_insert_color(&new_aeb->u.rb, &av->root);
return 0;
}
/**
* process_pool_aeb - we found a non-empty PEB in a pool.
* @ubi: UBI device object
* @ai: attach info object
* @new_vh: the volume header derived from new_aeb
* @new_aeb: the AEB to be examined
*
* Returns 0 on success, < 0 indicates an internal error.
*/
static int process_pool_aeb(struct ubi_device *ubi, struct ubi_attach_info *ai,
struct ubi_vid_hdr *new_vh,
struct ubi_ainf_peb *new_aeb)
{
struct ubi_ainf_volume *av, *tmp_av = NULL;
struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
int found = 0;
if (be32_to_cpu(new_vh->vol_id) == UBI_FM_SB_VOLUME_ID ||
be32_to_cpu(new_vh->vol_id) == UBI_FM_DATA_VOLUME_ID) {
kmem_cache_free(ai->aeb_slab_cache, new_aeb);
return 0;
}
/* Find the volume this SEB belongs to */
while (*p) {
parent = *p;
tmp_av = rb_entry(parent, struct ubi_ainf_volume, rb);
if (be32_to_cpu(new_vh->vol_id) > tmp_av->vol_id)
p = &(*p)->rb_left;
else if (be32_to_cpu(new_vh->vol_id) < tmp_av->vol_id)
p = &(*p)->rb_right;
else {
found = 1;
break;
}
}
if (found)
av = tmp_av;
else {
ubi_err("orphaned volume in fastmap pool!");
return UBI_BAD_FASTMAP;
}
ubi_assert(be32_to_cpu(new_vh->vol_id) == av->vol_id);
return update_vol(ubi, ai, av, new_vh, new_aeb);
}
/**
* unmap_peb - unmap a PEB.
* If fastmap detects a free PEB in the pool it has to check whether
* this PEB has been unmapped after writing the fastmap.
*
* @ai: UBI attach info object
* @pnum: The PEB to be unmapped
*/
static void unmap_peb(struct ubi_attach_info *ai, int pnum)
{
struct ubi_ainf_volume *av;
struct rb_node *node, *node2;
struct ubi_ainf_peb *aeb;
for (node = rb_first(&ai->volumes); node; node = rb_next(node)) {
av = rb_entry(node, struct ubi_ainf_volume, rb);
for (node2 = rb_first(&av->root); node2;
node2 = rb_next(node2)) {
aeb = rb_entry(node2, struct ubi_ainf_peb, u.rb);
if (aeb->pnum == pnum) {
rb_erase(&aeb->u.rb, &av->root);
kmem_cache_free(ai->aeb_slab_cache, aeb);
return;
}
}
}
}
/**
* scan_pool - scans a pool for changed (no longer empty PEBs).
* @ubi: UBI device object
* @ai: attach info object
* @pebs: an array of all PEB numbers in the to be scanned pool
* @pool_size: size of the pool (number of entries in @pebs)
* @max_sqnum: pointer to the maximal sequence number
* @eba_orphans: list of PEBs which need to be scanned
* @free: list of PEBs which are most likely free (and go into @ai->free)
*
* Returns 0 on success, if the pool is unusable UBI_BAD_FASTMAP is returned.
* < 0 indicates an internal error.
*/
static int scan_pool(struct ubi_device *ubi, struct ubi_attach_info *ai,
int *pebs, int pool_size, unsigned long long *max_sqnum,
struct list_head *eba_orphans, struct list_head *free)
{
struct ubi_vid_hdr *vh;
struct ubi_ec_hdr *ech;
struct ubi_ainf_peb *new_aeb, *tmp_aeb;
int i, pnum, err, found_orphan, ret = 0;
ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
if (!ech)
return -ENOMEM;
vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
if (!vh) {
kfree(ech);
return -ENOMEM;
}
dbg_bld("scanning fastmap pool: size = %i", pool_size);
/*
* Now scan all PEBs in the pool to find changes which have been made
* after the creation of the fastmap
*/
for (i = 0; i < pool_size; i++) {
int scrub = 0;
pnum = be32_to_cpu(pebs[i]);
if (ubi_io_is_bad(ubi, pnum)) {
ubi_err("bad PEB in fastmap pool!");
ret = UBI_BAD_FASTMAP;
goto out;
}
err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
if (err && err != UBI_IO_BITFLIPS) {
ubi_err("unable to read EC header! PEB:%i err:%i",
pnum, err);
ret = err > 0 ? UBI_BAD_FASTMAP : err;
goto out;
} else if (ret == UBI_IO_BITFLIPS)
scrub = 1;
if (be32_to_cpu(ech->image_seq) != ubi->image_seq) {
ubi_err("bad image seq: 0x%x, expected: 0x%x",
be32_to_cpu(ech->image_seq), ubi->image_seq);
err = UBI_BAD_FASTMAP;
goto out;
}
