blob: 3f3cd97d3fdf6503ef7a1dda55ed16fb9d6f57e4 [file] [log] [blame]
/*
* Slab allocator functions that are independent of the allocator strategy
*
* (C) 2012 Christoph Lameter <cl@linux.com>
*/
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
#include <linux/compiler.h>
#include <linux/module.h>
#include <linux/cpu.h>
#include <linux/uaccess.h>
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
#include <linux/memcontrol.h>
#include "slab.h"
enum slab_state slab_state;
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
struct kmem_cache *kmem_cache;
#ifdef CONFIG_DEBUG_VM
static int kmem_cache_sanity_check(struct mem_cgroup *memcg, const char *name,
size_t size)
{
struct kmem_cache *s = NULL;
if (!name || in_interrupt() || size < sizeof(void *) ||
size > KMALLOC_MAX_SIZE) {
pr_err("kmem_cache_create(%s) integrity check failed\n", name);
return -EINVAL;
}
list_for_each_entry(s, &slab_caches, list) {
char tmp;
int res;
/*
* This happens when the module gets unloaded and doesn't
* destroy its slab cache and no-one else reuses the vmalloc
* area of the module. Print a warning.
*/
res = probe_kernel_address(s->name, tmp);
if (res) {
pr_err("Slab cache with size %d has lost its name\n",
s->object_size);
continue;
}
/*
* For simplicity, we won't check this in the list of memcg
* caches. We have control over memcg naming, and if there
* aren't duplicates in the global list, there won't be any
* duplicates in the memcg lists as well.
*/
if (!memcg && !strcmp(s->name, name)) {
pr_err("%s (%s): Cache name already exists.\n",
__func__, name);
dump_stack();
s = NULL;
return -EINVAL;
}
}
WARN_ON(strchr(name, ' ')); /* It confuses parsers */
return 0;
}
#else
static inline int kmem_cache_sanity_check(struct mem_cgroup *memcg,
const char *name, size_t size)
{
return 0;
}
#endif
#ifdef CONFIG_MEMCG_KMEM
int memcg_update_all_caches(int num_memcgs)
{
struct kmem_cache *s;
int ret = 0;
mutex_lock(&slab_mutex);
list_for_each_entry(s, &slab_caches, list) {
if (!is_root_cache(s))
continue;
ret = memcg_update_cache_size(s, num_memcgs);
/*
* See comment in memcontrol.c, memcg_update_cache_size:
* Instead of freeing the memory, we'll just leave the caches
* up to this point in an updated state.
*/
if (ret)
goto out;
}
memcg_update_array_size(num_memcgs);
out:
mutex_unlock(&slab_mutex);
return ret;
}
#endif
/*
* Figure out what the alignment of the objects will be given a set of
* flags, a user specified alignment and the size of the objects.
*/
unsigned long calculate_alignment(unsigned long flags,
unsigned long align, unsigned long size)
{
/*
* If the user wants hardware cache aligned objects then follow that
* suggestion if the object is sufficiently large.
*
* The hardware cache alignment cannot override the specified
* alignment though. If that is greater then use it.
*/
if (flags & SLAB_HWCACHE_ALIGN) {
unsigned long ralign = cache_line_size();
while (size <= ralign / 2)
ralign /= 2;
align = max(align, ralign);
}
if (align < ARCH_SLAB_MINALIGN)
align = ARCH_SLAB_MINALIGN;
return ALIGN(align, sizeof(void *));
}
/*
* kmem_cache_create - Create a cache.
* @name: A string which is used in /proc/slabinfo to identify this cache.
* @size: The size of objects to be created in this cache.
* @align: The required alignment for the objects.
* @flags: SLAB flags
* @ctor: A constructor for the objects.
*
* Returns a ptr to the cache on success, NULL on failure.
* Cannot be called within a interrupt, but can be interrupted.
* The @ctor is run when new pages are allocated by the cache.
*
* The flags are
*
* %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
* to catch references to uninitialised memory.
*
* %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
* for buffer overruns.
*
* %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
* cacheline. This can be beneficial if you're counting cycles as closely
* as davem.
*/
struct kmem_cache *
kmem_cache_create_memcg(struct mem_cgroup *memcg, const char *name, size_t size,
size_t align, unsigned long flags, void (*ctor)(void *),
struct kmem_cache *parent_cache)
{
struct kmem_cache *s = NULL;
int err = 0;
get_online_cpus();
mutex_lock(&slab_mutex);
if (!kmem_cache_sanity_check(memcg, name, size) == 0)
goto out_locked;
/*
* Some allocators will constraint the set of valid flags to a subset
* of all flags. We expect them to define CACHE_CREATE_MASK in this
* case, and we'll just provide them with a sanitized version of the
* passed flags.
