blob: 3871307019604d04ca1d0b69963778a5f1adb126 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* STM32 ALSA SoC Digital Audio Interface (I2S) driver.
*
* Copyright (C) 2017, STMicroelectronics - All Rights Reserved
* Author(s): Olivier Moysan <olivier.moysan@st.com> for STMicroelectronics.
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <linux/spinlock.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm_params.h>
#define STM32_I2S_CR1_REG 0x0
#define STM32_I2S_CFG1_REG 0x08
#define STM32_I2S_CFG2_REG 0x0C
#define STM32_I2S_IER_REG 0x10
#define STM32_I2S_SR_REG 0x14
#define STM32_I2S_IFCR_REG 0x18
#define STM32_I2S_TXDR_REG 0X20
#define STM32_I2S_RXDR_REG 0x30
#define STM32_I2S_CGFR_REG 0X50
#define STM32_I2S_HWCFGR_REG 0x3F0
#define STM32_I2S_VERR_REG 0x3F4
#define STM32_I2S_IPIDR_REG 0x3F8
#define STM32_I2S_SIDR_REG 0x3FC
/* Bit definition for SPI2S_CR1 register */
#define I2S_CR1_SPE BIT(0)
#define I2S_CR1_CSTART BIT(9)
#define I2S_CR1_CSUSP BIT(10)
#define I2S_CR1_HDDIR BIT(11)
#define I2S_CR1_SSI BIT(12)
#define I2S_CR1_CRC33_17 BIT(13)
#define I2S_CR1_RCRCI BIT(14)
#define I2S_CR1_TCRCI BIT(15)
/* Bit definition for SPI_CFG2 register */
#define I2S_CFG2_IOSWP_SHIFT 15
#define I2S_CFG2_IOSWP BIT(I2S_CFG2_IOSWP_SHIFT)
#define I2S_CFG2_LSBFRST BIT(23)
#define I2S_CFG2_AFCNTR BIT(31)
/* Bit definition for SPI_CFG1 register */
#define I2S_CFG1_FTHVL_SHIFT 5
#define I2S_CFG1_FTHVL_MASK GENMASK(8, I2S_CFG1_FTHVL_SHIFT)
#define I2S_CFG1_FTHVL_SET(x) ((x) << I2S_CFG1_FTHVL_SHIFT)
#define I2S_CFG1_TXDMAEN BIT(15)
#define I2S_CFG1_RXDMAEN BIT(14)
/* Bit definition for SPI2S_IER register */
#define I2S_IER_RXPIE BIT(0)
#define I2S_IER_TXPIE BIT(1)
#define I2S_IER_DPXPIE BIT(2)
#define I2S_IER_EOTIE BIT(3)
#define I2S_IER_TXTFIE BIT(4)
#define I2S_IER_UDRIE BIT(5)
#define I2S_IER_OVRIE BIT(6)
#define I2S_IER_CRCEIE BIT(7)
#define I2S_IER_TIFREIE BIT(8)
#define I2S_IER_MODFIE BIT(9)
#define I2S_IER_TSERFIE BIT(10)
/* Bit definition for SPI2S_SR register */
#define I2S_SR_RXP BIT(0)
#define I2S_SR_TXP BIT(1)
#define I2S_SR_DPXP BIT(2)
#define I2S_SR_EOT BIT(3)
#define I2S_SR_TXTF BIT(4)
#define I2S_SR_UDR BIT(5)
#define I2S_SR_OVR BIT(6)
#define I2S_SR_CRCERR BIT(7)
#define I2S_SR_TIFRE BIT(8)
#define I2S_SR_MODF BIT(9)
#define I2S_SR_TSERF BIT(10)
#define I2S_SR_SUSP BIT(11)
#define I2S_SR_TXC BIT(12)
#define I2S_SR_RXPLVL GENMASK(14, 13)
#define I2S_SR_RXWNE BIT(15)
#define I2S_SR_MASK GENMASK(15, 0)
/* Bit definition for SPI_IFCR register */
#define I2S_IFCR_EOTC BIT(3)
#define I2S_IFCR_TXTFC BIT(4)
#define I2S_IFCR_UDRC BIT(5)
#define I2S_IFCR_OVRC BIT(6)
#define I2S_IFCR_CRCEC BIT(7)
#define I2S_IFCR_TIFREC BIT(8)
#define I2S_IFCR_MODFC BIT(9)
#define I2S_IFCR_TSERFC BIT(10)
#define I2S_IFCR_SUSPC BIT(11)
#define I2S_IFCR_MASK GENMASK(11, 3)
/* Bit definition for SPI_I2SCGFR register */
#define I2S_CGFR_I2SMOD BIT(0)
#define I2S_CGFR_I2SCFG_SHIFT 1
#define I2S_CGFR_I2SCFG_MASK GENMASK(3, I2S_CGFR_I2SCFG_SHIFT)
#define I2S_CGFR_I2SCFG_SET(x) ((x) << I2S_CGFR_I2SCFG_SHIFT)
#define I2S_CGFR_I2SSTD_SHIFT 4
#define I2S_CGFR_I2SSTD_MASK GENMASK(5, I2S_CGFR_I2SSTD_SHIFT)