err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
if (err == UBI_IO_FF || err == UBI_IO_FF_BITFLIPS) {
unsigned long long ec = be64_to_cpu(ech->ec);
unmap_peb(ai, pnum);
dbg_bld("Adding PEB to free: %i", pnum);
if (err == UBI_IO_FF_BITFLIPS)
add_aeb(ai, free, pnum, ec, 1);
else
add_aeb(ai, free, pnum, ec, 0);
continue;
} else if (err == 0 || err == UBI_IO_BITFLIPS) {
dbg_bld("Found non empty PEB:%i in pool", pnum);
if (err == UBI_IO_BITFLIPS)
scrub = 1;
found_orphan = 0;
list_for_each_entry(tmp_aeb, eba_orphans, u.list) {
if (tmp_aeb->pnum == pnum) {
found_orphan = 1;
break;
}
}
if (found_orphan) {
kmem_cache_free(ai->aeb_slab_cache, tmp_aeb);
list_del(&tmp_aeb->u.list);
}
new_aeb = kmem_cache_alloc(ai->aeb_slab_cache,
GFP_KERNEL);
if (!new_aeb) {
ret = -ENOMEM;
goto out;
}
new_aeb->ec = be64_to_cpu(ech->ec);
new_aeb->pnum = pnum;
new_aeb->lnum = be32_to_cpu(vh->lnum);
new_aeb->sqnum = be64_to_cpu(vh->sqnum);
new_aeb->copy_flag = vh->copy_flag;
new_aeb->scrub = scrub;
if (*max_sqnum < new_aeb->sqnum)
*max_sqnum = new_aeb->sqnum;
err = process_pool_aeb(ubi, ai, vh, new_aeb);
if (err) {
ret = err > 0 ? UBI_BAD_FASTMAP : err;
goto out;
}
} else {
/* We are paranoid and fall back to scanning mode */
ubi_err("fastmap pool PEBs contains damaged PEBs!");
ret = err > 0 ? UBI_BAD_FASTMAP : err;
goto out;
}
}
out:
ubi_free_vid_hdr(ubi, vh);
kfree(ech);
return ret;
}
/**
* count_fastmap_pebs - Counts the PEBs found by fastmap.
* @ai: The UBI attach info object
*/
static int count_fastmap_pebs(struct ubi_attach_info *ai)
{
struct ubi_ainf_peb *aeb;
struct ubi_ainf_volume *av;
struct rb_node *rb1, *rb2;
int n = 0;
list_for_each_entry(aeb, &ai->erase, u.list)
n++;
list_for_each_entry(aeb, &ai->free, u.list)
n++;
ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
n++;
return n;
}
/**
* ubi_attach_fastmap - creates ubi_attach_info from a fastmap.
* @ubi: UBI device object
* @ai: UBI attach info object
* @fm: the fastmap to be attached
*
* Returns 0 on success, UBI_BAD_FASTMAP if the found fastmap was unusable.
* < 0 indicates an internal error.
*/
static int ubi_attach_fastmap(struct ubi_device *ubi,
struct ubi_attach_info *ai,
struct ubi_fastmap_layout *fm)
{
struct list_head used, eba_orphans, free;
struct ubi_ainf_volume *av;
struct ubi_ainf_peb *aeb, *tmp_aeb, *_tmp_aeb;
struct ubi_ec_hdr *ech;
struct ubi_fm_sb *fmsb;
struct ubi_fm_hdr *fmhdr;
struct ubi_fm_scan_pool *fmpl1, *fmpl2;
struct ubi_fm_ec *fmec;
struct ubi_fm_volhdr *fmvhdr;
struct ubi_fm_eba *fm_eba;
int ret, i, j, pool_size, wl_pool_size;
size_t fm_pos = 0, fm_size = ubi->fm_size;
unsigned long long max_sqnum = 0;
void *fm_raw = ubi->fm_buf;
INIT_LIST_HEAD(&used);
INIT_LIST_HEAD(&free);
INIT_LIST_HEAD(&eba_orphans);
INIT_LIST_HEAD(&ai->corr);
INIT_LIST_HEAD(&ai->free);
INIT_LIST_HEAD(&ai->erase);
INIT_LIST_HEAD(&ai->alien);
ai->volumes = RB_ROOT;
ai->min_ec = UBI_MAX_ERASECOUNTER;
ai->aeb_slab_cache = kmem_cache_create("ubi_ainf_peb_slab",
sizeof(struct ubi_ainf_peb),
0, 0, NULL);
if (!ai->aeb_slab_cache) {
ret = -ENOMEM;
goto fail;
}
fmsb = (struct ubi_fm_sb *)(fm_raw);
ai->max_sqnum = fmsb->sqnum;
fm_pos += sizeof(struct ubi_fm_sb);
if (fm_pos >= fm_size)
goto fail_bad;
fmhdr = (struct ubi_fm_hdr *)(fm_raw + fm_pos);
fm_pos += sizeof(*fmhdr);
if (fm_pos >= fm_size)
goto fail_bad;
if (be32_to_cpu(fmhdr->magic) != UBI_FM_HDR_MAGIC) {
ubi_err("bad fastmap header magic: 0x%x, expected: 0x%x",
be32_to_cpu(fmhdr->magic), UBI_FM_HDR_MAGIC);
goto fail_bad;
}
fmpl1 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos);
fm_pos += sizeof(*fmpl1);
if (fm_pos >= fm_size)
goto fail_bad;
if (be32_to_cpu(fmpl1->magic) != UBI_FM_POOL_MAGIC) {
ubi_err("bad fastmap pool magic: 0x%x, expected: 0x%x",
be32_to_cpu(fmpl1->magic), UBI_FM_POOL_MAGIC);
goto fail_bad;
