| /* |
| * Copyright (C) 2005-2012 Imagination Technologies Ltd. |
| * |
| * This file contains the architecture-dependant parts of system setup. |
| * |
| */ |
| |
| #include <linux/export.h> |
| #include <linux/bootmem.h> |
| #include <linux/console.h> |
| #include <linux/cpu.h> |
| #include <linux/delay.h> |
| #include <linux/errno.h> |
| #include <linux/fs.h> |
| #include <linux/genhd.h> |
| #include <linux/init.h> |
| #include <linux/initrd.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel.h> |
| #include <linux/memblock.h> |
| #include <linux/mm.h> |
| #include <linux/of_fdt.h> |
| #include <linux/pfn.h> |
| #include <linux/root_dev.h> |
| #include <linux/sched.h> |
| #include <linux/seq_file.h> |
| #include <linux/start_kernel.h> |
| #include <linux/string.h> |
| |
| #include <asm/cachepart.h> |
| #include <asm/clock.h> |
| #include <asm/core_reg.h> |
| #include <asm/cpu.h> |
| #include <asm/da.h> |
| #include <asm/highmem.h> |
| #include <asm/hwthread.h> |
| #include <asm/l2cache.h> |
| #include <asm/mach/arch.h> |
| #include <asm/metag_mem.h> |
| #include <asm/metag_regs.h> |
| #include <asm/mmu.h> |
| #include <asm/mmzone.h> |
| #include <asm/processor.h> |
| #include <asm/prom.h> |
| #include <asm/sections.h> |
| #include <asm/setup.h> |
| #include <asm/traps.h> |
| |
| /* Priv protect as many registers as possible. */ |
| #define DEFAULT_PRIV (TXPRIVEXT_COPRO_BITS | \ |
| TXPRIVEXT_TXTRIGGER_BIT | \ |
| TXPRIVEXT_TXGBLCREG_BIT | \ |
| TXPRIVEXT_ILOCK_BIT | \ |
| TXPRIVEXT_TXITACCYC_BIT | \ |
| TXPRIVEXT_TXDIVTIME_BIT | \ |
| TXPRIVEXT_TXAMAREGX_BIT | \ |
| TXPRIVEXT_TXTIMERI_BIT | \ |
| TXPRIVEXT_TXSTATUS_BIT | \ |
| TXPRIVEXT_TXDISABLE_BIT) |
| |
| /* Meta2 specific bits. */ |
| #ifdef CONFIG_METAG_META12 |
| #define META2_PRIV 0 |
| #else |
| #define META2_PRIV (TXPRIVEXT_TXTIMER_BIT | \ |
| TXPRIVEXT_TRACE_BIT) |
| #endif |
| |
| /* Unaligned access checking bits. */ |
| #ifdef CONFIG_METAG_UNALIGNED |
| #define UNALIGNED_PRIV TXPRIVEXT_ALIGNREW_BIT |
| #else |
| #define UNALIGNED_PRIV 0 |
| #endif |
| |
| #define PRIV_BITS (DEFAULT_PRIV | \ |
| META2_PRIV | \ |
| UNALIGNED_PRIV) |
| |
| /* |
| * Protect access to: |
| * 0x06000000-0x07ffffff Direct mapped region |
| * 0x05000000-0x05ffffff MMU table region (Meta1) |
| * 0x04400000-0x047fffff Cache flush region |
| * 0x84000000-0x87ffffff Core cache memory region (Meta2) |
| * |
| * Allow access to: |
| * 0x80000000-0x81ffffff Core code memory region (Meta2) |
| */ |
| #ifdef CONFIG_METAG_META12 |
| #define PRIVSYSR_BITS TXPRIVSYSR_ALL_BITS |
| #else |
| #define PRIVSYSR_BITS (TXPRIVSYSR_ALL_BITS & ~TXPRIVSYSR_CORECODE_BIT) |
| #endif |
| |
| /* Protect all 0x02xxxxxx and 0x048xxxxx. */ |
| #define PIOREG_BITS 0xffffffff |
| |
| /* |
| * Protect all 0x04000xx0 (system events) |
| * except write combiner flush and write fence (system events 4 and 5). |
| */ |
| #define PSYREG_BITS 0xfffffffb |
| |
| |
| extern char _heap_start[]; |