#define I2S_CGFR_I2SSTD_SET(x) ((x) << I2S_CGFR_I2SSTD_SHIFT)
#define I2S_CGFR_PCMSYNC BIT(7)
#define I2S_CGFR_DATLEN_SHIFT 8
#define I2S_CGFR_DATLEN_MASK GENMASK(9, I2S_CGFR_DATLEN_SHIFT)
#define I2S_CGFR_DATLEN_SET(x) ((x) << I2S_CGFR_DATLEN_SHIFT)
#define I2S_CGFR_CHLEN_SHIFT 10
#define I2S_CGFR_CHLEN BIT(I2S_CGFR_CHLEN_SHIFT)
#define I2S_CGFR_CKPOL BIT(11)
#define I2S_CGFR_FIXCH BIT(12)
#define I2S_CGFR_WSINV BIT(13)
#define I2S_CGFR_DATFMT BIT(14)
#define I2S_CGFR_I2SDIV_SHIFT 16
#define I2S_CGFR_I2SDIV_BIT_H 23
#define I2S_CGFR_I2SDIV_MASK GENMASK(I2S_CGFR_I2SDIV_BIT_H,\
I2S_CGFR_I2SDIV_SHIFT)
#define I2S_CGFR_I2SDIV_SET(x) ((x) << I2S_CGFR_I2SDIV_SHIFT)
#define I2S_CGFR_I2SDIV_MAX ((1 << (I2S_CGFR_I2SDIV_BIT_H -\
I2S_CGFR_I2SDIV_SHIFT)) - 1)
#define I2S_CGFR_ODD_SHIFT 24
#define I2S_CGFR_ODD BIT(I2S_CGFR_ODD_SHIFT)
#define I2S_CGFR_MCKOE BIT(25)
/* Registers below apply to I2S version 1.1 and more */
/* Bit definition for SPI_HWCFGR register */
#define I2S_HWCFGR_I2S_SUPPORT_MASK GENMASK(15, 12)
/* Bit definition for SPI_VERR register */
#define I2S_VERR_MIN_MASK GENMASK(3, 0)
#define I2S_VERR_MAJ_MASK GENMASK(7, 4)
/* Bit definition for SPI_IPIDR register */
#define I2S_IPIDR_ID_MASK GENMASK(31, 0)
/* Bit definition for SPI_SIDR register */
#define I2S_SIDR_ID_MASK GENMASK(31, 0)
#define I2S_IPIDR_NUMBER 0x00130022
enum i2s_master_mode {
I2S_MS_NOT_SET,
I2S_MS_MASTER,
I2S_MS_SLAVE,
};
enum i2s_mode {
I2S_I2SMOD_TX_SLAVE,
I2S_I2SMOD_RX_SLAVE,
I2S_I2SMOD_TX_MASTER,
I2S_I2SMOD_RX_MASTER,
I2S_I2SMOD_FD_SLAVE,
I2S_I2SMOD_FD_MASTER,
};
enum i2s_fifo_th {
I2S_FIFO_TH_NONE,
I2S_FIFO_TH_ONE_QUARTER,
I2S_FIFO_TH_HALF,
I2S_FIFO_TH_THREE_QUARTER,
I2S_FIFO_TH_FULL,
};
enum i2s_std {
I2S_STD_I2S,
I2S_STD_LEFT_J,
I2S_STD_RIGHT_J,
I2S_STD_DSP,
};
enum i2s_datlen {
I2S_I2SMOD_DATLEN_16,
I2S_I2SMOD_DATLEN_24,
I2S_I2SMOD_DATLEN_32,
};
#define STM32_I2S_FIFO_SIZE 16
#define STM32_I2S_IS_MASTER(x) ((x)->ms_flg == I2S_MS_MASTER)
#define STM32_I2S_IS_SLAVE(x) ((x)->ms_flg == I2S_MS_SLAVE)
#define STM32_I2S_NAME_LEN 32
#define STM32_I2S_RATE_11K 11025
/**
* struct stm32_i2s_data - private data of I2S
* @regmap_conf: I2S register map configuration pointer
* @regmap: I2S register map pointer
* @pdev: device data pointer
* @dai_drv: DAI driver pointer
* @dma_data_tx: dma configuration data for tx channel
* @dma_data_rx: dma configuration data for tx channel
* @substream: PCM substream data pointer
* @i2sclk: kernel clock feeding the I2S clock generator
* @i2smclk: master clock from I2S mclk provider
* @pclk: peripheral clock driving bus interface
* @x8kclk: I2S parent clock for sampling frequencies multiple of 8kHz
* @x11kclk: I2S parent clock for sampling frequencies multiple of 11kHz
* @base: mmio register base virtual address
* @phys_addr: I2S registers physical base address
* @lock_fd: lock to manage race conditions in full duplex mode
* @irq_lock: prevent race condition with IRQ
* @mclk_rate: master clock frequency (Hz)
* @fmt: DAI protocol
* @divider: prescaler division ratio
* @div: prescaler div field
* @odd: prescaler odd field
* @refcount: keep count of opened streams on I2S
* @ms_flg: master mode flag.