}
fmpl2 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos);
fm_pos += sizeof(*fmpl2);
if (fm_pos >= fm_size)
goto fail_bad;
if (be32_to_cpu(fmpl2->magic) != UBI_FM_POOL_MAGIC) {
ubi_err("bad fastmap pool magic: 0x%x, expected: 0x%x",
be32_to_cpu(fmpl2->magic), UBI_FM_POOL_MAGIC);
goto fail_bad;
}
pool_size = be16_to_cpu(fmpl1->size);
wl_pool_size = be16_to_cpu(fmpl2->size);
fm->max_pool_size = be16_to_cpu(fmpl1->max_size);
fm->max_wl_pool_size = be16_to_cpu(fmpl2->max_size);
if (pool_size > UBI_FM_MAX_POOL_SIZE || pool_size < 0) {
ubi_err("bad pool size: %i", pool_size);
goto fail_bad;
}
if (wl_pool_size > UBI_FM_MAX_POOL_SIZE || wl_pool_size < 0) {
ubi_err("bad WL pool size: %i", wl_pool_size);
goto fail_bad;
}
if (fm->max_pool_size > UBI_FM_MAX_POOL_SIZE ||
fm->max_pool_size < 0) {
ubi_err("bad maximal pool size: %i", fm->max_pool_size);
goto fail_bad;
}
if (fm->max_wl_pool_size > UBI_FM_MAX_POOL_SIZE ||
fm->max_wl_pool_size < 0) {
ubi_err("bad maximal WL pool size: %i", fm->max_wl_pool_size);
goto fail_bad;
}
/* read EC values from free list */
for (i = 0; i < be32_to_cpu(fmhdr->free_peb_count); i++) {
fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos);
fm_pos += sizeof(*fmec);
if (fm_pos >= fm_size)
goto fail_bad;
add_aeb(ai, &ai->free, be32_to_cpu(fmec->pnum),
be32_to_cpu(fmec->ec), 0);
}
/* read EC values from used list */
for (i = 0; i < be32_to_cpu(fmhdr->used_peb_count); i++) {
fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos);
fm_pos += sizeof(*fmec);
if (fm_pos >= fm_size)
goto fail_bad;
add_aeb(ai, &used, be32_to_cpu(fmec->pnum),
be32_to_cpu(fmec->ec), 0);
}
/* read EC values from scrub list */
for (i = 0; i < be32_to_cpu(fmhdr->scrub_peb_count); i++) {
fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos);
fm_pos += sizeof(*fmec);
if (fm_pos >= fm_size)
goto fail_bad;
add_aeb(ai, &used, be32_to_cpu(fmec->pnum),
be32_to_cpu(fmec->ec), 1);
}
/* read EC values from erase list */
for (i = 0; i < be32_to_cpu(fmhdr->erase_peb_count); i++) {
fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos);
fm_pos += sizeof(*fmec);
if (fm_pos >= fm_size)
goto fail_bad;
add_aeb(ai, &ai->erase, be32_to_cpu(fmec->pnum),
be32_to_cpu(fmec->ec), 1);
}
ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
ai->bad_peb_count = be32_to_cpu(fmhdr->bad_peb_count);
/* Iterate over all volumes and read their EBA table */
for (i = 0; i < be32_to_cpu(fmhdr->vol_count); i++) {
fmvhdr = (struct ubi_fm_volhdr *)(fm_raw + fm_pos);
fm_pos += sizeof(*fmvhdr);
if (fm_pos >= fm_size)
goto fail_bad;
if (be32_to_cpu(fmvhdr->magic) != UBI_FM_VHDR_MAGIC) {
ubi_err("bad fastmap vol header magic: 0x%x, " \
"expected: 0x%x",
be32_to_cpu(fmvhdr->magic), UBI_FM_VHDR_MAGIC);
goto fail_bad;
}
av = add_vol(ai, be32_to_cpu(fmvhdr->vol_id),
be32_to_cpu(fmvhdr->used_ebs),
be32_to_cpu(fmvhdr->data_pad),
fmvhdr->vol_type,
be32_to_cpu(fmvhdr->last_eb_bytes));
if (!av)
goto fail_bad;
ai->vols_found++;
if (ai->highest_vol_id < be32_to_cpu(fmvhdr->vol_id))
ai->highest_vol_id = be32_to_cpu(fmvhdr->vol_id);
fm_eba = (struct ubi_fm_eba *)(fm_raw + fm_pos);
fm_pos += sizeof(*fm_eba);
fm_pos += (sizeof(__be32) * be32_to_cpu(fm_eba->reserved_pebs));
if (fm_pos >= fm_size)
goto fail_bad;
if (be32_to_cpu(fm_eba->magic) != UBI_FM_EBA_MAGIC) {
ubi_err("bad fastmap EBA header magic: 0x%x, " \
"expected: 0x%x",
be32_to_cpu(fm_eba->magic), UBI_FM_EBA_MAGIC);
goto fail_bad;
}
for (j = 0; j < be32_to_cpu(fm_eba->reserved_pebs); j++) {
int pnum = be32_to_cpu(fm_eba->pnum[j]);
if ((int)be32_to_cpu(fm_eba->pnum[j]) < 0)
continue;
aeb = NULL;
list_for_each_entry(tmp_aeb, &used, u.list) {
if (tmp_aeb->pnum == pnum)
aeb = tmp_aeb;
}
/* This can happen if a PEB is already in an EBA known
* by this fastmap but the PEB itself is not in the used
* list.
