blob: d689df52eae3790a8027aaa21bc140bd3112d3ae [file] [log] [blame]
/*
* sata_mv.c - Marvell SATA support
*
* Copyright 2005: EMC Corporation, all rights reserved.
* Copyright 2005 Red Hat, Inc. All rights reserved.
*
* Please ALWAYS copy linux-ide@vger.kernel.org on emails.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/device.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_cmnd.h>
#include <linux/libata.h>
#define DRV_NAME "sata_mv"
#define DRV_VERSION "0.7"
enum {
/* BAR's are enumerated in terms of pci_resource_start() terms */
MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
MV_IO_BAR = 2, /* offset 0x18: IO space */
MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
MV_PCI_REG_BASE = 0,
MV_IRQ_COAL_REG_BASE = 0x18000, /* 6xxx part only */
MV_IRQ_COAL_CAUSE = (MV_IRQ_COAL_REG_BASE + 0x08),
MV_IRQ_COAL_CAUSE_LO = (MV_IRQ_COAL_REG_BASE + 0x88),
MV_IRQ_COAL_CAUSE_HI = (MV_IRQ_COAL_REG_BASE + 0x8c),
MV_IRQ_COAL_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xcc),
MV_IRQ_COAL_TIME_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xd0),
MV_SATAHC0_REG_BASE = 0x20000,
MV_FLASH_CTL = 0x1046c,
MV_GPIO_PORT_CTL = 0x104f0,
MV_RESET_CFG = 0x180d8,
MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
MV_USE_Q_DEPTH = ATA_DEF_QUEUE,
MV_MAX_Q_DEPTH = 32,
MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
/* CRQB needs alignment on a 1KB boundary. Size == 1KB
* CRPB needs alignment on a 256B boundary. Size == 256B
* SG count of 176 leads to MV_PORT_PRIV_DMA_SZ == 4KB
* ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
*/
MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
MV_MAX_SG_CT = 176,
MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
MV_PORT_PRIV_DMA_SZ = (MV_CRQB_Q_SZ + MV_CRPB_Q_SZ + MV_SG_TBL_SZ),
MV_PORTS_PER_HC = 4,
/* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */
MV_PORT_HC_SHIFT = 2,
/* == (port % MV_PORTS_PER_HC) to determine hard port from 0-7 port */
MV_PORT_MASK = 3,
/* Host Flags */
MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */
MV_COMMON_FLAGS = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO |
ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING),
MV_6XXX_FLAGS = MV_FLAG_IRQ_COALESCE,
CRQB_FLAG_READ = (1 << 0),
CRQB_TAG_SHIFT = 1,
CRQB_CMD_ADDR_SHIFT = 8,
CRQB_CMD_CS = (0x2 << 11),
CRQB_CMD_LAST = (1 << 15),
CRPB_FLAG_STATUS_SHIFT = 8,
EPRD_FLAG_END_OF_TBL = (1 << 31),
/* PCI interface registers */
PCI_COMMAND_OFS = 0xc00,
PCI_MAIN_CMD_STS_OFS = 0xd30,
STOP_PCI_MASTER = (1 << 2),
PCI_MASTER_EMPTY = (1 << 3),
GLOB_SFT_RST = (1 << 4),
MV_PCI_MODE = 0xd00,
MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
MV_PCI_DISC_TIMER = 0xd04,
MV_PCI_MSI_TRIGGER = 0xc38,
MV_PCI_SERR_MASK = 0xc28,
MV_PCI_XBAR_TMOUT = 0x1d04,
MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
MV_PCI_ERR_ATTRIBUTE = 0x1d48,
MV_PCI_ERR_COMMAND = 0x1d50,
PCI_IRQ_CAUSE_OFS = 0x1d58,
PCI_IRQ_MASK_OFS = 0x1d5c,
PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
HC_MAIN_IRQ_MASK_OFS = 0x1d64,
PORT0_ERR = (1 << 0), /* shift by port # */
PORT0_DONE = (1 << 1), /* shift by port # */
HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
PCI_ERR = (1 << 18),
TRAN_LO_DONE = (1 << 19), /* 6xxx: IRQ coalescing */
TRAN_HI_DONE = (1 << 20), /* 6xxx: IRQ coalescing */
PORTS_0_7_COAL_DONE = (1 << 21), /* 6xxx: IRQ coalescing */
GPIO_INT = (1 << 22),
SELF_INT = (1 << 23),
TWSI_INT = (1 << 24),
HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
HC_MAIN_MASKED_IRQS = (TRAN_LO_DONE | TRAN_HI_DONE |
PORTS_0_7_COAL_DONE | GPIO_INT | TWSI_INT |
HC_MAIN_RSVD),
/* SATAHC registers */
HC_CFG_OFS = 0,
HC_IRQ_CAUSE_OFS = 0x14,
CRPB_DMA_DONE = (1 << 0), /* shift by port # */
HC_IRQ_COAL = (1 << 4), /* IRQ coalescing */
DEV_IRQ = (1 << 8), /* shift by port # */
/* Shadow block registers */
SHD_BLK_OFS = 0x100,
SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
/* SATA registers */
SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
SATA_ACTIVE_OFS = 0x350,
PHY_MODE3 = 0x310,
PHY_MODE4 = 0x314,
PHY_MODE2 = 0x330,
MV5_PHY_MODE = 0x74,
MV5_LT_MODE = 0x30,
MV5_PHY_CTL = 0x0C,
SATA_INTERFACE_CTL = 0x050,
MV_M2_PREAMP_MASK = 0x7e0,
/* Port registers */
EDMA_CFG_OFS = 0,
EDMA_CFG_Q_DEPTH = 0, /* queueing disabled */
EDMA_CFG_NCQ = (1 << 5),
EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
EDMA_ERR_IRQ_MASK_OFS = 0xc,
EDMA_ERR_D_PAR = (1 << 0),
EDMA_ERR_PRD_PAR = (1 << 1),
EDMA_ERR_DEV = (1 << 2),
EDMA_ERR_DEV_DCON = (1 << 3),
EDMA_ERR_DEV_CON = (1 << 4),
EDMA_ERR_SERR = (1 << 5),
EDMA_ERR_SELF_DIS = (1 << 7),
EDMA_ERR_BIST_ASYNC = (1 << 8),
EDMA_ERR_CRBQ_PAR = (1 << 9),
EDMA_ERR_CRPB_PAR = (1 << 10),
EDMA_ERR_INTRL_PAR = (1 << 11),
EDMA_ERR_IORDY = (1 << 12),
EDMA_ERR_LNK_CTRL_RX = (0xf << 13),
EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15),
EDMA_ERR_LNK_DATA_RX = (0xf << 17),
EDMA_ERR_LNK_CTRL_TX = (0x1f << 21),
EDMA_ERR_LNK_DATA_TX = (0x1f << 26),
EDMA_ERR_TRANS_PROTO = (1 << 31),
EDMA_ERR_FATAL = (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
EDMA_ERR_DEV_DCON | EDMA_ERR_CRBQ_PAR |
EDMA_ERR_CRPB_PAR | EDMA_ERR_INTRL_PAR |
EDMA_ERR_IORDY | EDMA_ERR_LNK_CTRL_RX_2 |
EDMA_ERR_LNK_DATA_RX |
EDMA_ERR_LNK_DATA_TX |
EDMA_ERR_TRANS_PROTO),
EDMA_REQ_Q_BASE_HI_OFS = 0x10,
EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
EDMA_REQ_Q_PTR_SHIFT = 5,
EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
EDMA_RSP_Q_IN_PTR_OFS = 0x20,
EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
EDMA_RSP_Q_PTR_SHIFT = 3,
EDMA_CMD_OFS = 0x28,
EDMA_EN = (1 << 0),
EDMA_DS = (1 << 1),
ATA_RST = (1 << 2),
EDMA_IORDY_TMOUT = 0x34,
EDMA_ARB_CFG = 0x38,
/* Host private flags (hp_flags) */
MV_HP_FLAG_MSI = (1 << 0),
MV_HP_ERRATA_50XXB0 = (1 << 1),
MV_HP_ERRATA_50XXB2 = (1 << 2),
MV_HP_ERRATA_60X1B2 = (1 << 3),
MV_HP_ERRATA_60X1C0 = (1 << 4),
MV_HP_ERRATA_XX42A0 = (1 << 5),
MV_HP_50XX = (1 << 6),
MV_HP_GEN_IIE = (1 << 7),
/* Port private flags (pp_flags) */
MV_PP_FLAG_EDMA_EN = (1 << 0),
MV_PP_FLAG_EDMA_DS_ACT = (1 << 1),
};
#define IS_50XX(hpriv) ((hpriv)->hp_flags & MV_HP_50XX)
#define IS_60XX(hpriv) (((hpriv)->hp_flags & MV_HP_50XX) == 0)
#define IS_GEN_I(hpriv) IS_50XX(hpriv)
#define IS_GEN_II(hpriv) IS_60XX(hpriv)
#define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
enum {
/* Our DMA boundary is determined by an ePRD being unable to handle
* anything larger than 64KB
*/
MV_DMA_BOUNDARY = 0xffffU,
EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
};
enum chip_type {
chip_504x,
chip_508x,
chip_5080,
chip_604x,
chip_608x,
chip_6042,
chip_7042,
};
/* Command ReQuest Block: 32B */
struct mv_crqb {
__le32 sg_addr;
__le32 sg_addr_hi;
__le16 ctrl_flags;
__le16 ata_cmd[11];
};
struct mv_crqb_iie {
__le32 addr;
__le32 addr_hi;
__le32 flags;
__le32 len;
__le32 ata_cmd[4];
};
/* Command ResPonse Block: 8B */
struct mv_crpb {
__le16 id;
__le16 flags;
__le32 tmstmp;
};
/* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
struct mv_sg {
__le32 addr;
__le32 flags_size;
__le32 addr_hi;
__le32 reserved;
};
struct mv_port_priv {
struct mv_crqb *crqb;
dma_addr_t crqb_dma;
struct mv_crpb *crpb;
dma_addr_t crpb_dma;
struct mv_sg *sg_tbl;
dma_addr_t sg_tbl_dma;
u32 pp_flags;
};
struct mv_port_signal {
u32 amps;
u32 pre;
};
struct mv_host_priv;
struct mv_hw_ops {
void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int port);
void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
void __iomem *mmio);
int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int n_hc);
void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
void (*reset_bus)(struct pci_dev *pdev, void __iomem *mmio);
};
struct mv_host_priv {
u32 hp_flags;
struct mv_port_signal signal[8];
const struct mv_hw_ops *ops;
};
static void mv_irq_clear(struct ata_port *ap);
static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
static void mv_phy_reset(struct ata_port *ap);
static void __mv_phy_reset(struct ata_port *ap, int can_sleep);
static int mv_port_start(struct ata_port *ap);
static void mv_port_stop(struct ata_port *ap);
static void mv_qc_prep(struct ata_queued_cmd *qc);
static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
static irqreturn_t mv_interrupt(int irq, void *dev_instance);
static void mv_eng_timeout(struct ata_port *ap);
static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);
static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int port);
static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
void __iomem *mmio);
static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int n_hc);
static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio);
static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int port);
static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
void __iomem *mmio);
static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int n_hc);
static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio);
static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int port_no);
static void mv_stop_and_reset(struct ata_port *ap);
static struct scsi_host_template mv_sht = {
.module = THIS_MODULE,
.name = DRV_NAME,
.ioctl = ata_scsi_ioctl,
.queuecommand = ata_scsi_queuecmd,
.can_queue = MV_USE_Q_DEPTH,
.this_id = ATA_SHT_THIS_ID,
.sg_tablesize = MV_MAX_SG_CT / 2,
.cmd_per_lun = ATA_SHT_CMD_PER_LUN,
.emulated = ATA_SHT_EMULATED,
.use_clustering = ATA_SHT_USE_CLUSTERING,
.proc_name = DRV_NAME,
.dma_boundary = MV_DMA_BOUNDARY,
.slave_configure = ata_scsi_slave_config,
.slave_destroy = ata_scsi_slave_destroy,
.bios_param = ata_std_bios_param,
};
static const struct ata_port_operations mv5_ops = {
.port_disable = ata_port_disable,
.tf_load = ata_tf_load,
.tf_read = ata_tf_read,
.check_status = ata_check_status,
.exec_command = ata_exec_command,
.dev_select = ata_std_dev_select,
.phy_reset = mv_phy_reset,
.qc_prep = mv_qc_prep,
.qc_issue = mv_qc_issue,
.data_xfer = ata_data_xfer,
.eng_timeout = mv_eng_timeout,
.irq_handler = mv_interrupt,
.irq_clear = mv_irq_clear,
.irq_on = ata_irq_on,
.irq_ack = ata_irq_ack,
.scr_read = mv5_scr_read,
.scr_write = mv5_scr_write,
.port_start = mv_port_start,
.port_stop = mv_port_stop,
};
static const struct ata_port_operations mv6_ops = {
.port_disable = ata_port_disable,
.tf_load = ata_tf_load,
.tf_read = ata_tf_read,
.check_status = ata_check_status,
.exec_command = ata_exec_command,
.dev_select = ata_std_dev_select,
.phy_reset = mv_phy_reset,
.qc_prep = mv_qc_prep,
.qc_issue = mv_qc_issue,
.data_xfer = ata_data_xfer,
.eng_timeout = mv_eng_timeout,
.irq_handler = mv_interrupt,
.irq_clear = mv_irq_clear,
.irq_on = ata_irq_on,
.irq_ack = ata_irq_ack,
.scr_read = mv_scr_read,
.scr_write = mv_scr_write,
.port_start = mv_port_start,
.port_stop = mv_port_stop,