*/
struct stm32_i2s_data {
const struct regmap_config *regmap_conf;
struct regmap *regmap;
struct platform_device *pdev;
struct snd_soc_dai_driver *dai_drv;
struct snd_dmaengine_dai_dma_data dma_data_tx;
struct snd_dmaengine_dai_dma_data dma_data_rx;
struct snd_pcm_substream *substream;
struct clk *i2sclk;
struct clk *i2smclk;
struct clk *pclk;
struct clk *x8kclk;
struct clk *x11kclk;
void __iomem *base;
dma_addr_t phys_addr;
spinlock_t lock_fd; /* Manage race conditions for full duplex */
spinlock_t irq_lock; /* used to prevent race condition with IRQ */
unsigned int mclk_rate;
unsigned int fmt;
unsigned int divider;
unsigned int div;
bool odd;
int refcount;
int ms_flg;
};
struct stm32_i2smclk_data {
struct clk_hw hw;
unsigned long freq;
struct stm32_i2s_data *i2s_data;
};
#define to_mclk_data(_hw) container_of(_hw, struct stm32_i2smclk_data, hw)
static int stm32_i2s_calc_clk_div(struct stm32_i2s_data *i2s,
unsigned long input_rate,
unsigned long output_rate)
{
unsigned int ratio, div, divider = 1;
bool odd;
ratio = DIV_ROUND_CLOSEST(input_rate, output_rate);
/* Check the parity of the divider */
odd = ratio & 0x1;
/* Compute the div prescaler */
div = ratio >> 1;
/* If div is 0 actual divider is 1 */
if (div) {
divider = ((2 * div) + odd);
dev_dbg(&i2s->pdev->dev, "Divider: 2*%d(div)+%d(odd) = %d\n",
div, odd, divider);
}
/* Division by three is not allowed by I2S prescaler */
if ((div == 1 && odd) || div > I2S_CGFR_I2SDIV_MAX) {
dev_err(&i2s->pdev->dev, "Wrong divider setting\n");
return -EINVAL;
}
if (input_rate % divider)
dev_dbg(&i2s->pdev->dev,
"Rate not accurate. requested (%ld), actual (%ld)\n",
output_rate, input_rate / divider);
i2s->div = div;
i2s->odd = odd;
i2s->divider = divider;
return 0;
}
static int stm32_i2s_set_clk_div(struct stm32_i2s_data *i2s)
{
u32 cgfr, cgfr_mask;
cgfr = I2S_CGFR_I2SDIV_SET(i2s->div) | (i2s->odd << I2S_CGFR_ODD_SHIFT);
cgfr_mask = I2S_CGFR_I2SDIV_MASK | I2S_CGFR_ODD;
return regmap_update_bits(i2s->regmap, STM32_I2S_CGFR_REG,
cgfr_mask, cgfr);
}
static int stm32_i2s_set_parent_clock(struct stm32_i2s_data *i2s,
unsigned int rate)
{
struct platform_device *pdev = i2s->pdev;
struct clk *parent_clk;
int ret;
if (!(rate % STM32_I2S_RATE_11K))
parent_clk = i2s->x11kclk;
else
parent_clk = i2s->x8kclk;
ret = clk_set_parent(i2s->i2sclk, parent_clk);
if (ret)
dev_err(&pdev->dev,
"Error %d setting i2sclk parent clock\n", ret);
return ret;
}
static long stm32_i2smclk_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct stm32_i2smclk_data *mclk = to_mclk_data(hw);
struct stm32_i2s_data *i2s = mclk->i2s_data;
int ret;
ret = stm32_i2s_calc_clk_div(i2s, *prate, rate);
if (ret)
return ret;
mclk->freq = *prate / i2s->divider;
return mclk->freq;
}
static unsigned long stm32_i2smclk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct stm32_i2smclk_data *mclk = to_mclk_data(hw);
return mclk->freq;
}
static int stm32_i2smclk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct stm32_i2smclk_data *mclk = to_mclk_data(hw);
struct stm32_i2s_data *i2s = mclk->i2s_data;
int ret;
ret = stm32_i2s_calc_clk_div(i2s, parent_rate, rate);
if (ret)
return ret;
ret = stm32_i2s_set_clk_div(i2s);
if (ret)
return ret;
mclk->freq = rate;
return 0;
}
static int stm32_i2smclk_enable(struct clk_hw *hw)
{
struct stm32_i2smclk_data *mclk = to_mclk_data(hw);
struct stm32_i2s_data *i2s = mclk->i2s_data;
dev_dbg(&i2s->pdev->dev, "Enable master clock\n");
return regmap_update_bits(i2s->regmap, STM32_I2S_CGFR_REG,
I2S_CGFR_MCKOE, I2S_CGFR_MCKOE);
}
static void stm32_i2smclk_disable(struct clk_hw *hw)
{
struct stm32_i2smclk_data *mclk = to_mclk_data(hw);
struct stm32_i2s_data *i2s = mclk->i2s_data;
dev_dbg(&i2s->pdev->dev, "Disable master clock\n");
regmap_update_bits(i2s->regmap, STM32_I2S_CGFR_REG, I2S_CGFR_MCKOE, 0);
}
static const struct clk_ops mclk_ops = {
.enable = stm32_i2smclk_enable,
.disable = stm32_i2smclk_disable,
.recalc_rate = stm32_i2smclk_recalc_rate,
.round_rate = stm32_i2smclk_round_rate,
.set_rate = stm32_i2smclk_set_rate,
};
static int stm32_i2s_add_mclk_provider(struct stm32_i2s_data *i2s)
{
struct clk_hw *hw;
struct stm32_i2smclk_data *mclk;
struct device *dev = &i2s->pdev->dev;
const char *pname = __clk_get_name(i2s->i2sclk);
char *mclk_name, *p, *s = (char *)pname;
int ret, i = 0;
mclk = devm_kzalloc(dev, sizeof(*mclk), GFP_KERNEL);
if (!mclk)
return -ENOMEM;
mclk_name = devm_kcalloc(dev, sizeof(char),
STM32_I2S_NAME_LEN, GFP_KERNEL);
if (!mclk_name)
return -ENOMEM;
/*
* Forge mclk clock name from parent clock name and suffix.