* In this case the PEB can be within the fastmap pool
* or while writing the fastmap it was in the protection
* queue.
*/
if (!aeb) {
aeb = kmem_cache_alloc(ai->aeb_slab_cache,
GFP_KERNEL);
if (!aeb) {
ret = -ENOMEM;
goto fail;
}
aeb->lnum = j;
aeb->pnum = be32_to_cpu(fm_eba->pnum[j]);
aeb->ec = -1;
aeb->scrub = aeb->copy_flag = aeb->sqnum = 0;
list_add_tail(&aeb->u.list, &eba_orphans);
continue;
}
aeb->lnum = j;
if (av->highest_lnum <= aeb->lnum)
av->highest_lnum = aeb->lnum;
assign_aeb_to_av(ai, aeb, av);
dbg_bld("inserting PEB:%i (LEB %i) to vol %i",
aeb->pnum, aeb->lnum, av->vol_id);
}
ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
if (!ech) {
ret = -ENOMEM;
goto fail;
}
list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &eba_orphans,
u.list) {
int err;
if (ubi_io_is_bad(ubi, tmp_aeb->pnum)) {
ubi_err("bad PEB in fastmap EBA orphan list");
ret = UBI_BAD_FASTMAP;
kfree(ech);
goto fail;
}
err = ubi_io_read_ec_hdr(ubi, tmp_aeb->pnum, ech, 0);
if (err && err != UBI_IO_BITFLIPS) {
ubi_err("unable to read EC header! PEB:%i " \
"err:%i", tmp_aeb->pnum, err);
ret = err > 0 ? UBI_BAD_FASTMAP : err;
kfree(ech);
goto fail;
} else if (err == UBI_IO_BITFLIPS)
tmp_aeb->scrub = 1;
tmp_aeb->ec = be64_to_cpu(ech->ec);
assign_aeb_to_av(ai, tmp_aeb, av);
}
kfree(ech);
}
ret = scan_pool(ubi, ai, fmpl1->pebs, pool_size, &max_sqnum,
&eba_orphans, &free);
if (ret)
goto fail;
ret = scan_pool(ubi, ai, fmpl2->pebs, wl_pool_size, &max_sqnum,
&eba_orphans, &free);
if (ret)
goto fail;
if (max_sqnum > ai->max_sqnum)
ai->max_sqnum = max_sqnum;
list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &free, u.list)
list_move_tail(&tmp_aeb->u.list, &ai->free);
/*
* If fastmap is leaking PEBs (must not happen), raise a
* fat warning and fall back to scanning mode.
* We do this here because in ubi_wl_init() it's too late
* and we cannot fall back to scanning.
*/
if (WARN_ON(count_fastmap_pebs(ai) != ubi->peb_count -
ai->bad_peb_count - fm->used_blocks))
goto fail_bad;
return 0;
fail_bad:
ret = UBI_BAD_FASTMAP;
fail:
return ret;
}
/**
* ubi_scan_fastmap - scan the fastmap.
* @ubi: UBI device object
* @ai: UBI attach info to be filled
* @fm_anchor: The fastmap starts at this PEB
*
* Returns 0 on success, UBI_NO_FASTMAP if no fastmap was found,
* UBI_BAD_FASTMAP if one was found but is not usable.
* < 0 indicates an internal error.
*/
int ubi_scan_fastmap(struct ubi_device *ubi, struct ubi_attach_info *ai,
int fm_anchor)
{
struct ubi_fm_sb *fmsb, *fmsb2;
struct ubi_vid_hdr *vh;
struct ubi_ec_hdr *ech;
struct ubi_fastmap_layout *fm;
int i, used_blocks, pnum, ret = 0;
size_t fm_size;
__be32 crc, tmp_crc;
unsigned long long sqnum = 0;
mutex_lock(&ubi->fm_mutex);
memset(ubi->fm_buf, 0, ubi->fm_size);
fmsb = kmalloc(sizeof(*fmsb), GFP_KERNEL);
if (!fmsb) {
ret = -ENOMEM;
goto out;
}
fm = kzalloc(sizeof(*fm), GFP_KERNEL);
if (!fm) {
ret = -ENOMEM;
kfree(fmsb);
goto out;
}
ret = ubi_io_read(ubi, fmsb, fm_anchor, ubi->leb_start, sizeof(*fmsb));
if (ret && ret != UBI_IO_BITFLIPS)
goto free_fm_sb;
else if (ret == UBI_IO_BITFLIPS)
fm->to_be_tortured[0] = 1;
if (be32_to_cpu(fmsb->magic) != UBI_FM_SB_MAGIC) {
ubi_err("bad super block magic: 0x%x, expected: 0x%x",
be32_to_cpu(fmsb->magic), UBI_FM_SB_MAGIC);
ret = UBI_BAD_FASTMAP;
goto free_fm_sb;
}
if (fmsb->version != UBI_FM_FMT_VERSION) {
ubi_err("bad fastmap version: %i, expected: %i",
fmsb->version, UBI_FM_FMT_VERSION);
ret = UBI_BAD_FASTMAP;
goto free_fm_sb;
}
used_blocks = be32_to_cpu(fmsb->used_blocks);
if (used_blocks > UBI_FM_MAX_BLOCKS || used_blocks < 1) {
