blob: 5163d1ff2f1bd365826c4b391859af045dfe96a0 [file] [log] [blame]
#ifndef __ASM_SH_BITOPS_H
#define __ASM_SH_BITOPS_H
#ifdef __KERNEL__
#include <asm/system.h>
/* For __swab32 */
#include <asm/byteorder.h>
static __inline__ void set_bit(int nr, volatile void * addr)
{
int mask;
volatile unsigned int *a = addr;
unsigned long flags;
a += nr >> 5;
mask = 1 << (nr & 0x1f);
local_irq_save(flags);
*a |= mask;
local_irq_restore(flags);
}
static __inline__ void __set_bit(int nr, volatile void * addr)
{
int mask;
volatile unsigned int *a = addr;
a += nr >> 5;
mask = 1 << (nr & 0x1f);
*a |= mask;
}
/*
* clear_bit() doesn't provide any barrier for the compiler.
*/
#define smp_mb__before_clear_bit() barrier()
#define smp_mb__after_clear_bit() barrier()
static __inline__ void clear_bit(int nr, volatile void * addr)
{
int mask;
volatile unsigned int *a = addr;
unsigned long flags;
a += nr >> 5;
mask = 1 << (nr & 0x1f);
local_irq_save(flags);
*a &= ~mask;
local_irq_restore(flags);
}
static __inline__ void __clear_bit(int nr, volatile void * addr)
{
int mask;
volatile unsigned int *a = addr;
a += nr >> 5;
mask = 1 << (nr & 0x1f);
*a &= ~mask;
}
static __inline__ void change_bit(int nr, volatile void * addr)
{
int mask;
volatile unsigned int *a = addr;
unsigned long flags;
a += nr >> 5;
mask = 1 << (nr & 0x1f);
local_irq_save(flags);
*a ^= mask;
local_irq_restore(flags);
}
static __inline__ void __change_bit(int nr, volatile void * addr)
{
int mask;
volatile unsigned int *a = addr;
a += nr >> 5;
mask = 1 << (nr & 0x1f);
*a ^= mask;
}
static __inline__ int test_and_set_bit(int nr, volatile void * addr)
{
int mask, retval;
volatile unsigned int *a = addr;
unsigned long flags;
a += nr >> 5;
mask = 1 << (nr & 0x1f);
local_irq_save(flags);
retval = (mask & *a) != 0;
*a |= mask;
local_irq_restore(flags);
return retval;
}
static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
{
int mask, retval;
volatile unsigned int *a = addr;
a += nr >> 5;
mask = 1 << (nr & 0x1f);
retval = (mask & *a) != 0;
*a |= mask;
return retval;
}
static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
{
int mask, retval;
volatile unsigned int *a = addr;
unsigned long flags;
a += nr >> 5;
mask = 1 << (nr & 0x1f);
local_irq_save(flags);
retval = (mask & *a) != 0;
*a &= ~mask;
local_irq_restore(flags);
return retval;
}
static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
{
int mask, retval;
volatile unsigned int *a = addr;
a += nr >> 5;
mask = 1 << (nr & 0x1f);
retval = (mask & *a) != 0;
*a &= ~mask;
return retval;
}
static __inline__ int test_and_change_bit(int nr, volatile void * addr)
{
int mask, retval;
volatile unsigned int *a = addr;
unsigned long flags;
a += nr >> 5;
mask = 1 << (nr & 0x1f);
local_irq_save(flags);
retval = (mask & *a) != 0;
*a ^= mask;
local_irq_restore(flags);
return retval;
}
static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
{
int mask, retval;
volatile unsigned int *a = addr;
a += nr >> 5;
mask = 1 << (nr & 0x1f);
retval = (mask & *a) != 0;
*a ^= mask;
return retval;
}
static __inline__ int test_bit(int nr, const volatile void *addr)
{
return 1UL & (((const volatile unsigned int *) addr)[nr >> 5] >> (nr & 31));
}
static __inline__ unsigned long ffz(unsigned long word)
{
unsigned long result;
__asm__("1:\n\t"
"shlr %1\n\t"
"bt/s 1b\n\t"
" add #1, %0"
: "=r" (result), "=r" (word)
: "0" (~0L), "1" (word)
: "t");
return result;
}
/**
* __ffs - find first bit in word.