* String after "_" char is stripped in parent name.
*/
p = mclk_name;
while (*s && *s != '_' && (i < (STM32_I2S_NAME_LEN - 7))) {
*p++ = *s++;
i++;
}
strcat(p, "_mclk");
mclk->hw.init = CLK_HW_INIT(mclk_name, pname, &mclk_ops, 0);
mclk->i2s_data = i2s;
hw = &mclk->hw;
dev_dbg(dev, "Register master clock %s\n", mclk_name);
ret = devm_clk_hw_register(&i2s->pdev->dev, hw);
if (ret) {
dev_err(dev, "mclk register fails with error %d\n", ret);
return ret;
}
i2s->i2smclk = hw->clk;
/* register mclk provider */
return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get, hw);
}
static irqreturn_t stm32_i2s_isr(int irq, void *devid)
{
struct stm32_i2s_data *i2s = (struct stm32_i2s_data *)devid;
struct platform_device *pdev = i2s->pdev;
u32 sr, ier;
unsigned long flags;
int err = 0;
regmap_read(i2s->regmap, STM32_I2S_SR_REG, &sr);
regmap_read(i2s->regmap, STM32_I2S_IER_REG, &ier);
flags = sr & ier;
if (!flags) {
dev_dbg(&pdev->dev, "Spurious IRQ sr=0x%08x, ier=0x%08x\n",
sr, ier);
return IRQ_NONE;
}
regmap_write_bits(i2s->regmap, STM32_I2S_IFCR_REG,
I2S_IFCR_MASK, flags);
if (flags & I2S_SR_OVR) {
dev_dbg(&pdev->dev, "Overrun\n");
err = 1;
}
if (flags & I2S_SR_UDR) {
dev_dbg(&pdev->dev, "Underrun\n");
err = 1;
}
if (flags & I2S_SR_TIFRE)
dev_dbg(&pdev->dev, "Frame error\n");
spin_lock(&i2s->irq_lock);
if (err && i2s->substream)
snd_pcm_stop_xrun(i2s->substream);
spin_unlock(&i2s->irq_lock);
return IRQ_HANDLED;
}
static bool stm32_i2s_readable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case STM32_I2S_CR1_REG:
case STM32_I2S_CFG1_REG:
case STM32_I2S_CFG2_REG:
case STM32_I2S_IER_REG:
case STM32_I2S_SR_REG:
case STM32_I2S_RXDR_REG:
case STM32_I2S_CGFR_REG:
case STM32_I2S_HWCFGR_REG:
case STM32_I2S_VERR_REG:
case STM32_I2S_IPIDR_REG:
case STM32_I2S_SIDR_REG:
return true;
default:
return false;
}
}
static bool stm32_i2s_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case STM32_I2S_SR_REG:
case STM32_I2S_RXDR_REG:
return true;
default:
return false;
}
}
static bool stm32_i2s_writeable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case STM32_I2S_CR1_REG:
case STM32_I2S_CFG1_REG:
case STM32_I2S_CFG2_REG:
case STM32_I2S_IER_REG:
case STM32_I2S_IFCR_REG:
case STM32_I2S_TXDR_REG:
case STM32_I2S_CGFR_REG:
return true;
default:
return false;
}
}
static int stm32_i2s_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
{
struct stm32_i2s_data *i2s = snd_soc_dai_get_drvdata(cpu_dai);
u32 cgfr;
u32 cgfr_mask = I2S_CGFR_I2SSTD_MASK | I2S_CGFR_CKPOL |
I2S_CGFR_WSINV | I2S_CGFR_I2SCFG_MASK;
dev_dbg(cpu_dai->dev, "fmt %x\n", fmt);
/*
* winv = 0 : default behavior (high/low) for all standards
* ckpol = 0 for all standards.
*/
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
cgfr = I2S_CGFR_I2SSTD_SET(I2S_STD_I2S);
break;
case SND_SOC_DAIFMT_MSB:
cgfr = I2S_CGFR_I2SSTD_SET(I2S_STD_LEFT_J);
break;
case SND_SOC_DAIFMT_LSB:
cgfr = I2S_CGFR_I2SSTD_SET(I2S_STD_RIGHT_J);
break;
case SND_SOC_DAIFMT_DSP_A:
cgfr = I2S_CGFR_I2SSTD_SET(I2S_STD_DSP);
break;
/* DSP_B not mapped on I2S PCM long format. 1 bit offset does not fit */
default:
dev_err(cpu_dai->dev, "Unsupported protocol %#x\n",
fmt & SND_SOC_DAIFMT_FORMAT_MASK);
return -EINVAL;
}
/* DAI clock strobing */
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
break;
case SND_SOC_DAIFMT_IB_NF:
cgfr |= I2S_CGFR_CKPOL;
break;
case SND_SOC_DAIFMT_NB_IF:
cgfr |= I2S_CGFR_WSINV;
break;
case SND_SOC_DAIFMT_IB_IF:
cgfr |= I2S_CGFR_CKPOL;
cgfr |= I2S_CGFR_WSINV;
break;
default:
dev_err(cpu_dai->dev, "Unsupported strobing %#x\n",
fmt & SND_SOC_DAIFMT_INV_MASK);
return -EINVAL;
}
/* DAI clock master masks */
switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
case SND_SOC_DAIFMT_BC_FC:
i2s->ms_flg = I2S_MS_SLAVE;
break;
case SND_SOC_DAIFMT_BP_FP:
i2s->ms_flg = I2S_MS_MASTER;
break;