};
static const struct ata_port_operations mv_iie_ops = {
.port_disable = ata_port_disable,
.tf_load = ata_tf_load,
.tf_read = ata_tf_read,
.check_status = ata_check_status,
.exec_command = ata_exec_command,
.dev_select = ata_std_dev_select,
.phy_reset = mv_phy_reset,
.qc_prep = mv_qc_prep_iie,
.qc_issue = mv_qc_issue,
.data_xfer = ata_data_xfer,
.eng_timeout = mv_eng_timeout,
.irq_handler = mv_interrupt,
.irq_clear = mv_irq_clear,
.irq_on = ata_irq_on,
.irq_ack = ata_irq_ack,
.scr_read = mv_scr_read,
.scr_write = mv_scr_write,
.port_start = mv_port_start,
.port_stop = mv_port_stop,
};
static const struct ata_port_info mv_port_info[] = {
{ /* chip_504x */
.sht = &mv_sht,
.flags = MV_COMMON_FLAGS,
.pio_mask = 0x1f, /* pio0-4 */
.udma_mask = 0x7f, /* udma0-6 */
.port_ops = &mv5_ops,
},
{ /* chip_508x */
.sht = &mv_sht,
.flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
.pio_mask = 0x1f, /* pio0-4 */
.udma_mask = 0x7f, /* udma0-6 */
.port_ops = &mv5_ops,
},
{ /* chip_5080 */
.sht = &mv_sht,
.flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
.pio_mask = 0x1f, /* pio0-4 */
.udma_mask = 0x7f, /* udma0-6 */
.port_ops = &mv5_ops,
},
{ /* chip_604x */
.sht = &mv_sht,
.flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
.pio_mask = 0x1f, /* pio0-4 */
.udma_mask = 0x7f, /* udma0-6 */
.port_ops = &mv6_ops,
},
{ /* chip_608x */
.sht = &mv_sht,
.flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS |
MV_FLAG_DUAL_HC),
.pio_mask = 0x1f, /* pio0-4 */
.udma_mask = 0x7f, /* udma0-6 */
.port_ops = &mv6_ops,
},
{ /* chip_6042 */
.sht = &mv_sht,
.flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
.pio_mask = 0x1f, /* pio0-4 */
.udma_mask = 0x7f, /* udma0-6 */
.port_ops = &mv_iie_ops,
},
{ /* chip_7042 */
.sht = &mv_sht,
.flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
.pio_mask = 0x1f, /* pio0-4 */
.udma_mask = 0x7f, /* udma0-6 */
.port_ops = &mv_iie_ops,
},
};
static const struct pci_device_id mv_pci_tbl[] = {
{ PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
{ PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
{ PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
{ PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
{ PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
{ PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
{ PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
{ PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
{ PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
{ PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
{ PCI_VDEVICE(TTI, 0x2310), chip_7042 },
{ } /* terminate list */
};
static struct pci_driver mv_pci_driver = {
.name = DRV_NAME,
.id_table = mv_pci_tbl,
.probe = mv_init_one,
.remove = ata_pci_remove_one,
};
static const struct mv_hw_ops mv5xxx_ops = {
.phy_errata = mv5_phy_errata,
.enable_leds = mv5_enable_leds,
.read_preamp = mv5_read_preamp,
.reset_hc = mv5_reset_hc,
.reset_flash = mv5_reset_flash,
.reset_bus = mv5_reset_bus,
};
static const struct mv_hw_ops mv6xxx_ops = {
.phy_errata = mv6_phy_errata,
.enable_leds = mv6_enable_leds,
.read_preamp = mv6_read_preamp,
.reset_hc = mv6_reset_hc,
.reset_flash = mv6_reset_flash,
.reset_bus = mv_reset_pci_bus,
};
/*
* module options
*/
static int msi; /* Use PCI msi; either zero (off, default) or non-zero */
/*
* Functions
*/
static inline void writelfl(unsigned long data, void __iomem *addr)
{
writel(data, addr);
(void) readl(addr); /* flush to avoid PCI posted write */
}
static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
{
return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
}
static inline unsigned int mv_hc_from_port(unsigned int port)
{
return port >> MV_PORT_HC_SHIFT;
}
static inline unsigned int mv_hardport_from_port(unsigned int port)
{
return port & MV_PORT_MASK;
}
static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
unsigned int port)
{
return mv_hc_base(base, mv_hc_from_port(port));
}
static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
{
return mv_hc_base_from_port(base, port) +
MV_SATAHC_ARBTR_REG_SZ +
(mv_hardport_from_port(port) * MV_PORT_REG_SZ);
}
static inline void __iomem *mv_ap_base(struct ata_port *ap)
{
return mv_port_base(ap->host->iomap[MV_PRIMARY_BAR], ap->port_no);
}
static inline int mv_get_hc_count(unsigned long port_flags)
{
return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
}
static void mv_irq_clear(struct ata_port *ap)
{
}
/**
* mv_start_dma - Enable eDMA engine
* @base: port base address
* @pp: port private data
*
* Verify the local cache of the eDMA state is accurate with a
* WARN_ON.
*
* LOCKING:
* Inherited from caller.
*/
static void mv_start_dma(void __iomem *base, struct mv_port_priv *pp)
{
if (!(MV_PP_FLAG_EDMA_EN & pp->pp_flags)) {
writelfl(EDMA_EN, base + EDMA_CMD_OFS);
pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
}
WARN_ON(!(EDMA_EN & readl(base + EDMA_CMD_OFS)));
}
/**
* mv_stop_dma - Disable eDMA engine
* @ap: ATA channel to manipulate
*
* Verify the local cache of the eDMA state is accurate with a
* WARN_ON.
*
* LOCKING:
* Inherited from caller.
*/
static void mv_stop_dma(struct ata_port *ap)
{
void __iomem *port_mmio = mv_ap_base(ap);
struct mv_port_priv *pp = ap->private_data;
u32 reg;
int i;
if (MV_PP_FLAG_EDMA_EN & pp->pp_flags) {
/* Disable EDMA if active. The disable bit auto clears.