*/
flags &= CACHE_CREATE_MASK;
s = __kmem_cache_alias(memcg, name, size, align, flags, ctor);
if (s)
goto out_locked;
s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
if (s) {
s->object_size = s->size = size;
s->align = calculate_alignment(flags, align, size);
s->ctor = ctor;
if (memcg_register_cache(memcg, s, parent_cache)) {
kmem_cache_free(kmem_cache, s);
err = -ENOMEM;
goto out_locked;
}
s->name = kstrdup(name, GFP_KERNEL);
if (!s->name) {
kmem_cache_free(kmem_cache, s);
err = -ENOMEM;
goto out_locked;
}
err = __kmem_cache_create(s, flags);
if (!err) {
s->refcount = 1;
list_add(&s->list, &slab_caches);
memcg_cache_list_add(memcg, s);
} else {
kfree(s->name);
kmem_cache_free(kmem_cache, s);
}
} else
err = -ENOMEM;
out_locked:
mutex_unlock(&slab_mutex);
put_online_cpus();
if (err) {
if (flags & SLAB_PANIC)
panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
name, err);
else {
printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
name, err);
dump_stack();
}
return NULL;
}
return s;
}
struct kmem_cache *
kmem_cache_create(const char *name, size_t size, size_t align,
unsigned long flags, void (*ctor)(void *))
{
return kmem_cache_create_memcg(NULL, name, size, align, flags, ctor, NULL);
}
EXPORT_SYMBOL(kmem_cache_create);
void kmem_cache_destroy(struct kmem_cache *s)
{
/* Destroy all the children caches if we aren't a memcg cache */
kmem_cache_destroy_memcg_children(s);
get_online_cpus();
mutex_lock(&slab_mutex);
s->refcount--;
if (!s->refcount) {
list_del(&s->list);
if (!__kmem_cache_shutdown(s)) {
mutex_unlock(&slab_mutex);
if (s->flags & SLAB_DESTROY_BY_RCU)
rcu_barrier();
memcg_release_cache(s);
kfree(s->name);
kmem_cache_free(kmem_cache, s);
} else {
list_add(&s->list, &slab_caches);
mutex_unlock(&slab_mutex);
printk(KERN_ERR "kmem_cache_destroy %s: Slab cache still has objects\n",
s->name);
dump_stack();
}
} else {
mutex_unlock(&slab_mutex);
}
put_online_cpus();
}
EXPORT_SYMBOL(kmem_cache_destroy);
int slab_is_available(void)
{
return slab_state >= UP;
}
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
unsigned long flags)
{
int err;
s->name = name;
s->size = s->object_size = size;
s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
err = __kmem_cache_create(s, flags);
if (err)
panic("Creation of kmalloc slab %s size=%zd failed. Reason %d\n",
name, size, err);
s->refcount = -1; /* Exempt from merging for now */
}
struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
unsigned long flags)
{
struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
if (!s)
panic("Out of memory when creating slab %s\n", name);
create_boot_cache(s, name, size, flags);
list_add(&s->list, &slab_caches);
s->refcount = 1;
return s;
}
#endif /* !CONFIG_SLOB */
#ifdef CONFIG_SLABINFO
void print_slabinfo_header(struct seq_file *m)
{
/*
* Output format version, so at least we can change it
* without _too_ many complaints.
*/
#ifdef CONFIG_DEBUG_SLAB
seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
seq_puts(m, "slabinfo - version: 2.1\n");
#endif
seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
"<objperslab> <pagesperslab>");
seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
"<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
seq_putc(m, '\n');
}
static void *s_start(struct seq_file *m, loff_t *pos)
{
loff_t n = *pos;
mutex_lock(&slab_mutex);
if (!n)
print_slabinfo_header(m);
return seq_list_start(&slab_caches, *pos);
}
static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
return seq_list_next(p, &slab_caches, pos);
}
static void s_stop(struct seq_file *m, void *p)
{
mutex_unlock(&slab_mutex);
}
static void
memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
{
struct kmem_cache *c;
struct slabinfo sinfo;
int i;
if (!is_root_cache(s))
return;
for_each_memcg_cache_index(i) {
c = cache_from_memcg(s, i);
if (!c)
continue;
memset(&sinfo, 0, sizeof(sinfo));
get_slabinfo(c, &sinfo);
info->active_slabs += sinfo.active_slabs;
info->num_slabs += sinfo.num_slabs;
info->shared_avail += sinfo.shared_avail;
info->active_objs += sinfo.active_objs;
info->num_objs += sinfo.num_objs;
}
}
int cache_show(struct kmem_cache *s, struct seq_file *m)
{
struct slabinfo sinfo;
memset(&sinfo, 0, sizeof(sinfo));
get_slabinfo(s, &sinfo);
memcg_accumulate_slabinfo(s, &sinfo);
seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
sinfo.objects_per_slab, (1 << sinfo.cache_order));
seq_printf(m, " : tunables %4u %4u %4u",
sinfo.limit, sinfo.batchcount, sinfo.shared);
seq_printf(m, " : slabdata %6lu %6lu %6lu",
sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
slabinfo_show_stats(m, s);
seq_putc(m, '\n');
return 0;
}
static int s_show(struct seq_file *m, void *p)
{
struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
if (!is_root_cache(s))
return 0;
return cache_show(s, m);
}
/*
* slabinfo_op - iterator that generates /proc/slabinfo
*
* Output layout:
* cache-name
* num-active-objs
* total-objs
* object size
* num-active-slabs
* total-slabs
* num-pages-per-slab
* + further values on SMP and with statistics enabled
*/
static const struct seq_operations slabinfo_op = {
.start = s_start,
.next = s_next,
.stop = s_stop,
.show = s_show,
};
static int slabinfo_open(struct inode *inode, struct file *file)
{
return seq_open(file, &slabinfo_op);
}
static const struct file_operations proc_slabinfo_operations = {
.open = slabinfo_open,
.read = seq_read,
.write = slabinfo_write,
.llseek = seq_lseek,
.release = seq_release,
};
static int __init slab_proc_init(void)
{
proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
return 0;
}
module_init(slab_proc_init);
#endif /* CONFIG_SLABINFO */