ubi_err("number of fastmap blocks is invalid: %i", used_blocks);
ret = UBI_BAD_FASTMAP;
goto free_fm_sb;
}
fm_size = ubi->leb_size * used_blocks;
if (fm_size != ubi->fm_size) {
ubi_err("bad fastmap size: %zi, expected: %zi", fm_size,
ubi->fm_size);
ret = UBI_BAD_FASTMAP;
goto free_fm_sb;
}
ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
if (!ech) {
ret = -ENOMEM;
goto free_fm_sb;
}
vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
if (!vh) {
ret = -ENOMEM;
goto free_hdr;
}
for (i = 0; i < used_blocks; i++) {
pnum = be32_to_cpu(fmsb->block_loc[i]);
if (ubi_io_is_bad(ubi, pnum)) {
ret = UBI_BAD_FASTMAP;
goto free_hdr;
}
ret = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
if (ret && ret != UBI_IO_BITFLIPS) {
ubi_err("unable to read fastmap block# %i EC (PEB: %i)",
i, pnum);
if (ret > 0)
ret = UBI_BAD_FASTMAP;
goto free_hdr;
} else if (ret == UBI_IO_BITFLIPS)
fm->to_be_tortured[i] = 1;
if (!ubi->image_seq)
ubi->image_seq = be32_to_cpu(ech->image_seq);
if (be32_to_cpu(ech->image_seq) != ubi->image_seq) {
ret = UBI_BAD_FASTMAP;
goto free_hdr;
}
ret = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
if (ret && ret != UBI_IO_BITFLIPS) {
ubi_err("unable to read fastmap block# %i (PEB: %i)",
i, pnum);
goto free_hdr;
}
if (i == 0) {
if (be32_to_cpu(vh->vol_id) != UBI_FM_SB_VOLUME_ID) {
ubi_err("bad fastmap anchor vol_id: 0x%x," \
" expected: 0x%x",
be32_to_cpu(vh->vol_id),
UBI_FM_SB_VOLUME_ID);
ret = UBI_BAD_FASTMAP;
goto free_hdr;
}
} else {
if (be32_to_cpu(vh->vol_id) != UBI_FM_DATA_VOLUME_ID) {
ubi_err("bad fastmap data vol_id: 0x%x," \
" expected: 0x%x",
be32_to_cpu(vh->vol_id),
UBI_FM_DATA_VOLUME_ID);
ret = UBI_BAD_FASTMAP;
goto free_hdr;
}
}
if (sqnum < be64_to_cpu(vh->sqnum))
sqnum = be64_to_cpu(vh->sqnum);
ret = ubi_io_read(ubi, ubi->fm_buf + (ubi->leb_size * i), pnum,
ubi->leb_start, ubi->leb_size);
if (ret && ret != UBI_IO_BITFLIPS) {
ubi_err("unable to read fastmap block# %i (PEB: %i, " \
"err: %i)", i, pnum, ret);
goto free_hdr;
}
}
kfree(fmsb);
fmsb = NULL;
fmsb2 = (struct ubi_fm_sb *)(ubi->fm_buf);
tmp_crc = be32_to_cpu(fmsb2->data_crc);
fmsb2->data_crc = 0;
crc = crc32(UBI_CRC32_INIT, ubi->fm_buf, fm_size);
if (crc != tmp_crc) {
ubi_err("fastmap data CRC is invalid");
ubi_err("CRC should be: 0x%x, calc: 0x%x", tmp_crc, crc);
ret = UBI_BAD_FASTMAP;
goto free_hdr;
}
fmsb2->sqnum = sqnum;
fm->used_blocks = used_blocks;
ret = ubi_attach_fastmap(ubi, ai, fm);
if (ret) {
if (ret > 0)
ret = UBI_BAD_FASTMAP;
goto free_hdr;
}
for (i = 0; i < used_blocks; i++) {
struct ubi_wl_entry *e;
e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
if (!e) {
while (i--)
kfree(fm->e[i]);
ret = -ENOMEM;
goto free_hdr;
}
e->pnum = be32_to_cpu(fmsb2->block_loc[i]);
e->ec = be32_to_cpu(fmsb2->block_ec[i]);
fm->e[i] = e;
}
ubi->fm = fm;
ubi->fm_pool.max_size = ubi->fm->max_pool_size;
ubi->fm_wl_pool.max_size = ubi->fm->max_wl_pool_size;
ubi_msg("attached by fastmap");
ubi_msg("fastmap pool size: %d", ubi->fm_pool.max_size);
ubi_msg("fastmap WL pool size: %d", ubi->fm_wl_pool.max_size);
ubi->fm_disabled = 0;
ubi_free_vid_hdr(ubi, vh);
kfree(ech);
out:
mutex_unlock(&ubi->fm_mutex);
if (ret == UBI_BAD_FASTMAP)
ubi_err("Attach by fastmap failed, doing a full scan!");
return ret;
free_hdr:
ubi_free_vid_hdr(ubi, vh);
kfree(ech);
free_fm_sb:
kfree(fmsb);
kfree(fm);
goto out;
}
/**
* ubi_write_fastmap - writes a fastmap.
* @ubi: UBI device object
* @new_fm: the to be written fastmap
*
* Returns 0 on success, < 0 indicates an internal error.