*/
writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
} else {
WARN_ON(EDMA_EN & readl(port_mmio + EDMA_CMD_OFS));
}
/* now properly wait for the eDMA to stop */
for (i = 1000; i > 0; i--) {
reg = readl(port_mmio + EDMA_CMD_OFS);
if (!(EDMA_EN & reg)) {
break;
}
udelay(100);
}
if (EDMA_EN & reg) {
ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
/* FIXME: Consider doing a reset here to recover */
}
}
#ifdef ATA_DEBUG
static void mv_dump_mem(void __iomem *start, unsigned bytes)
{
int b, w;
for (b = 0; b < bytes; ) {
DPRINTK("%p: ", start + b);
for (w = 0; b < bytes && w < 4; w++) {
printk("%08x ",readl(start + b));
b += sizeof(u32);
}
printk("\n");
}
}
#endif
static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
{
#ifdef ATA_DEBUG
int b, w;
u32 dw;
for (b = 0; b < bytes; ) {
DPRINTK("%02x: ", b);
for (w = 0; b < bytes && w < 4; w++) {
(void) pci_read_config_dword(pdev,b,&dw);
printk("%08x ",dw);
b += sizeof(u32);
}
printk("\n");
}
#endif
}
static void mv_dump_all_regs(void __iomem *mmio_base, int port,
struct pci_dev *pdev)
{
#ifdef ATA_DEBUG
void __iomem *hc_base = mv_hc_base(mmio_base,
port >> MV_PORT_HC_SHIFT);
void __iomem *port_base;
int start_port, num_ports, p, start_hc, num_hcs, hc;
if (0 > port) {
start_hc = start_port = 0;
num_ports = 8; /* shld be benign for 4 port devs */
num_hcs = 2;
} else {
start_hc = port >> MV_PORT_HC_SHIFT;
start_port = port;
num_ports = num_hcs = 1;
}
DPRINTK("All registers for port(s) %u-%u:\n", start_port,
num_ports > 1 ? num_ports - 1 : start_port);
if (NULL != pdev) {
DPRINTK("PCI config space regs:\n");
mv_dump_pci_cfg(pdev, 0x68);
}
DPRINTK("PCI regs:\n");
mv_dump_mem(mmio_base+0xc00, 0x3c);
mv_dump_mem(mmio_base+0xd00, 0x34);
mv_dump_mem(mmio_base+0xf00, 0x4);
mv_dump_mem(mmio_base+0x1d00, 0x6c);
for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
hc_base = mv_hc_base(mmio_base, hc);
DPRINTK("HC regs (HC %i):\n", hc);
mv_dump_mem(hc_base, 0x1c);
}
for (p = start_port; p < start_port + num_ports; p++) {
port_base = mv_port_base(mmio_base, p);
DPRINTK("EDMA regs (port %i):\n",p);
mv_dump_mem(port_base, 0x54);
DPRINTK("SATA regs (port %i):\n",p);
mv_dump_mem(port_base+0x300, 0x60);
}
#endif
}
static unsigned int mv_scr_offset(unsigned int sc_reg_in)
{
unsigned int ofs;
switch (sc_reg_in) {
case SCR_STATUS:
case SCR_CONTROL:
case SCR_ERROR:
ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
break;
case SCR_ACTIVE:
ofs = SATA_ACTIVE_OFS; /* active is not with the others */
break;
default:
ofs = 0xffffffffU;
break;
}
return ofs;
}
static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
{
unsigned int ofs = mv_scr_offset(sc_reg_in);
if (0xffffffffU != ofs) {
return readl(mv_ap_base(ap) + ofs);
} else {
return (u32) ofs;
}
}
static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
{
unsigned int ofs = mv_scr_offset(sc_reg_in);
if (0xffffffffU != ofs) {
writelfl(val, mv_ap_base(ap) + ofs);
}
}
static void mv_edma_cfg(struct mv_host_priv *hpriv, void __iomem *port_mmio)
{
u32 cfg = readl(port_mmio + EDMA_CFG_OFS);
/* set up non-NCQ EDMA configuration */
cfg &= ~0x1f; /* clear queue depth */
cfg &= ~EDMA_CFG_NCQ; /* clear NCQ mode */
cfg &= ~(1 << 9); /* disable equeue */
if (IS_GEN_I(hpriv))
cfg |= (1 << 8); /* enab config burst size mask */
else if (IS_GEN_II(hpriv))
cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
else if (IS_GEN_IIE(hpriv)) {
cfg |= (1 << 23); /* dis RX PM port mask */
cfg &= ~(1 << 16); /* dis FIS-based switching (for now) */
cfg &= ~(1 << 19); /* dis 128-entry queue (for now?) */
cfg |= (1 << 18); /* enab early completion */
cfg |= (1 << 17); /* enab host q cache */
cfg |= (1 << 22); /* enab cutthrough */
}
writelfl(cfg, port_mmio + EDMA_CFG_OFS);
}
/**
* mv_port_start - Port specific init/start routine.
* @ap: ATA channel to manipulate
*
* Allocate and point to DMA memory, init port private memory,
* zero indices.
*
* LOCKING:
* Inherited from caller.
*/
static int mv_port_start(struct ata_port *ap)
{
struct device *dev = ap->host->dev;
struct mv_host_priv *hpriv = ap->host->private_data;
struct mv_port_priv *pp;
void __iomem *port_mmio = mv_ap_base(ap);
void *mem;
dma_addr_t mem_dma;
int rc;
pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
if (!pp)
return -ENOMEM;
mem = dmam_alloc_coherent(dev, MV_PORT_PRIV_DMA_SZ, &mem_dma,
GFP_KERNEL);
if (!mem)
return -ENOMEM;
memset(mem, 0, MV_PORT_PRIV_DMA_SZ);
rc = ata_pad_alloc(ap, dev);
if (rc)
return rc;
/* First item in chunk of DMA memory:
* 32-slot command request table (CRQB), 32 bytes each in size
*/
pp->crqb = mem;
pp->crqb_dma = mem_dma;
mem += MV_CRQB_Q_SZ;
mem_dma += MV_CRQB_Q_SZ;
/* Second item:
* 32-slot command response table (CRPB), 8 bytes each in size
*/
pp->crpb = mem;
pp->crpb_dma = mem_dma;
mem += MV_CRPB_Q_SZ;
mem_dma += MV_CRPB_Q_SZ;
/* Third item:
* Table of scatter-gather descriptors (ePRD), 16 bytes each
*/
pp->sg_tbl = mem;
pp->sg_tbl_dma = mem_dma;
mv_edma_cfg(hpriv, port_mmio);
writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
writelfl(pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK,
port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
writelfl(pp->crqb_dma & 0xffffffff,
port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
else
writelfl(0, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
writelfl(pp->crpb_dma & 0xffffffff,
port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
else
writelfl(0, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
writelfl(pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK,
port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
/* Don't turn on EDMA here...do it before DMA commands only. Else
* we'll be unable to send non-data, PIO, etc due to restricted access
* to shadow regs.
*/
ap->private_data = pp;
return 0;
}
/**
* mv_port_stop - Port specific cleanup/stop routine.
* @ap: ATA channel to manipulate
*
* Stop DMA, cleanup port memory.