| |
| #ifdef CONFIG_METAG_BUILTIN_DTB |
| extern u32 __dtb_start[]; |
| #endif |
| |
| #ifdef CONFIG_DA_CONSOLE |
| /* Our early channel based console driver */ |
| extern struct console dash_console; |
| #endif |
| |
| struct machine_desc *machine_desc __initdata; |
| |
| /* |
| * Map a Linux CPU number to a hardware thread ID |
| * In SMP this will be setup with the correct mapping at startup; in UP this |
| * will map to the HW thread on which we are running. |
| */ |
| u8 cpu_2_hwthread_id[NR_CPUS] __read_mostly = { |
| [0 ... NR_CPUS-1] = BAD_HWTHREAD_ID |
| }; |
| |
| /* |
| * Map a hardware thread ID to a Linux CPU number |
| * In SMP this will be fleshed out with the correct CPU ID for a particular |
| * hardware thread. In UP this will be initialised with the boot CPU ID. |
| */ |
| u8 hwthread_id_2_cpu[4] __read_mostly = { |
| [0 ... 3] = BAD_CPU_ID |
| }; |
| |
| /* The relative offset of the MMU mapped memory (from ldlk or bootloader) |
| * to the real physical memory. This is needed as we have to use the |
| * physical addresses in the MMU tables (pte entries), and not the virtual |
| * addresses. |
| * This variable is used in the __pa() and __va() macros, and should |
| * probably only be used via them. |
| */ |
| unsigned int meta_memoffset; |
| EXPORT_SYMBOL(meta_memoffset); |
| |
| static char __initdata *original_cmd_line; |
| |
| DEFINE_PER_CPU(PTBI, pTBI); |
| |
| /* |
| * Mapping are specified as "CPU_ID:HWTHREAD_ID", e.g. |
| * |
| * "hwthread_map=0:1,1:2,2:3,3:0" |
| * |
| * Linux CPU ID HWTHREAD_ID |
| * --------------------------- |
| * 0 1 |
| * 1 2 |
| * 2 3 |
| * 3 0 |
| */ |
| static int __init parse_hwthread_map(char *p) |
| { |
| int cpu; |
| |
| while (*p) { |
| cpu = (*p++) - '0'; |
| if (cpu < 0 || cpu > 9) |
| goto err_cpu; |
| |
| p++; /* skip semi-colon */ |
| cpu_2_hwthread_id[cpu] = (*p++) - '0'; |
| if (cpu_2_hwthread_id[cpu] >= 4) |
| goto err_thread; |
| hwthread_id_2_cpu[cpu_2_hwthread_id[cpu]] = cpu; |
| |
| if (*p == ',') |
| p++; /* skip comma */ |
| } |
| |
| return 0; |
| err_cpu: |
| pr_err("%s: hwthread_map cpu argument out of range\n", __func__); |
| return -EINVAL; |
| err_thread: |
| pr_err("%s: hwthread_map thread argument out of range\n", __func__); |
| return -EINVAL; |
| } |
| early_param("hwthread_map", parse_hwthread_map); |
| |
| void __init dump_machine_table(void) |
| { |
| struct machine_desc *p; |
| const char **compat; |
| |
| pr_info("Available machine support:\n\tNAME\t\tCOMPATIBLE LIST\n"); |
| for_each_machine_desc(p) { |
| pr_info("\t%s\t[", p->name); |
| for (compat = p->dt_compat; compat && *compat; ++compat) |
| printk(" '%s'", *compat); |
| printk(" ]\n"); |
| } |
| |
| pr_info("\nPlease check your kernel config and/or bootloader.\n"); |
| |
| hard_processor_halt(HALT_PANIC); |
| } |
| |
| #ifdef CONFIG_METAG_HALT_ON_PANIC |
| static int metag_panic_event(struct notifier_block *this, unsigned long event, |
| void *ptr) |