*/
static int ubi_write_fastmap(struct ubi_device *ubi,
struct ubi_fastmap_layout *new_fm)
{
size_t fm_pos = 0;
void *fm_raw;
struct ubi_fm_sb *fmsb;
struct ubi_fm_hdr *fmh;
struct ubi_fm_scan_pool *fmpl1, *fmpl2;
struct ubi_fm_ec *fec;
struct ubi_fm_volhdr *fvh;
struct ubi_fm_eba *feba;
struct rb_node *node;
struct ubi_wl_entry *wl_e;
struct ubi_volume *vol;
struct ubi_vid_hdr *avhdr, *dvhdr;
struct ubi_work *ubi_wrk;
int ret, i, j, free_peb_count, used_peb_count, vol_count;
int scrub_peb_count, erase_peb_count;
fm_raw = ubi->fm_buf;
memset(ubi->fm_buf, 0, ubi->fm_size);
avhdr = new_fm_vhdr(ubi, UBI_FM_SB_VOLUME_ID);
if (!avhdr) {
ret = -ENOMEM;
goto out;
}
dvhdr = new_fm_vhdr(ubi, UBI_FM_DATA_VOLUME_ID);
if (!dvhdr) {
ret = -ENOMEM;
goto out_kfree;
}
spin_lock(&ubi->volumes_lock);
spin_lock(&ubi->wl_lock);
fmsb = (struct ubi_fm_sb *)fm_raw;
fm_pos += sizeof(*fmsb);
ubi_assert(fm_pos <= ubi->fm_size);
fmh = (struct ubi_fm_hdr *)(fm_raw + fm_pos);
fm_pos += sizeof(*fmh);
ubi_assert(fm_pos <= ubi->fm_size);
fmsb->magic = cpu_to_be32(UBI_FM_SB_MAGIC);
fmsb->version = UBI_FM_FMT_VERSION;
fmsb->used_blocks = cpu_to_be32(new_fm->used_blocks);
/* the max sqnum will be filled in while *reading* the fastmap */
fmsb->sqnum = 0;
fmh->magic = cpu_to_be32(UBI_FM_HDR_MAGIC);
free_peb_count = 0;
used_peb_count = 0;
scrub_peb_count = 0;
erase_peb_count = 0;
vol_count = 0;
fmpl1 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos);
fm_pos += sizeof(*fmpl1);
fmpl1->magic = cpu_to_be32(UBI_FM_POOL_MAGIC);
fmpl1->size = cpu_to_be16(ubi->fm_pool.size);
fmpl1->max_size = cpu_to_be16(ubi->fm_pool.max_size);
for (i = 0; i < ubi->fm_pool.size; i++)
fmpl1->pebs[i] = cpu_to_be32(ubi->fm_pool.pebs[i]);
fmpl2 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos);
fm_pos += sizeof(*fmpl2);
fmpl2->magic = cpu_to_be32(UBI_FM_POOL_MAGIC);
fmpl2->size = cpu_to_be16(ubi->fm_wl_pool.size);
fmpl2->max_size = cpu_to_be16(ubi->fm_wl_pool.max_size);
for (i = 0; i < ubi->fm_wl_pool.size; i++)
fmpl2->pebs[i] = cpu_to_be32(ubi->fm_wl_pool.pebs[i]);
for (node = rb_first(&ubi->free); node; node = rb_next(node)) {
wl_e = rb_entry(node, struct ubi_wl_entry, u.rb);
fec = (struct ubi_fm_ec *)(fm_raw + fm_pos);
fec->pnum = cpu_to_be32(wl_e->pnum);
fec->ec = cpu_to_be32(wl_e->ec);
free_peb_count++;
fm_pos += sizeof(*fec);
ubi_assert(fm_pos <= ubi->fm_size);
}
fmh->free_peb_count = cpu_to_be32(free_peb_count);
for (node = rb_first(&ubi->used); node; node = rb_next(node)) {
wl_e = rb_entry(node, struct ubi_wl_entry, u.rb);
fec = (struct ubi_fm_ec *)(fm_raw + fm_pos);
fec->pnum = cpu_to_be32(wl_e->pnum);
fec->ec = cpu_to_be32(wl_e->ec);
used_peb_count++;
fm_pos += sizeof(*fec);
ubi_assert(fm_pos <= ubi->fm_size);
}
fmh->used_peb_count = cpu_to_be32(used_peb_count);
for (node = rb_first(&ubi->scrub); node; node = rb_next(node)) {
wl_e = rb_entry(node, struct ubi_wl_entry, u.rb);
fec = (struct ubi_fm_ec *)(fm_raw + fm_pos);
fec->pnum = cpu_to_be32(wl_e->pnum);
fec->ec = cpu_to_be32(wl_e->ec);
scrub_peb_count++;
fm_pos += sizeof(*fec);
ubi_assert(fm_pos <= ubi->fm_size);
}
fmh->scrub_peb_count = cpu_to_be32(scrub_peb_count);
list_for_each_entry(ubi_wrk, &ubi->works, list) {
if (ubi_is_erase_work(ubi_wrk)) {
wl_e = ubi_wrk->e;
ubi_assert(wl_e);
fec = (struct ubi_fm_ec *)(fm_raw + fm_pos);
fec->pnum = cpu_to_be32(wl_e->pnum);
fec->ec = cpu_to_be32(wl_e->ec);
erase_peb_count++;
fm_pos += sizeof(*fec);
ubi_assert(fm_pos <= ubi->fm_size);