* @word: The word to search
*
* Undefined if no bit exists, so code should check against 0 first.
*/
static __inline__ unsigned long __ffs(unsigned long word)
{
unsigned long result;
__asm__("1:\n\t"
"shlr %1\n\t"
"bf/s 1b\n\t"
" add #1, %0"
: "=r" (result), "=r" (word)
: "0" (~0L), "1" (word)
: "t");
return result;
}
/**
* find_next_bit - find the next set bit in a memory region
* @addr: The address to base the search on
* @offset: The bitnumber to start searching at
* @size: The maximum size to search
*/
static __inline__ unsigned long find_next_bit(const unsigned long *addr,
unsigned long size, unsigned long offset)
{
unsigned int *p = ((unsigned int *) addr) + (offset >> 5);
unsigned int result = offset & ~31UL;
unsigned int tmp;
if (offset >= size)
return size;
size -= result;
offset &= 31UL;
if (offset) {
tmp = *p++;
tmp &= ~0UL << offset;
if (size < 32)
goto found_first;
if (tmp)
goto found_middle;
size -= 32;
result += 32;
}
while (size >= 32) {
if ((tmp = *p++) != 0)
goto found_middle;
result += 32;
size -= 32;
}
if (!size)
return result;
tmp = *p;
found_first:
tmp &= ~0UL >> (32 - size);
if (tmp == 0UL) /* Are any bits set? */
return result + size; /* Nope. */
found_middle:
return result + __ffs(tmp);
}
/**
* find_first_bit - find the first set bit in a memory region
* @addr: The address to start the search at
* @size: The maximum size to search
*
* Returns the bit-number of the first set bit, not the number of the byte
* containing a bit.
*/
#define find_first_bit(addr, size) \
find_next_bit((addr), (size), 0)
static __inline__ int find_next_zero_bit(const unsigned long *addr, int size, int offset)
{
const unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
unsigned long result = offset & ~31UL;
unsigned long tmp;
if (offset >= size)
return size;
size -= result;
offset &= 31UL;
if (offset) {
tmp = *(p++);
tmp |= ~0UL >> (32-offset);
if (size < 32)
goto found_first;
if (~tmp)
goto found_middle;
size -= 32;
result += 32;
}
while (size & ~31UL) {
if (~(tmp = *(p++)))
goto found_middle;
result += 32;
size -= 32;
}
if (!size)
return result;
tmp = *p;
found_first:
tmp |= ~0UL << size;
found_middle:
return result + ffz(tmp);
}
#define find_first_zero_bit(addr, size) \
find_next_zero_bit((addr), (size), 0)
/*
* ffs: find first bit set. This is defined the same way as
* the libc and compiler builtin ffs routines, therefore
* differs in spirit from the above ffz (man ffs).
*/
#define ffs(x) generic_ffs(x)
/*
* hweightN: returns the hamming weight (i.e. the number
* of bits set) of a N-bit word
*/
#define hweight32(x) generic_hweight32(x)
#define hweight16(x) generic_hweight16(x)
#define hweight8(x) generic_hweight8(x)
/*
* Every architecture must define this function. It's the fastest
* way of searching a 140-bit bitmap where the first 100 bits are
* unlikely to be set. It's guaranteed that at least one of the 140
* bits is cleared.