| { |
| hard_processor_halt(HALT_PANIC); |
| return NOTIFY_DONE; |
| } |
| |
| static struct notifier_block metag_panic_block = { |
| metag_panic_event, |
| NULL, |
| 0 |
| }; |
| #endif |
| |
| void __init setup_arch(char **cmdline_p) |
| { |
| unsigned long start_pfn; |
| unsigned long text_start = (unsigned long)(&_stext); |
| unsigned long cpu = smp_processor_id(); |
| unsigned long heap_start, heap_end; |
| unsigned long start_pte; |
| PTBI _pTBI; |
| PTBISEG p_heap; |
| int heap_id, i; |
| |
| metag_cache_probe(); |
| |
| metag_da_probe(); |
| #ifdef CONFIG_DA_CONSOLE |
| if (metag_da_enabled()) { |
| /* An early channel based console driver */ |
| register_console(&dash_console); |
| add_preferred_console("ttyDA", 1, NULL); |
| } |
| #endif |
| |
| /* try interpreting the argument as a device tree */ |
| machine_desc = setup_machine_fdt(original_cmd_line); |
| /* if it doesn't look like a device tree it must be a command line */ |
| if (!machine_desc) { |
| #ifdef CONFIG_METAG_BUILTIN_DTB |
| /* try the embedded device tree */ |
| machine_desc = setup_machine_fdt(__dtb_start); |
| if (!machine_desc) |
| panic("Invalid embedded device tree."); |
| #else |
| /* use the default machine description */ |
| machine_desc = default_machine_desc(); |
| #endif |
| #ifndef CONFIG_CMDLINE_FORCE |
| /* append the bootloader cmdline to any builtin fdt cmdline */ |
| if (boot_command_line[0] && original_cmd_line[0]) |
| strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); |
| strlcat(boot_command_line, original_cmd_line, |
| COMMAND_LINE_SIZE); |
| #endif |
| } |
| setup_meta_clocks(machine_desc->clocks); |
| |
| *cmdline_p = boot_command_line; |
| parse_early_param(); |
| |
| /* |
| * Make sure we don't alias in dcache or icache |
| */ |
| check_for_cache_aliasing(cpu); |
| |
| |
| #ifdef CONFIG_METAG_HALT_ON_PANIC |
| atomic_notifier_chain_register(&panic_notifier_list, |
| &metag_panic_block); |
| #endif |
| |
| #ifdef CONFIG_DUMMY_CONSOLE |
| conswitchp = &dummy_con; |
| #endif |
| |
| if (!(__core_reg_get(TXSTATUS) & TXSTATUS_PSTAT_BIT)) |
| panic("Privilege must be enabled for this thread."); |
| |
| _pTBI = __TBI(TBID_ISTAT_BIT); |
| |
| per_cpu(pTBI, cpu) = _pTBI; |
| |
| if (!per_cpu(pTBI, cpu)) |
| panic("No TBI found!"); |
| |
| /* |
| * Initialize all interrupt vectors to our copy of __TBIUnExpXXX, |
| * rather than the version from the bootloader. This makes call |
| * stacks easier to understand and may allow us to unmap the |
| * bootloader at some point. |
| * |
| * We need to keep the LWK handler that TBI installed in order to |
| * be able to do inter-thread comms. |
| */ |
| for (i = 0; i <= TBID_SIGNUM_MAX; i++) |
| if (i != TBID_SIGNUM_LWK) |
| _pTBI->fnSigs[i] = __TBIUnExpXXX; |
| |
| /* A Meta requirement is that the kernel is loaded (virtually) |
| * at the PAGE_OFFSET. |
| */ |
| if (PAGE_OFFSET != text_start) |
| panic("Kernel not loaded at PAGE_OFFSET (%#x) but at %#lx.", |