*
* LOCKING:
* This routine uses the host lock to protect the DMA stop.
*/
static void mv_port_stop(struct ata_port *ap)
{
unsigned long flags;
spin_lock_irqsave(&ap->host->lock, flags);
mv_stop_dma(ap);
spin_unlock_irqrestore(&ap->host->lock, flags);
}
/**
* mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
* @qc: queued command whose SG list to source from
*
* Populate the SG list and mark the last entry.
*
* LOCKING:
* Inherited from caller.
*/
static void mv_fill_sg(struct ata_queued_cmd *qc)
{
struct mv_port_priv *pp = qc->ap->private_data;
unsigned int i = 0;
struct scatterlist *sg;
ata_for_each_sg(sg, qc) {
dma_addr_t addr;
u32 sg_len, len, offset;
addr = sg_dma_address(sg);
sg_len = sg_dma_len(sg);
while (sg_len) {
offset = addr & MV_DMA_BOUNDARY;
len = sg_len;
if ((offset + sg_len) > 0x10000)
len = 0x10000 - offset;
pp->sg_tbl[i].addr = cpu_to_le32(addr & 0xffffffff);
pp->sg_tbl[i].addr_hi = cpu_to_le32((addr >> 16) >> 16);
pp->sg_tbl[i].flags_size = cpu_to_le32(len & 0xffff);
sg_len -= len;
addr += len;
if (!sg_len && ata_sg_is_last(sg, qc))
pp->sg_tbl[i].flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
i++;
}
}
}
static inline unsigned mv_inc_q_index(unsigned index)
{
return (index + 1) & MV_MAX_Q_DEPTH_MASK;
}
static inline void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
{
u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
(last ? CRQB_CMD_LAST : 0);
*cmdw = cpu_to_le16(tmp);
}
/**
* mv_qc_prep - Host specific command preparation.
* @qc: queued command to prepare
*
* This routine simply redirects to the general purpose routine
* if command is not DMA. Else, it handles prep of the CRQB
* (command request block), does some sanity checking, and calls
* the SG load routine.
*
* LOCKING:
* Inherited from caller.
*/
static void mv_qc_prep(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct mv_port_priv *pp = ap->private_data;
__le16 *cw;
struct ata_taskfile *tf;
u16 flags = 0;
unsigned in_index;
if (ATA_PROT_DMA != qc->tf.protocol)
return;
/* Fill in command request block
*/
if (!(qc->tf.flags & ATA_TFLAG_WRITE))
flags |= CRQB_FLAG_READ;
WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
flags |= qc->tag << CRQB_TAG_SHIFT;
/* get current queue index from hardware */
in_index = (readl(mv_ap_base(ap) + EDMA_REQ_Q_IN_PTR_OFS)
>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
pp->crqb[in_index].sg_addr =
cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
pp->crqb[in_index].sg_addr_hi =
cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
cw = &pp->crqb[in_index].ata_cmd[0];
tf = &qc->tf;
/* Sadly, the CRQB cannot accomodate all registers--there are
* only 11 bytes...so we must pick and choose required
* registers based on the command. So, we drop feature and
* hob_feature for [RW] DMA commands, but they are needed for
* NCQ. NCQ will drop hob_nsect.
*/
switch (tf->command) {
case ATA_CMD_READ:
case ATA_CMD_READ_EXT:
case ATA_CMD_WRITE:
case ATA_CMD_WRITE_EXT:
case ATA_CMD_WRITE_FUA_EXT:
mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
break;
#ifdef LIBATA_NCQ /* FIXME: remove this line when NCQ added */
case ATA_CMD_FPDMA_READ:
case ATA_CMD_FPDMA_WRITE:
mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
break;
#endif /* FIXME: remove this line when NCQ added */
default:
/* The only other commands EDMA supports in non-queued and
* non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
* of which are defined/used by Linux. If we get here, this
* driver needs work.
*
* FIXME: modify libata to give qc_prep a return value and
* return error here.
*/
BUG_ON(tf->command);
break;
}
mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
if (!(qc->flags & ATA_QCFLAG_DMAMAP))
return;
mv_fill_sg(qc);
}
/**
* mv_qc_prep_iie - Host specific command preparation.
* @qc: queued command to prepare
*
* This routine simply redirects to the general purpose routine
* if command is not DMA. Else, it handles prep of the CRQB
* (command request block), does some sanity checking, and calls
* the SG load routine.
*
* LOCKING:
* Inherited from caller.
*/
static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct mv_port_priv *pp = ap->private_data;
struct mv_crqb_iie *crqb;
struct ata_taskfile *tf;
unsigned in_index;
u32 flags = 0;
if (ATA_PROT_DMA != qc->tf.protocol)
return;
/* Fill in Gen IIE command request block
*/
if (!(qc->tf.flags & ATA_TFLAG_WRITE))
flags |= CRQB_FLAG_READ;
WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
flags |= qc->tag << CRQB_TAG_SHIFT;
/* get current queue index from hardware */
in_index = (readl(mv_ap_base(ap) + EDMA_REQ_Q_IN_PTR_OFS)
>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
crqb->addr = cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
crqb->flags = cpu_to_le32(flags);
tf = &qc->tf;
crqb->ata_cmd[0] = cpu_to_le32(
(tf->command << 16) |
(tf->feature << 24)
);
crqb->ata_cmd[1] = cpu_to_le32(
(tf->lbal << 0) |
(tf->lbam << 8) |
(tf->lbah << 16) |
(tf->device << 24)
);
crqb->ata_cmd[2] = cpu_to_le32(
(tf->hob_lbal << 0) |
(tf->hob_lbam << 8) |
(tf->hob_lbah << 16) |
(tf->hob_feature << 24)
);
crqb->ata_cmd[3] = cpu_to_le32(
(tf->nsect << 0) |
(tf->hob_nsect << 8)
);
if (!(qc->flags & ATA_QCFLAG_DMAMAP))
return;
mv_fill_sg(qc);
}
/**
* mv_qc_issue - Initiate a command to the host
* @qc: queued command to start
*
* This routine simply redirects to the general purpose routine
* if command is not DMA. Else, it sanity checks our local
* caches of the request producer/consumer indices then enables
* DMA and bumps the request producer index.
*
* LOCKING:
* Inherited from caller.
*/
static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
{
void __iomem *port_mmio = mv_ap_base(qc->ap);
struct mv_port_priv *pp = qc->ap->private_data;
unsigned in_index;
u32 in_ptr;
if (ATA_PROT_DMA != qc->tf.protocol) {
/* We're about to send a non-EDMA capable command to the
* port. Turn off EDMA so there won't be problems accessing
* shadow block, etc registers.