default:
dev_err(cpu_dai->dev, "Unsupported mode %#x\n",
fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK);
return -EINVAL;
}
i2s->fmt = fmt;
return regmap_update_bits(i2s->regmap, STM32_I2S_CGFR_REG,
cgfr_mask, cgfr);
}
static int stm32_i2s_set_sysclk(struct snd_soc_dai *cpu_dai,
int clk_id, unsigned int freq, int dir)
{
struct stm32_i2s_data *i2s = snd_soc_dai_get_drvdata(cpu_dai);
int ret = 0;
dev_dbg(cpu_dai->dev, "I2S MCLK frequency is %uHz. mode: %s, dir: %s\n",
freq, STM32_I2S_IS_MASTER(i2s) ? "master" : "slave",
dir ? "output" : "input");
/* MCLK generation is available only in master mode */
if (dir == SND_SOC_CLOCK_OUT && STM32_I2S_IS_MASTER(i2s)) {
if (!i2s->i2smclk) {
dev_dbg(cpu_dai->dev, "No MCLK registered\n");
return 0;
}
/* Assume shutdown if requested frequency is 0Hz */
if (!freq) {
/* Release mclk rate only if rate was actually set */
if (i2s->mclk_rate) {
clk_rate_exclusive_put(i2s->i2smclk);
i2s->mclk_rate = 0;
}
return regmap_update_bits(i2s->regmap,
STM32_I2S_CGFR_REG,
I2S_CGFR_MCKOE, 0);
}
/* If master clock is used, set parent clock now */
ret = stm32_i2s_set_parent_clock(i2s, freq);
if (ret)
return ret;
ret = clk_set_rate_exclusive(i2s->i2smclk, freq);
if (ret) {
dev_err(cpu_dai->dev, "Could not set mclk rate\n");
return ret;
}
ret = regmap_update_bits(i2s->regmap, STM32_I2S_CGFR_REG,
I2S_CGFR_MCKOE, I2S_CGFR_MCKOE);
if (!ret)
i2s->mclk_rate = freq;
}
return ret;
}
static int stm32_i2s_configure_clock(struct snd_soc_dai *cpu_dai,
struct snd_pcm_hw_params *params)
{
struct stm32_i2s_data *i2s = snd_soc_dai_get_drvdata(cpu_dai);
unsigned long i2s_clock_rate;
unsigned int nb_bits, frame_len;
unsigned int rate = params_rate(params);
u32 cgfr;
int ret;
if (!(rate % 11025))
clk_set_parent(i2s->i2sclk, i2s->x11kclk);
else
clk_set_parent(i2s->i2sclk, i2s->x8kclk);
i2s_clock_rate = clk_get_rate(i2s->i2sclk);
/*
* mckl = mclk_ratio x ws
* i2s mode : mclk_ratio = 256
* dsp mode : mclk_ratio = 128
*
* mclk on
* i2s mode : div = i2s_clk / (mclk_ratio * ws)
* dsp mode : div = i2s_clk / (mclk_ratio * ws)
* mclk off
* i2s mode : div = i2s_clk / (nb_bits x ws)
* dsp mode : div = i2s_clk / (nb_bits x ws)
*/
if (i2s->mclk_rate) {
ret = stm32_i2s_calc_clk_div(i2s, i2s_clock_rate,
i2s->mclk_rate);
if (ret)
return ret;
} else {
frame_len = 32;
if ((i2s->fmt & SND_SOC_DAIFMT_FORMAT_MASK) ==
SND_SOC_DAIFMT_DSP_A)
frame_len = 16;
/* master clock not enabled */
ret = regmap_read(i2s->regmap, STM32_I2S_CGFR_REG, &cgfr);
if (ret < 0)
return ret;
nb_bits = frame_len * (FIELD_GET(I2S_CGFR_CHLEN, cgfr) + 1);
ret = stm32_i2s_calc_clk_div(i2s, i2s_clock_rate,
(nb_bits * rate));
if (ret)
return ret;
}
ret = stm32_i2s_set_clk_div(i2s);
if (ret < 0)
return ret;
/* Set bitclock and frameclock to their inactive state */
return regmap_update_bits(i2s->regmap, STM32_I2S_CFG2_REG,
I2S_CFG2_AFCNTR, I2S_CFG2_AFCNTR);
}
static int stm32_i2s_configure(struct snd_soc_dai *cpu_dai,
struct snd_pcm_hw_params *params,
struct snd_pcm_substream *substream)
{
struct stm32_i2s_data *i2s = snd_soc_dai_get_drvdata(cpu_dai);
int format = params_width(params);
u32 cfgr, cfgr_mask, cfg1;
unsigned int fthlv;
int ret;
switch (format) {
case 16:
cfgr = I2S_CGFR_DATLEN_SET(I2S_I2SMOD_DATLEN_16);
cfgr_mask = I2S_CGFR_DATLEN_MASK | I2S_CGFR_CHLEN;
break;
case 32:
cfgr = I2S_CGFR_DATLEN_SET(I2S_I2SMOD_DATLEN_32) |
I2S_CGFR_CHLEN;
cfgr_mask = I2S_CGFR_DATLEN_MASK | I2S_CGFR_CHLEN;
break;
default:
dev_err(cpu_dai->dev, "Unexpected format %d", format);
return -EINVAL;
}
if (STM32_I2S_IS_SLAVE(i2s)) {
cfgr |= I2S_CGFR_I2SCFG_SET(I2S_I2SMOD_FD_SLAVE);
/* As data length is either 16 or 32 bits, fixch always set */
cfgr |= I2S_CGFR_FIXCH;
cfgr_mask |= I2S_CGFR_FIXCH;
} else {
cfgr |= I2S_CGFR_I2SCFG_SET(I2S_I2SMOD_FD_MASTER);
}
cfgr_mask |= I2S_CGFR_I2SCFG_MASK;