| PAGE_OFFSET, text_start); |
| |
| start_pte = mmu_read_second_level_page(text_start); |
| |
| /* |
| * Kernel pages should have the PRIV bit set by the bootloader. |
| */ |
| if (!(start_pte & _PAGE_KERNEL)) |
| panic("kernel pte does not have PRIV set"); |
| |
| /* |
| * See __pa and __va in include/asm/page.h. |
| * This value is negative when running in local space but the |
| * calculations work anyway. |
| */ |
| meta_memoffset = text_start - (start_pte & PAGE_MASK); |
| |
| /* Now lets look at the heap space */ |
| heap_id = (__TBIThreadId() & TBID_THREAD_BITS) |
| + TBID_SEG(0, TBID_SEGSCOPE_LOCAL, TBID_SEGTYPE_HEAP); |
| |
| p_heap = __TBIFindSeg(NULL, heap_id); |
| |
| if (!p_heap) |
| panic("Could not find heap from TBI!"); |
| |
| /* The heap begins at the first full page after the kernel data. */ |
| heap_start = (unsigned long) &_heap_start; |
| |
| /* The heap ends at the end of the heap segment specified with |
| * ldlk. |
| */ |
| if (is_global_space(text_start)) { |
| pr_debug("WARNING: running in global space!\n"); |
| heap_end = (unsigned long)p_heap->pGAddr + p_heap->Bytes; |
| } else { |
| heap_end = (unsigned long)p_heap->pLAddr + p_heap->Bytes; |
| } |
| |
| ROOT_DEV = Root_RAM0; |
| |
| /* init_mm is the mm struct used for the first task. It is then |
| * cloned for all other tasks spawned from that task. |
| * |
| * Note - we are using the virtual addresses here. |
| */ |
| init_mm.start_code = (unsigned long)(&_stext); |
| init_mm.end_code = (unsigned long)(&_etext); |
| init_mm.end_data = (unsigned long)(&_edata); |
| init_mm.brk = (unsigned long)heap_start; |
| |
| min_low_pfn = PFN_UP(__pa(text_start)); |
| max_low_pfn = PFN_DOWN(__pa(heap_end)); |
| |
| pfn_base = min_low_pfn; |
| |
| /* Round max_pfn up to a 4Mb boundary. The free_bootmem_node() |
| * call later makes sure to keep the rounded up pages marked reserved. |
| */ |
| max_pfn = max_low_pfn + ((1 << MAX_ORDER) - 1); |
| max_pfn &= ~((1 << MAX_ORDER) - 1); |
| |
| start_pfn = PFN_UP(__pa(heap_start)); |
| |
| if (min_low_pfn & ((1 << MAX_ORDER) - 1)) { |
| /* Theoretically, we could expand the space that the |
| * bootmem allocator covers - much as we do for the |
| * 'high' address, and then tell the bootmem system |
| * that the lowest chunk is 'not available'. Right |
| * now it is just much easier to constrain the |
| * user to always MAX_ORDER align their kernel space. |
| */ |
| |
| panic("Kernel must be %d byte aligned, currently at %#lx.", |
| 1 << (MAX_ORDER + PAGE_SHIFT), |
| min_low_pfn << PAGE_SHIFT); |
| } |
| |
| #ifdef CONFIG_HIGHMEM |
| highstart_pfn = highend_pfn = max_pfn; |
| high_memory = (void *) __va(PFN_PHYS(highstart_pfn)); |
| #else |
| high_memory = (void *)__va(PFN_PHYS(max_pfn)); |
| #endif |
| |
| paging_init(heap_end); |
| |
| setup_priv(); |
| |
| /* Setup the boot cpu's mapping. The rest will be setup below. */ |
| cpu_2_hwthread_id[smp_processor_id()] = hard_processor_id(); |