}
}
fmh->erase_peb_count = cpu_to_be32(erase_peb_count);
for (i = 0; i < UBI_MAX_VOLUMES + UBI_INT_VOL_COUNT; i++) {
vol = ubi->volumes[i];
if (!vol)
continue;
vol_count++;
fvh = (struct ubi_fm_volhdr *)(fm_raw + fm_pos);
fm_pos += sizeof(*fvh);
ubi_assert(fm_pos <= ubi->fm_size);
fvh->magic = cpu_to_be32(UBI_FM_VHDR_MAGIC);
fvh->vol_id = cpu_to_be32(vol->vol_id);
fvh->vol_type = vol->vol_type;
fvh->used_ebs = cpu_to_be32(vol->used_ebs);
fvh->data_pad = cpu_to_be32(vol->data_pad);
fvh->last_eb_bytes = cpu_to_be32(vol->last_eb_bytes);
ubi_assert(vol->vol_type == UBI_DYNAMIC_VOLUME ||
vol->vol_type == UBI_STATIC_VOLUME);
feba = (struct ubi_fm_eba *)(fm_raw + fm_pos);
fm_pos += sizeof(*feba) + (sizeof(__be32) * vol->reserved_pebs);
ubi_assert(fm_pos <= ubi->fm_size);
for (j = 0; j < vol->reserved_pebs; j++)
feba->pnum[j] = cpu_to_be32(vol->eba_tbl[j]);
feba->reserved_pebs = cpu_to_be32(j);
feba->magic = cpu_to_be32(UBI_FM_EBA_MAGIC);
}
fmh->vol_count = cpu_to_be32(vol_count);
fmh->bad_peb_count = cpu_to_be32(ubi->bad_peb_count);
avhdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
avhdr->lnum = 0;
spin_unlock(&ubi->wl_lock);
spin_unlock(&ubi->volumes_lock);
dbg_bld("writing fastmap SB to PEB %i", new_fm->e[0]->pnum);
ret = ubi_io_write_vid_hdr(ubi, new_fm->e[0]->pnum, avhdr);
if (ret) {
ubi_err("unable to write vid_hdr to fastmap SB!");
goto out_kfree;
}
for (i = 0; i < new_fm->used_blocks; i++) {
fmsb->block_loc[i] = cpu_to_be32(new_fm->e[i]->pnum);
fmsb->block_ec[i] = cpu_to_be32(new_fm->e[i]->ec);
}
fmsb->data_crc = 0;
fmsb->data_crc = cpu_to_be32(crc32(UBI_CRC32_INIT, fm_raw,
ubi->fm_size));
for (i = 1; i < new_fm->used_blocks; i++) {
dvhdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
dvhdr->lnum = cpu_to_be32(i);
dbg_bld("writing fastmap data to PEB %i sqnum %llu",
new_fm->e[i]->pnum, be64_to_cpu(dvhdr->sqnum));
ret = ubi_io_write_vid_hdr(ubi, new_fm->e[i]->pnum, dvhdr);
if (ret) {
ubi_err("unable to write vid_hdr to PEB %i!",
new_fm->e[i]->pnum);
goto out_kfree;
}
}
for (i = 0; i < new_fm->used_blocks; i++) {
ret = ubi_io_write(ubi, fm_raw + (i * ubi->leb_size),
new_fm->e[i]->pnum, ubi->leb_start, ubi->leb_size);
if (ret) {
ubi_err("unable to write fastmap to PEB %i!",
new_fm->e[i]->pnum);
goto out_kfree;
}
}
ubi_assert(new_fm);
ubi->fm = new_fm;
dbg_bld("fastmap written!");
out_kfree:
ubi_free_vid_hdr(ubi, avhdr);
ubi_free_vid_hdr(ubi, dvhdr);
out:
return ret;
}
/**
* erase_block - Manually erase a PEB.
* @ubi: UBI device object
* @pnum: PEB to be erased
*
* Returns the new EC value on success, < 0 indicates an internal error.
*/
static int erase_block(struct ubi_device *ubi, int pnum)
{
int ret;
struct ubi_ec_hdr *ec_hdr;
long long ec;
ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
if (!ec_hdr)
return -ENOMEM;
ret = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
if (ret < 0)
goto out;
else if (ret && ret != UBI_IO_BITFLIPS) {
ret = -EINVAL;
goto out;
}
ret = ubi_io_sync_erase(ubi, pnum, 0);
if (ret < 0)
goto out;
ec = be64_to_cpu(ec_hdr->ec);
ec += ret;
if (ec > UBI_MAX_ERASECOUNTER) {
ret = -EINVAL;
goto out;
}
ec_hdr->ec = cpu_to_be64(ec);
ret = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
if (ret < 0)
goto out;
ret = ec;
out:
kfree(ec_hdr);
return ret;
}
/**
* invalidate_fastmap - destroys a fastmap.
* @ubi: UBI device object
* @fm: the fastmap to be destroyed
*
* Returns 0 on success, < 0 indicates an internal error.