ret = regmap_update_bits(i2s->regmap, STM32_I2S_CGFR_REG,
cfgr_mask, cfgr);
if (ret < 0)
return ret;
fthlv = STM32_I2S_FIFO_SIZE * I2S_FIFO_TH_ONE_QUARTER / 4;
cfg1 = I2S_CFG1_FTHVL_SET(fthlv - 1);
return regmap_update_bits(i2s->regmap, STM32_I2S_CFG1_REG,
I2S_CFG1_FTHVL_MASK, cfg1);
}
static int stm32_i2s_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct stm32_i2s_data *i2s = snd_soc_dai_get_drvdata(cpu_dai);
unsigned long flags;
int ret;
spin_lock_irqsave(&i2s->irq_lock, flags);
i2s->substream = substream;
spin_unlock_irqrestore(&i2s->irq_lock, flags);
if ((i2s->fmt & SND_SOC_DAIFMT_FORMAT_MASK) != SND_SOC_DAIFMT_DSP_A)
snd_pcm_hw_constraint_single(substream->runtime,
SNDRV_PCM_HW_PARAM_CHANNELS, 2);
ret = clk_prepare_enable(i2s->i2sclk);
if (ret < 0) {
dev_err(cpu_dai->dev, "Failed to enable clock: %d\n", ret);
return ret;
}
return regmap_write_bits(i2s->regmap, STM32_I2S_IFCR_REG,
I2S_IFCR_MASK, I2S_IFCR_MASK);
}
static int stm32_i2s_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *cpu_dai)
{
struct stm32_i2s_data *i2s = snd_soc_dai_get_drvdata(cpu_dai);
int ret;
ret = stm32_i2s_configure(cpu_dai, params, substream);
if (ret < 0) {
dev_err(cpu_dai->dev, "Configuration returned error %d\n", ret);
return ret;
}
if (STM32_I2S_IS_MASTER(i2s))
ret = stm32_i2s_configure_clock(cpu_dai, params);
return ret;
}
static int stm32_i2s_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *cpu_dai)
{
struct stm32_i2s_data *i2s = snd_soc_dai_get_drvdata(cpu_dai);
bool playback_flg = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
u32 cfg1_mask, ier;
int ret;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
/* Enable i2s */
dev_dbg(cpu_dai->dev, "start I2S %s\n",
playback_flg ? "playback" : "capture");
cfg1_mask = I2S_CFG1_RXDMAEN | I2S_CFG1_TXDMAEN;
regmap_update_bits(i2s->regmap, STM32_I2S_CFG1_REG,
cfg1_mask, cfg1_mask);
ret = regmap_update_bits(i2s->regmap, STM32_I2S_CR1_REG,
I2S_CR1_SPE, I2S_CR1_SPE);
if (ret < 0) {
dev_err(cpu_dai->dev, "Error %d enabling I2S\n", ret);
return ret;
}
ret = regmap_write_bits(i2s->regmap, STM32_I2S_CR1_REG,
I2S_CR1_CSTART, I2S_CR1_CSTART);
if (ret < 0) {
dev_err(cpu_dai->dev, "Error %d starting I2S\n", ret);
return ret;
}
regmap_write_bits(i2s->regmap, STM32_I2S_IFCR_REG,
I2S_IFCR_MASK, I2S_IFCR_MASK);
spin_lock(&i2s->lock_fd);
i2s->refcount++;
if (playback_flg) {
ier = I2S_IER_UDRIE;
} else {
ier = I2S_IER_OVRIE;
if (STM32_I2S_IS_MASTER(i2s) && i2s->refcount == 1)
/* dummy write to gate bus clocks */
regmap_write(i2s->regmap,
STM32_I2S_TXDR_REG, 0);
}
spin_unlock(&i2s->lock_fd);
if (STM32_I2S_IS_SLAVE(i2s))
ier |= I2S_IER_TIFREIE;
regmap_update_bits(i2s->regmap, STM32_I2S_IER_REG, ier, ier);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
dev_dbg(cpu_dai->dev, "stop I2S %s\n",
playback_flg ? "playback" : "capture");
if (playback_flg)
regmap_update_bits(i2s->regmap, STM32_I2S_IER_REG,
I2S_IER_UDRIE,
(unsigned int)~I2S_IER_UDRIE);
else
regmap_update_bits(i2s->regmap, STM32_I2S_IER_REG,
I2S_IER_OVRIE,
(unsigned int)~I2S_IER_OVRIE);
spin_lock(&i2s->lock_fd);
i2s->refcount--;
if (i2s->refcount) {
spin_unlock(&i2s->lock_fd);
break;
}
ret = regmap_update_bits(i2s->regmap, STM32_I2S_CR1_REG,
I2S_CR1_SPE, 0);
if (ret < 0) {
dev_err(cpu_dai->dev, "Error %d disabling I2S\n", ret);
spin_unlock(&i2s->lock_fd);
return ret;
}
spin_unlock(&i2s->lock_fd);
cfg1_mask = I2S_CFG1_RXDMAEN | I2S_CFG1_TXDMAEN;
regmap_update_bits(i2s->regmap, STM32_I2S_CFG1_REG,
cfg1_mask, 0);
break;
default:
return -EINVAL;
}
return 0;
}
static void stm32_i2s_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct stm32_i2s_data *i2s = snd_soc_dai_get_drvdata(cpu_dai);
unsigned long flags;
clk_disable_unprepare(i2s->i2sclk);
spin_lock_irqsave(&i2s->irq_lock, flags);
i2s->substream = NULL;