| hwthread_id_2_cpu[hard_processor_id()] = smp_processor_id(); |
| |
| /* Copy device tree blob into non-init memory before unflattening */ |
| copy_fdt(); |
| unflatten_device_tree(); |
| |
| #ifdef CONFIG_SMP |
| smp_init_cpus(); |
| #endif |
| |
| if (machine_desc->init_early) |
| machine_desc->init_early(); |
| } |
| |
| static int __init customize_machine(void) |
| { |
| /* customizes platform devices, or adds new ones */ |
| if (machine_desc->init_machine) |
| machine_desc->init_machine(); |
| return 0; |
| } |
| arch_initcall(customize_machine); |
| |
| static int __init init_machine_late(void) |
| { |
| if (machine_desc->init_late) |
| machine_desc->init_late(); |
| return 0; |
| } |
| late_initcall(init_machine_late); |
| |
| #ifdef CONFIG_PROC_FS |
| /* |
| * Get CPU information for use by the procfs. |
| */ |
| static const char *get_cpu_capabilities(unsigned int txenable) |
| { |
| #ifdef CONFIG_METAG_META21 |
| /* See CORE_ID in META HTP.GP TRM - Architecture Overview 2.1.238 */ |
| int coreid = metag_in32(METAC_CORE_ID); |
| unsigned int dsp_type = (coreid >> 3) & 7; |
| unsigned int fpu_type = (coreid >> 7) & 3; |
| |
| switch (dsp_type | fpu_type << 3) { |
| case (0x00): return "EDSP"; |
| case (0x01): return "DSP"; |
| case (0x08): return "EDSP+LFPU"; |
| case (0x09): return "DSP+LFPU"; |
| case (0x10): return "EDSP+FPU"; |
| case (0x11): return "DSP+FPU"; |
| } |
| return "UNKNOWN"; |
| |
| #else |
| if (!(txenable & TXENABLE_CLASS_BITS)) |
| return "DSP"; |
| else |
| return ""; |
| #endif |
| } |
| |
| static int show_cpuinfo(struct seq_file *m, void *v) |
| { |
| const char *cpu; |
| unsigned int txenable, thread_id, major, minor; |
| unsigned long clockfreq = get_coreclock(); |
| #ifdef CONFIG_SMP |
| int i; |
| unsigned long lpj; |
| #endif |
| |
| cpu = "META"; |
| |
| txenable = __core_reg_get(TXENABLE); |
| major = (txenable & TXENABLE_MAJOR_REV_BITS) >> TXENABLE_MAJOR_REV_S; |
| minor = (txenable & TXENABLE_MINOR_REV_BITS) >> TXENABLE_MINOR_REV_S; |
| thread_id = (txenable >> 8) & 0x3; |
| |
| #ifdef CONFIG_SMP |
| for_each_online_cpu(i) { |
| lpj = per_cpu(cpu_data, i).loops_per_jiffy; |
| txenable = core_reg_read(TXUCT_ID, TXENABLE_REGNUM, |
| cpu_2_hwthread_id[i]); |
| |
| seq_printf(m, "CPU:\t\t%s %d.%d (thread %d)\n" |
| "Clocking:\t%lu.%1luMHz\n" |
| "BogoMips:\t%lu.%02lu\n" |
| "Calibration:\t%lu loops\n" |
| "Capabilities:\t%s\n\n", |
| cpu, major, minor, i, |
| clockfreq / 1000000, (clockfreq / 100000) % 10, |
| lpj / (500000 / HZ), (lpj / (5000 / HZ)) % 100, |
| lpj, |
| get_cpu_capabilities(txenable)); |
| } |
| #else |
| seq_printf(m, "CPU:\t\t%s %d.%d (thread %d)\n" |
| "Clocking:\t%lu.%1luMHz\n" |
| "BogoMips:\t%lu.%02lu\n" |
| "Calibration:\t%lu loops\n" |
| "Capabilities:\t%s\n", |
| cpu, major, minor, thread_id, |
| clockfreq / 1000000, (clockfreq / 100000) % 10, |
| loops_per_jiffy / (500000 / HZ), |
| (loops_per_jiffy / (5000 / HZ)) % 100, |
| loops_per_jiffy, |