*/
static inline int sched_find_first_bit(const unsigned long *b)
{
if (unlikely(b[0]))
return __ffs(b[0]);
if (unlikely(b[1]))
return __ffs(b[1]) + 32;
if (unlikely(b[2]))
return __ffs(b[2]) + 64;
if (b[3])
return __ffs(b[3]) + 96;
return __ffs(b[4]) + 128;
}
#ifdef __LITTLE_ENDIAN__
#define ext2_set_bit(nr, addr) test_and_set_bit((nr), (addr))
#define ext2_clear_bit(nr, addr) test_and_clear_bit((nr), (addr))
#define ext2_test_bit(nr, addr) test_bit((nr), (addr))
#define ext2_find_first_zero_bit(addr, size) find_first_zero_bit((addr), (size))
#define ext2_find_next_zero_bit(addr, size, offset) \
find_next_zero_bit((unsigned long *)(addr), (size), (offset))
#else
static __inline__ int ext2_set_bit(int nr, volatile void * addr)
{
int mask, retval;
unsigned long flags;
volatile unsigned char *ADDR = (unsigned char *) addr;
ADDR += nr >> 3;
mask = 1 << (nr & 0x07);
local_irq_save(flags);
retval = (mask & *ADDR) != 0;
*ADDR |= mask;
local_irq_restore(flags);
return retval;
}
static __inline__ int ext2_clear_bit(int nr, volatile void * addr)
{
int mask, retval;
unsigned long flags;
volatile unsigned char *ADDR = (unsigned char *) addr;
ADDR += nr >> 3;
mask = 1 << (nr & 0x07);
local_irq_save(flags);
retval = (mask & *ADDR) != 0;
*ADDR &= ~mask;
local_irq_restore(flags);
return retval;
}
static __inline__ int ext2_test_bit(int nr, const volatile void * addr)
{
int mask;
const volatile unsigned char *ADDR = (const unsigned char *) addr;
ADDR += nr >> 3;
mask = 1 << (nr & 0x07);
return ((mask & *ADDR) != 0);
}
#define ext2_find_first_zero_bit(addr, size) \
ext2_find_next_zero_bit((addr), (size), 0)
static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset)
{
unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
unsigned long result = offset & ~31UL;
unsigned long tmp;
if (offset >= size)
return size;
size -= result;
offset &= 31UL;
if(offset) {
/* We hold the little endian value in tmp, but then the
* shift is illegal. So we could keep a big endian value
* in tmp, like this:
*
* tmp = __swab32(*(p++));
* tmp |= ~0UL >> (32-offset);
*
* but this would decrease preformance, so we change the
* shift:
*/
tmp = *(p++);
tmp |= __swab32(~0UL >> (32-offset));
if(size < 32)
goto found_first;
if(~tmp)
goto found_middle;
size -= 32;
result += 32;
}
while(size & ~31UL) {
if(~(tmp = *(p++)))
goto found_middle;
result += 32;
size -= 32;
}
if(!size)
return result;
tmp = *p;
found_first:
/* tmp is little endian, so we would have to swab the shift,
* see above. But then we have to swab tmp below for ffz, so
* we might as well do this here.
*/
return result + ffz(__swab32(tmp) | (~0UL << size));
found_middle:
return result + ffz(__swab32(tmp));
}
#endif
#define ext2_set_bit_atomic(lock, nr, addr) \
({ \
int ret; \
spin_lock(lock); \
ret = ext2_set_bit((nr), (addr)); \
spin_unlock(lock); \
ret; \
})
#define ext2_clear_bit_atomic(lock, nr, addr) \
({ \
int ret; \
spin_lock(lock); \
ret = ext2_clear_bit((nr), (addr)); \
spin_unlock(lock); \
ret; \
})
/* Bitmap functions for the minix filesystem. */
#define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
#define minix_set_bit(nr,addr) set_bit(nr,addr)
#define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
#define minix_test_bit(nr,addr) test_bit(nr,addr)
#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
/*
* fls: find last bit set.
*/
#define fls(x) generic_fls(x)
#endif /* __KERNEL__ */
#endif /* __ASM_SH_BITOPS_H */