spin_unlock_irqrestore(&i2s->irq_lock, flags);
}
static int stm32_i2s_dai_probe(struct snd_soc_dai *cpu_dai)
{
struct stm32_i2s_data *i2s = dev_get_drvdata(cpu_dai->dev);
struct snd_dmaengine_dai_dma_data *dma_data_tx = &i2s->dma_data_tx;
struct snd_dmaengine_dai_dma_data *dma_data_rx = &i2s->dma_data_rx;
/* Buswidth will be set by framework */
dma_data_tx->addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
dma_data_tx->addr = (dma_addr_t)(i2s->phys_addr) + STM32_I2S_TXDR_REG;
dma_data_tx->maxburst = 1;
dma_data_rx->addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
dma_data_rx->addr = (dma_addr_t)(i2s->phys_addr) + STM32_I2S_RXDR_REG;
dma_data_rx->maxburst = 1;
snd_soc_dai_init_dma_data(cpu_dai, dma_data_tx, dma_data_rx);
return 0;
}
static const struct regmap_config stm32_h7_i2s_regmap_conf = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = STM32_I2S_SIDR_REG,
.readable_reg = stm32_i2s_readable_reg,
.volatile_reg = stm32_i2s_volatile_reg,
.writeable_reg = stm32_i2s_writeable_reg,
.num_reg_defaults_raw = STM32_I2S_SIDR_REG / sizeof(u32) + 1,
.fast_io = true,
.cache_type = REGCACHE_FLAT,
};
static const struct snd_soc_dai_ops stm32_i2s_pcm_dai_ops = {
.set_sysclk = stm32_i2s_set_sysclk,
.set_fmt = stm32_i2s_set_dai_fmt,
.startup = stm32_i2s_startup,
.hw_params = stm32_i2s_hw_params,
.trigger = stm32_i2s_trigger,
.shutdown = stm32_i2s_shutdown,
};
static const struct snd_pcm_hardware stm32_i2s_pcm_hw = {
.info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP,
.buffer_bytes_max = 8 * PAGE_SIZE,
.period_bytes_min = 1024,
.period_bytes_max = 4 * PAGE_SIZE,
.periods_min = 2,
.periods_max = 8,
};
static const struct snd_dmaengine_pcm_config stm32_i2s_pcm_config = {
.pcm_hardware = &stm32_i2s_pcm_hw,
.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
.prealloc_buffer_size = PAGE_SIZE * 8,
};
static const struct snd_soc_component_driver stm32_i2s_component = {
.name = "stm32-i2s",
.legacy_dai_naming = 1,
};
static void stm32_i2s_dai_init(struct snd_soc_pcm_stream *stream,
char *stream_name)
{
stream->stream_name = stream_name;
stream->channels_min = 1;
stream->channels_max = 2;
stream->rates = SNDRV_PCM_RATE_8000_192000;
stream->formats = SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_S32_LE;
}
static int stm32_i2s_dais_init(struct platform_device *pdev,
struct stm32_i2s_data *i2s)
{
struct snd_soc_dai_driver *dai_ptr;
dai_ptr = devm_kzalloc(&pdev->dev, sizeof(struct snd_soc_dai_driver),
GFP_KERNEL);
if (!dai_ptr)
return -ENOMEM;
dai_ptr->probe = stm32_i2s_dai_probe;
dai_ptr->ops = &stm32_i2s_pcm_dai_ops;
dai_ptr->id = 1;
stm32_i2s_dai_init(&dai_ptr->playback, "playback");
stm32_i2s_dai_init(&dai_ptr->capture, "capture");
i2s->dai_drv = dai_ptr;
return 0;
}
static const struct of_device_id stm32_i2s_ids[] = {
{
.compatible = "st,stm32h7-i2s",
.data = &stm32_h7_i2s_regmap_conf
},
{},
};
static int stm32_i2s_parse_dt(struct platform_device *pdev,
struct stm32_i2s_data *i2s)
{
struct device_node *np = pdev->dev.of_node;
const struct of_device_id *of_id;
struct reset_control *rst;
struct resource *res;
int irq, ret;
if (!np)
return -ENODEV;
of_id = of_match_device(stm32_i2s_ids, &pdev->dev);
if (of_id)
i2s->regmap_conf = (const struct regmap_config *)of_id->data;
else
return -EINVAL;
i2s->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(i2s->base))
return PTR_ERR(i2s->base);
i2s->phys_addr = res->start;
/* Get clocks */
i2s->pclk = devm_clk_get(&pdev->dev, "pclk");
if (IS_ERR(i2s->pclk))
return dev_err_probe(&pdev->dev, PTR_ERR(i2s->pclk),
"Could not get pclk\n");
i2s->i2sclk = devm_clk_get(&pdev->dev, "i2sclk");
if (IS_ERR(i2s->i2sclk))
return dev_err_probe(&pdev->dev, PTR_ERR(i2s->i2sclk),
"Could not get i2sclk\n");
i2s->x8kclk = devm_clk_get(&pdev->dev, "x8k");
if (IS_ERR(i2s->x8kclk))