| get_cpu_capabilities(txenable)); |
| #endif /* CONFIG_SMP */ |
| |
| #ifdef CONFIG_METAG_L2C |
| if (meta_l2c_is_present()) { |
| seq_printf(m, "L2 cache:\t%s\n" |
| "L2 cache size:\t%d KB\n", |
| meta_l2c_is_enabled() ? "enabled" : "disabled", |
| meta_l2c_size() >> 10); |
| } |
| #endif |
| return 0; |
| } |
| |
| static void *c_start(struct seq_file *m, loff_t *pos) |
| { |
| return (void *)(*pos == 0); |
| } |
| static void *c_next(struct seq_file *m, void *v, loff_t *pos) |
| { |
| return NULL; |
| } |
| static void c_stop(struct seq_file *m, void *v) |
| { |
| } |
| const struct seq_operations cpuinfo_op = { |
| .start = c_start, |
| .next = c_next, |
| .stop = c_stop, |
| .show = show_cpuinfo, |
| }; |
| #endif /* CONFIG_PROC_FS */ |
| |
| void __init metag_start_kernel(char *args) |
| { |
| /* Zero the timer register so timestamps are from the point at |
| * which the kernel started running. |
| */ |
| __core_reg_set(TXTIMER, 0); |
| |
| /* Clear the bss. */ |
| memset(__bss_start, 0, |
| (unsigned long)__bss_stop - (unsigned long)__bss_start); |
| |
| /* Remember where these are for use in setup_arch */ |
| original_cmd_line = args; |
| |
| current_thread_info()->cpu = hard_processor_id(); |
| |
| start_kernel(); |
| } |
| |
| /** |
| * setup_priv() - Set up privilege protection registers. |
| * |
| * Set up privilege protection registers such as TXPRIVEXT to prevent userland |
| * from touching our precious registers and sensitive memory areas. |
| */ |
| void setup_priv(void) |
| { |
| unsigned int offset = hard_processor_id() << TXPRIVREG_STRIDE_S; |
| |
| __core_reg_set(TXPRIVEXT, PRIV_BITS); |
| |
| metag_out32(PRIVSYSR_BITS, T0PRIVSYSR + offset); |
| metag_out32(PIOREG_BITS, T0PIOREG + offset); |
| metag_out32(PSYREG_BITS, T0PSYREG + offset); |
| } |
| |
| PTBI pTBI_get(unsigned int cpu) |
| { |
| return per_cpu(pTBI, cpu); |
| } |
| EXPORT_SYMBOL(pTBI_get); |
| |
| #if defined(CONFIG_METAG_DSP) && defined(CONFIG_METAG_FPU) |
| char capabilites[] = "dsp fpu"; |
| #elif defined(CONFIG_METAG_DSP) |
| char capabilites[] = "dsp"; |
| #elif defined(CONFIG_METAG_FPU) |
| char capabilites[] = "fpu"; |
| #else |
| char capabilites[] = ""; |
| #endif |
| |
| static struct ctl_table caps_kern_table[] = { |
| { |
| .procname = "capabilities", |
| .data = capabilites, |
| .maxlen = sizeof(capabilites), |
| .mode = 0444, |
| .proc_handler = proc_dostring, |
| }, |
| {} |
| }; |
| |
| static struct ctl_table caps_root_table[] = { |
| { |
| .procname = "kernel", |
| .mode = 0555, |
| .child = caps_kern_table, |
| }, |
| {} |
| }; |
| |
| static int __init capabilities_register_sysctl(void) |
| { |
| struct ctl_table_header *caps_table_header; |
| |
| caps_table_header = register_sysctl_table(caps_root_table); |
| if (!caps_table_header) { |
| pr_err("Unable to register CAPABILITIES sysctl\n"); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| core_initcall(capabilities_register_sysctl); |