*/
mv_stop_dma(qc->ap);
return ata_qc_issue_prot(qc);
}
in_ptr = readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
in_index = (in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
/* until we do queuing, the queue should be empty at this point */
WARN_ON(in_index != ((readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS)
>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));
in_index = mv_inc_q_index(in_index); /* now incr producer index */
mv_start_dma(port_mmio, pp);
/* and write the request in pointer to kick the EDMA to life */
in_ptr &= EDMA_REQ_Q_BASE_LO_MASK;
in_ptr |= in_index << EDMA_REQ_Q_PTR_SHIFT;
writelfl(in_ptr, port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
return 0;
}
/**
* mv_get_crpb_status - get status from most recently completed cmd
* @ap: ATA channel to manipulate
*
* This routine is for use when the port is in DMA mode, when it
* will be using the CRPB (command response block) method of
* returning command completion information. We check indices
* are good, grab status, and bump the response consumer index to
* prove that we're up to date.
*
* LOCKING:
* Inherited from caller.
*/
static u8 mv_get_crpb_status(struct ata_port *ap)
{
void __iomem *port_mmio = mv_ap_base(ap);
struct mv_port_priv *pp = ap->private_data;
unsigned out_index;
u32 out_ptr;
u8 ata_status;
out_ptr = readl(port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
out_index = (out_ptr >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
ata_status = le16_to_cpu(pp->crpb[out_index].flags)
>> CRPB_FLAG_STATUS_SHIFT;
/* increment our consumer index... */
out_index = mv_inc_q_index(out_index);
/* and, until we do NCQ, there should only be 1 CRPB waiting */
WARN_ON(out_index != ((readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
>> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));
/* write out our inc'd consumer index so EDMA knows we're caught up */
out_ptr &= EDMA_RSP_Q_BASE_LO_MASK;
out_ptr |= out_index << EDMA_RSP_Q_PTR_SHIFT;
writelfl(out_ptr, port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
/* Return ATA status register for completed CRPB */
return ata_status;
}
/**
* mv_err_intr - Handle error interrupts on the port
* @ap: ATA channel to manipulate
* @reset_allowed: bool: 0 == don't trigger from reset here
*
* In most cases, just clear the interrupt and move on. However,
* some cases require an eDMA reset, which is done right before
* the COMRESET in mv_phy_reset(). The SERR case requires a
* clear of pending errors in the SATA SERROR register. Finally,
* if the port disabled DMA, update our cached copy to match.
*
* LOCKING:
* Inherited from caller.
*/
static void mv_err_intr(struct ata_port *ap, int reset_allowed)
{
void __iomem *port_mmio = mv_ap_base(ap);
u32 edma_err_cause, serr = 0;
edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
if (EDMA_ERR_SERR & edma_err_cause) {
sata_scr_read(ap, SCR_ERROR, &serr);
sata_scr_write_flush(ap, SCR_ERROR, serr);
}
if (EDMA_ERR_SELF_DIS & edma_err_cause) {
struct mv_port_priv *pp = ap->private_data;
pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
}
DPRINTK(KERN_ERR "ata%u: port error; EDMA err cause: 0x%08x "
"SERR: 0x%08x\n", ap->id, edma_err_cause, serr);
/* Clear EDMA now that SERR cleanup done */
writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
/* check for fatal here and recover if needed */
if (reset_allowed && (EDMA_ERR_FATAL & edma_err_cause))
mv_stop_and_reset(ap);
}
/**
* mv_host_intr - Handle all interrupts on the given host controller
* @host: host specific structure
* @relevant: port error bits relevant to this host controller
* @hc: which host controller we're to look at
*
* Read then write clear the HC interrupt status then walk each
* port connected to the HC and see if it needs servicing. Port
* success ints are reported in the HC interrupt status reg, the
* port error ints are reported in the higher level main
* interrupt status register and thus are passed in via the
* 'relevant' argument.
*
* LOCKING:
* Inherited from caller.
*/
static void mv_host_intr(struct ata_host *host, u32 relevant, unsigned int hc)
{
void __iomem *mmio = host->iomap[MV_PRIMARY_BAR];
void __iomem *hc_mmio = mv_hc_base(mmio, hc);
struct ata_queued_cmd *qc;
u32 hc_irq_cause;
int shift, port, port0, hard_port, handled;
unsigned int err_mask;
if (hc == 0) {
port0 = 0;
} else {
port0 = MV_PORTS_PER_HC;
}
/* we'll need the HC success int register in most cases */
hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
if (hc_irq_cause) {
writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
}
VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n",
hc,relevant,hc_irq_cause);
for (port = port0; port < port0 + MV_PORTS_PER_HC; port++) {
u8 ata_status = 0;
struct ata_port *ap = host->ports[port];
struct mv_port_priv *pp = ap->private_data;
hard_port = mv_hardport_from_port(port); /* range 0..3 */
handled = 0; /* ensure ata_status is set if handled++ */
/* Note that DEV_IRQ might happen spuriously during EDMA,
* and should be ignored in such cases.
* The cause of this is still under investigation.
*/
if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
/* EDMA: check for response queue interrupt */
if ((CRPB_DMA_DONE << hard_port) & hc_irq_cause) {
ata_status = mv_get_crpb_status(ap);
handled = 1;
}
} else {
/* PIO: check for device (drive) interrupt */
if ((DEV_IRQ << hard_port) & hc_irq_cause) {
ata_status = readb(ap->ioaddr.status_addr);
handled = 1;
/* ignore spurious intr if drive still BUSY */
if (ata_status & ATA_BUSY) {
ata_status = 0;
handled = 0;
}
}
}
if (ap && (ap->flags & ATA_FLAG_DISABLED))
continue;
err_mask = ac_err_mask(ata_status);
shift = port << 1; /* (port * 2) */
if (port >= MV_PORTS_PER_HC) {
shift++; /* skip bit 8 in the HC Main IRQ reg */
}
if ((PORT0_ERR << shift) & relevant) {
mv_err_intr(ap, 1);
err_mask |= AC_ERR_OTHER;
handled = 1;
}
if (handled) {
qc = ata_qc_from_tag(ap, ap->active_tag);
if (qc && (qc->flags & ATA_QCFLAG_ACTIVE)) {
VPRINTK("port %u IRQ found for qc, "
"ata_status 0x%x\n", port,ata_status);
/* mark qc status appropriately */
if (!(qc->tf.flags & ATA_TFLAG_POLLING)) {
qc->err_mask |= err_mask;
ata_qc_complete(qc);
}
}
}
}
VPRINTK("EXIT\n");
}
/**
* mv_interrupt -
* @irq: unused
* @dev_instance: private data; in this case the host structure
* @regs: unused
*
* Read the read only register to determine if any host
* controllers have pending interrupts. If so, call lower level
* routine to handle. Also check for PCI errors which are only
* reported here.