*/
static int invalidate_fastmap(struct ubi_device *ubi,
struct ubi_fastmap_layout *fm)
{
int ret, i;
struct ubi_vid_hdr *vh;
ret = erase_block(ubi, fm->e[0]->pnum);
if (ret < 0)
return ret;
vh = new_fm_vhdr(ubi, UBI_FM_SB_VOLUME_ID);
if (!vh)
return -ENOMEM;
/* deleting the current fastmap SB is not enough, an old SB may exist,
* so create a (corrupted) SB such that fastmap will find it and fall
* back to scanning mode in any case */
vh->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
ret = ubi_io_write_vid_hdr(ubi, fm->e[0]->pnum, vh);
for (i = 0; i < fm->used_blocks; i++)
ubi_wl_put_fm_peb(ubi, fm->e[i], i, fm->to_be_tortured[i]);
return ret;
}
/**
* ubi_update_fastmap - will be called by UBI if a volume changes or
* a fastmap pool becomes full.
* @ubi: UBI device object
*
* Returns 0 on success, < 0 indicates an internal error.
*/
int ubi_update_fastmap(struct ubi_device *ubi)
{
int ret, i;
struct ubi_fastmap_layout *new_fm, *old_fm;
struct ubi_wl_entry *tmp_e;
mutex_lock(&ubi->fm_mutex);
ubi_refill_pools(ubi);
if (ubi->ro_mode || ubi->fm_disabled) {
mutex_unlock(&ubi->fm_mutex);
return 0;
}
ret = ubi_ensure_anchor_pebs(ubi);
if (ret) {
mutex_unlock(&ubi->fm_mutex);
return ret;
}
new_fm = kzalloc(sizeof(*new_fm), GFP_KERNEL);
if (!new_fm) {
mutex_unlock(&ubi->fm_mutex);
return -ENOMEM;
}
new_fm->used_blocks = ubi->fm_size / ubi->leb_size;
for (i = 0; i < new_fm->used_blocks; i++) {
new_fm->e[i] = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
if (!new_fm->e[i]) {
while (i--)
kfree(new_fm->e[i]);
kfree(new_fm);
mutex_unlock(&ubi->fm_mutex);
return -ENOMEM;
}
}
old_fm = ubi->fm;
ubi->fm = NULL;
if (new_fm->used_blocks > UBI_FM_MAX_BLOCKS) {
ubi_err("fastmap too large");
ret = -ENOSPC;
goto err;
}
for (i = 1; i < new_fm->used_blocks; i++) {
spin_lock(&ubi->wl_lock);
tmp_e = ubi_wl_get_fm_peb(ubi, 0);
spin_unlock(&ubi->wl_lock);
if (!tmp_e && !old_fm) {
int j;
ubi_err("could not get any free erase block");
for (j = 1; j < i; j++)
ubi_wl_put_fm_peb(ubi, new_fm->e[j], j, 0);
ret = -ENOSPC;
goto err;
} else if (!tmp_e && old_fm) {
ret = erase_block(ubi, old_fm->e[i]->pnum);
if (ret < 0) {
int j;
for (j = 1; j < i; j++)
ubi_wl_put_fm_peb(ubi, new_fm->e[j],
j, 0);
ubi_err("could not erase old fastmap PEB");
goto err;
}
new_fm->e[i]->pnum = old_fm->e[i]->pnum;
new_fm->e[i]->ec = old_fm->e[i]->ec;
} else {
new_fm->e[i]->pnum = tmp_e->pnum;
new_fm->e[i]->ec = tmp_e->ec;
if (old_fm)
ubi_wl_put_fm_peb(ubi, old_fm->e[i], i,
old_fm->to_be_tortured[i]);
}
}
spin_lock(&ubi->wl_lock);
tmp_e = ubi_wl_get_fm_peb(ubi, 1);
spin_unlock(&ubi->wl_lock);
if (old_fm) {
/* no fresh anchor PEB was found, reuse the old one */
if (!tmp_e) {
ret = erase_block(ubi, old_fm->e[0]->pnum);
if (ret < 0) {
int i;
ubi_err("could not erase old anchor PEB");
for (i = 1; i < new_fm->used_blocks; i++)
ubi_wl_put_fm_peb(ubi, new_fm->e[i],
i, 0);
goto err;
}
new_fm->e[0]->pnum = old_fm->e[0]->pnum;
new_fm->e[0]->ec = ret;
} else {
/* we've got a new anchor PEB, return the old one */
ubi_wl_put_fm_peb(ubi, old_fm->e[0], 0,
old_fm->to_be_tortured[0]);
new_fm->e[0]->pnum = tmp_e->pnum;
new_fm->e[0]->ec = tmp_e->ec;
}
} else {
if (!tmp_e) {
int i;
ubi_err("could not find any anchor PEB");
for (i = 1; i < new_fm->used_blocks; i++)
ubi_wl_put_fm_peb(ubi, new_fm->e[i], i, 0);
ret = -ENOSPC;
goto err;
}
new_fm->e[0]->pnum = tmp_e->pnum;
new_fm->e[0]->ec = tmp_e->ec;
}
down_write(&ubi->work_sem);
down_write(&ubi->fm_sem);
ret = ubi_write_fastmap(ubi, new_fm);
up_write(&ubi->fm_sem);
up_write(&ubi->work_sem);
if (ret)
goto err;
out_unlock:
mutex_unlock(&ubi->fm_mutex);
kfree(old_fm);
return ret;
err:
kfree(new_fm);
ubi_warn("Unable to write new fastmap, err=%i", ret);
ret = 0;
if (old_fm) {
ret = invalidate_fastmap(ubi, old_fm);
if (ret < 0)
ubi_err("Unable to invalidiate current fastmap!");
else if (ret)
ret = 0;
}
goto out_unlock;
}