return dev_err_probe(&pdev->dev, PTR_ERR(i2s->x8kclk),
"Could not get x8k parent clock\n");
i2s->x11kclk = devm_clk_get(&pdev->dev, "x11k");
if (IS_ERR(i2s->x11kclk))
return dev_err_probe(&pdev->dev, PTR_ERR(i2s->x11kclk),
"Could not get x11k parent clock\n");
/* Register mclk provider if requested */
if (of_property_present(np, "#clock-cells")) {
ret = stm32_i2s_add_mclk_provider(i2s);
if (ret < 0)
return ret;
}
/* Get irqs */
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
ret = devm_request_irq(&pdev->dev, irq, stm32_i2s_isr, 0,
dev_name(&pdev->dev), i2s);
if (ret) {
dev_err(&pdev->dev, "irq request returned %d\n", ret);
return ret;
}
/* Reset */
rst = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
if (IS_ERR(rst))
return dev_err_probe(&pdev->dev, PTR_ERR(rst),
"Reset controller error\n");
reset_control_assert(rst);
udelay(2);
reset_control_deassert(rst);
return 0;
}
static void stm32_i2s_remove(struct platform_device *pdev)
{
snd_dmaengine_pcm_unregister(&pdev->dev);
snd_soc_unregister_component(&pdev->dev);
pm_runtime_disable(&pdev->dev);
}
static int stm32_i2s_probe(struct platform_device *pdev)
{
struct stm32_i2s_data *i2s;
u32 val;
int ret;
i2s = devm_kzalloc(&pdev->dev, sizeof(*i2s), GFP_KERNEL);
if (!i2s)
return -ENOMEM;
i2s->pdev = pdev;
i2s->ms_flg = I2S_MS_NOT_SET;
spin_lock_init(&i2s->lock_fd);
spin_lock_init(&i2s->irq_lock);
platform_set_drvdata(pdev, i2s);
ret = stm32_i2s_parse_dt(pdev, i2s);
if (ret)
return ret;
ret = stm32_i2s_dais_init(pdev, i2s);
if (ret)
return ret;
i2s->regmap = devm_regmap_init_mmio_clk(&pdev->dev, "pclk",
i2s->base, i2s->regmap_conf);
if (IS_ERR(i2s->regmap))
return dev_err_probe(&pdev->dev, PTR_ERR(i2s->regmap),
"Regmap init error\n");
ret = snd_dmaengine_pcm_register(&pdev->dev, &stm32_i2s_pcm_config, 0);
if (ret)
return dev_err_probe(&pdev->dev, ret, "PCM DMA register error\n");
ret = snd_soc_register_component(&pdev->dev, &stm32_i2s_component,
i2s->dai_drv, 1);
if (ret) {
snd_dmaengine_pcm_unregister(&pdev->dev);
return ret;
}
/* Set SPI/I2S in i2s mode */
ret = regmap_update_bits(i2s->regmap, STM32_I2S_CGFR_REG,
I2S_CGFR_I2SMOD, I2S_CGFR_I2SMOD);
if (ret)
goto error;
ret = regmap_read(i2s->regmap, STM32_I2S_IPIDR_REG, &val);
if (ret)
goto error;
if (val == I2S_IPIDR_NUMBER) {
ret = regmap_read(i2s->regmap, STM32_I2S_HWCFGR_REG, &val);
if (ret)
goto error;
if (!FIELD_GET(I2S_HWCFGR_I2S_SUPPORT_MASK, val)) {
dev_err(&pdev->dev,
"Device does not support i2s mode\n");
ret = -EPERM;
goto error;
}
ret = regmap_read(i2s->regmap, STM32_I2S_VERR_REG, &val);
if (ret)
goto error;
dev_dbg(&pdev->dev, "I2S version: %lu.%lu registered\n",
FIELD_GET(I2S_VERR_MAJ_MASK, val),
FIELD_GET(I2S_VERR_MIN_MASK, val));
}
pm_runtime_enable(&pdev->dev);
return ret;
error:
stm32_i2s_remove(pdev);
return ret;
}
MODULE_DEVICE_TABLE(of, stm32_i2s_ids);
#ifdef CONFIG_PM_SLEEP
static int stm32_i2s_suspend(struct device *dev)
{
struct stm32_i2s_data *i2s = dev_get_drvdata(dev);
regcache_cache_only(i2s->regmap, true);
regcache_mark_dirty(i2s->regmap);
return 0;
}
static int stm32_i2s_resume(struct device *dev)
{
struct stm32_i2s_data *i2s = dev_get_drvdata(dev);
regcache_cache_only(i2s->regmap, false);
return regcache_sync(i2s->regmap);
}
#endif /* CONFIG_PM_SLEEP */
static const struct dev_pm_ops stm32_i2s_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(stm32_i2s_suspend, stm32_i2s_resume)
};
static struct platform_driver stm32_i2s_driver = {
.driver = {
.name = "st,stm32-i2s",
.of_match_table = stm32_i2s_ids,
.pm = &stm32_i2s_pm_ops,
},
.probe = stm32_i2s_probe,
.remove_new = stm32_i2s_remove,
};
module_platform_driver(stm32_i2s_driver);
MODULE_DESCRIPTION("STM32 Soc i2s Interface");
MODULE_AUTHOR("Olivier Moysan, <olivier.moysan@st.com>");
MODULE_ALIAS("platform:stm32-i2s");
MODULE_LICENSE("GPL v2");