*
* LOCKING:
* This routine holds the host lock while processing pending
* interrupts.
*/
static irqreturn_t mv_interrupt(int irq, void *dev_instance)
{
struct ata_host *host = dev_instance;
unsigned int hc, handled = 0, n_hcs;
void __iomem *mmio = host->iomap[MV_PRIMARY_BAR];
struct mv_host_priv *hpriv;
u32 irq_stat;
irq_stat = readl(mmio + HC_MAIN_IRQ_CAUSE_OFS);
/* check the cases where we either have nothing pending or have read
* a bogus register value which can indicate HW removal or PCI fault
*/
if (!irq_stat || (0xffffffffU == irq_stat)) {
return IRQ_NONE;
}
n_hcs = mv_get_hc_count(host->ports[0]->flags);
spin_lock(&host->lock);
for (hc = 0; hc < n_hcs; hc++) {
u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT));
if (relevant) {
mv_host_intr(host, relevant, hc);
handled++;
}
}
hpriv = host->private_data;
if (IS_60XX(hpriv)) {
/* deal with the interrupt coalescing bits */
if (irq_stat & (TRAN_LO_DONE | TRAN_HI_DONE | PORTS_0_7_COAL_DONE)) {
writelfl(0, mmio + MV_IRQ_COAL_CAUSE_LO);
writelfl(0, mmio + MV_IRQ_COAL_CAUSE_HI);
writelfl(0, mmio + MV_IRQ_COAL_CAUSE);
}
}
if (PCI_ERR & irq_stat) {
printk(KERN_ERR DRV_NAME ": PCI ERROR; PCI IRQ cause=0x%08x\n",
readl(mmio + PCI_IRQ_CAUSE_OFS));
DPRINTK("All regs @ PCI error\n");
mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
handled++;
}
spin_unlock(&host->lock);
return IRQ_RETVAL(handled);
}
static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
{
void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
return hc_mmio + ofs;
}
static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
{
unsigned int ofs;
switch (sc_reg_in) {
case SCR_STATUS:
case SCR_ERROR:
case SCR_CONTROL:
ofs = sc_reg_in * sizeof(u32);
break;
default:
ofs = 0xffffffffU;
break;
}
return ofs;
}
static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
{
void __iomem *mmio = ap->host->iomap[MV_PRIMARY_BAR];
void __iomem *addr = mv5_phy_base(mmio, ap->port_no);
unsigned int ofs = mv5_scr_offset(sc_reg_in);
if (ofs != 0xffffffffU)
return readl(addr + ofs);
else
return (u32) ofs;
}
static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
{
void __iomem *mmio = ap->host->iomap[MV_PRIMARY_BAR];
void __iomem *addr = mv5_phy_base(mmio, ap->port_no);
unsigned int ofs = mv5_scr_offset(sc_reg_in);
if (ofs != 0xffffffffU)
writelfl(val, addr + ofs);
}
static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio)
{
u8 rev_id;
int early_5080;
pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
early_5080 = (pdev->device == 0x5080) && (rev_id == 0);
if (!early_5080) {
u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
tmp |= (1 << 0);
writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
}
mv_reset_pci_bus(pdev, mmio);
}
static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
{
writel(0x0fcfffff, mmio + MV_FLASH_CTL);
}
static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
void __iomem *mmio)
{
void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
u32 tmp;
tmp = readl(phy_mmio + MV5_PHY_MODE);
hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
}
static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
{
u32 tmp;
writel(0, mmio + MV_GPIO_PORT_CTL);
/* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
tmp |= ~(1 << 0);
writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
}
static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int port)
{
void __iomem *phy_mmio = mv5_phy_base(mmio, port);
const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
u32 tmp;
int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
if (fix_apm_sq) {
tmp = readl(phy_mmio + MV5_LT_MODE);
tmp |= (1 << 19);
writel(tmp, phy_mmio + MV5_LT_MODE);
tmp = readl(phy_mmio + MV5_PHY_CTL);
tmp &= ~0x3;
tmp |= 0x1;
writel(tmp, phy_mmio + MV5_PHY_CTL);
}
tmp = readl(phy_mmio + MV5_PHY_MODE);
tmp &= ~mask;
tmp |= hpriv->signal[port].pre;
tmp |= hpriv->signal[port].amps;
writel(tmp, phy_mmio + MV5_PHY_MODE);
}
#undef ZERO
#define ZERO(reg) writel(0, port_mmio + (reg))
static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int port)
{
void __iomem *port_mmio = mv_port_base(mmio, port);
writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
mv_channel_reset(hpriv, mmio, port);
ZERO(0x028); /* command */
writel(0x11f, port_mmio + EDMA_CFG_OFS);
ZERO(0x004); /* timer */
ZERO(0x008); /* irq err cause */
ZERO(0x00c); /* irq err mask */
ZERO(0x010); /* rq bah */
ZERO(0x014); /* rq inp */
ZERO(0x018); /* rq outp */
ZERO(0x01c); /* respq bah */
ZERO(0x024); /* respq outp */
ZERO(0x020); /* respq inp */
ZERO(0x02c); /* test control */
writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
}
#undef ZERO
#define ZERO(reg) writel(0, hc_mmio + (reg))
static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int hc)
{
void __iomem *hc_mmio = mv_hc_base(mmio, hc);
u32 tmp;
ZERO(0x00c);
ZERO(0x010);
ZERO(0x014);
ZERO(0x018);
tmp = readl(hc_mmio + 0x20);
tmp &= 0x1c1c1c1c;
tmp |= 0x03030303;
writel(tmp, hc_mmio + 0x20);
}
#undef ZERO
static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int n_hc)
{
unsigned int hc, port;
for (hc = 0; hc < n_hc; hc++) {
for (port = 0; port < MV_PORTS_PER_HC; port++)
mv5_reset_hc_port(hpriv, mmio,
(hc * MV_PORTS_PER_HC) + port);
mv5_reset_one_hc(hpriv, mmio, hc);
}
return 0;
}
#undef ZERO
#define ZERO(reg) writel(0, mmio + (reg))
static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio)
{
u32 tmp;
tmp = readl(mmio + MV_PCI_MODE);
tmp &= 0xff00ffff;
writel(tmp, mmio + MV_PCI_MODE);
ZERO(MV_PCI_DISC_TIMER);
ZERO(MV_PCI_MSI_TRIGGER);
writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
ZERO(HC_MAIN_IRQ_MASK_OFS);
ZERO(MV_PCI_SERR_MASK);
ZERO(PCI_IRQ_CAUSE_OFS);
ZERO(PCI_IRQ_MASK_OFS);
ZERO(MV_PCI_ERR_LOW_ADDRESS);
ZERO(MV_PCI_ERR_HIGH_ADDRESS);
ZERO(MV_PCI_ERR_ATTRIBUTE);
ZERO(MV_PCI_ERR_COMMAND);
}
#undef ZERO
static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
{
u32 tmp;
mv5_reset_flash(hpriv, mmio);
tmp = readl(mmio + MV_GPIO_PORT_CTL);
tmp &= 0x3;
tmp |= (1 << 5) | (1 << 6);
writel(tmp, mmio + MV_GPIO_PORT_CTL);
}
/**
* mv6_reset_hc - Perform the 6xxx global soft reset
* @mmio: base address of the HBA
*
* This routine only applies to 6xxx parts.
*
* LOCKING:
* Inherited from caller.
*/
static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int n_hc)
{
void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
int i, rc = 0;
u32 t;
/* Following procedure defined in PCI "main command and status
* register" table.
*/
t = readl(reg);
writel(t | STOP_PCI_MASTER, reg);
for (i = 0; i < 1000; i++) {
udelay(1);
t = readl(reg);
if (PCI_MASTER_EMPTY & t) {
break;
}
}
if (!(PCI_MASTER_EMPTY & t)) {
printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
rc = 1;
goto done;
}
/* set reset */
i = 5;
do {
writel(t | GLOB_SFT_RST, reg);
t = readl(reg);
udelay(1);
} while (!(GLOB_SFT_RST & t) && (i-- > 0));
if (!(GLOB_SFT_RST & t)) {
printk(KERN_ERR DRV_NAME ": can't set global reset\n");
rc = 1;
goto done;
}
/* clear reset and *reenable the PCI master* (not mentioned in spec) */
i = 5;
do {
writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
t = readl(reg);
udelay(1);
} while ((GLOB_SFT_RST & t) && (i-- > 0));
if (GLOB_SFT_RST & t) {
printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
rc = 1;
}
done:
return rc;
}
static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
void __iomem *mmio)
{
void __iomem *port_mmio;
u32 tmp;
tmp = readl(mmio + MV_RESET_CFG);
if ((tmp & (1 << 0)) == 0) {
hpriv->signal[idx].amps = 0x7 << 8;
hpriv->signal[idx].pre = 0x1 << 5;
return;
}
port_mmio = mv_port_base(mmio, idx);
tmp = readl(port_mmio + PHY_MODE2);
hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
}
static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
{
writel(0x00000060, mmio + MV_GPIO_PORT_CTL);
}
static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int port)
{
void __iomem *port_mmio = mv_port_base(mmio, port);
u32 hp_flags = hpriv->hp_flags;
int fix_phy_mode2 =
hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
int fix_phy_mode4 =
hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
u32 m2, tmp;
if (fix_phy_mode2) {
m2 = readl(port_mmio + PHY_MODE2);
m2 &= ~(1 << 16);
m2 |= (1 << 31);
writel(m2, port_mmio + PHY_MODE2);
udelay(200);
m2 = readl(port_mmio + PHY_MODE2);
m2 &= ~((1 << 16) | (1 << 31));
writel(m2, port_mmio + PHY_MODE2);
udelay(200);
}
/* who knows what this magic does */
tmp = readl(port_mmio + PHY_MODE3);
tmp &= ~0x7F800000;
tmp |= 0x2A800000;
writel(tmp, port_mmio + PHY_MODE3);
if (fix_phy_mode4) {
u32 m4;
m4 = readl(port_mmio + PHY_MODE4);
if (hp_flags & MV_HP_ERRATA_60X1B2)
tmp = readl(port_mmio + 0x310);
m4 = (m4 & ~(1 << 1)) | (1 << 0);
writel(m4, port_mmio + PHY_MODE4);
if (hp_flags & MV_HP_ERRATA_60X1B2)
writel(tmp, port_mmio + 0x310);
}
/* Revert values of pre-emphasis and signal amps to the saved ones */
m2 = readl(port_mmio + PHY_MODE2);
m2 &= ~MV_M2_PREAMP_MASK;
m2 |= hpriv->signal[port].amps;
m2 |= hpriv->signal[port].pre;
m2 &= ~(1 << 16);
/* according to mvSata 3.6.1, some IIE values are fixed */
if (IS_GEN_IIE(hpriv)) {
m2 &= ~0xC30FF01F;
m2 |= 0x0000900F;
}
writel(m2, port_mmio + PHY_MODE2);
}
static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int port_no)
{
void __iomem *port_mmio = mv_port_base(mmio, port_no);
writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);
if (IS_60XX(hpriv)) {
u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
ifctl |= (1 << 7); /* enable gen2i speed */
ifctl = (ifctl & 0xfff) | 0x9b1000; /* from chip spec */
writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
}
udelay(25); /* allow reset propagation */
/* Spec never mentions clearing the bit. Marvell's driver does
* clear the bit, however.
*/
writelfl(0, port_mmio + EDMA_CMD_OFS);
hpriv->ops->phy_errata(hpriv, mmio, port_no);
if (IS_50XX(hpriv))
mdelay(1);
}
static void mv_stop_and_reset(struct ata_port *ap)
{
struct mv_host_priv *hpriv = ap->host->private_data;
void __iomem *mmio = ap->host->iomap[MV_PRIMARY_BAR];
mv_stop_dma(ap);
mv_channel_reset(hpriv, mmio, ap->port_no);
__mv_phy_reset(ap, 0);
}
static inline void __msleep(unsigned int msec, int can_sleep)
{
if (can_sleep)
msleep(msec);
else
mdelay(msec);
}
/**
* __mv_phy_reset - Perform eDMA reset followed by COMRESET
* @ap: ATA channel to manipulate
*
* Part of this is taken from __sata_phy_reset and modified to
* not sleep since this routine gets called from interrupt level.
*
* LOCKING:
* Inherited from caller. This is coded to safe to call at
* interrupt level, i.e. it does not sleep.
*/
static void __mv_phy_reset(struct ata_port *ap, int can_sleep)
{
struct mv_port_priv *pp = ap->private_data;
struct mv_host_priv *hpriv = ap->host->private_data;
void __iomem *port_mmio = mv_ap_base(ap);
struct ata_taskfile tf;
struct ata_device *dev = &ap->device[0];
unsigned long timeout;
int retry = 5;
u32 sstatus;
VPRINTK("ENTER, port %u, mmio 0x%p\n", ap->port_no, port_mmio);
DPRINTK("S-regs after ATA_RST: SStat 0x%08x SErr 0x%08x "
"SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
/* Issue COMRESET via SControl */
comreset_retry:
sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
__msleep(1, can_sleep);
sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
__msleep(20, can_sleep);
timeout = jiffies + msecs_to_jiffies(200);
do {
sata_scr_read(ap, SCR_STATUS, &sstatus);
if (((sstatus & 0x3) == 3) || ((sstatus & 0x3) == 0))
break;
__msleep(1, can_sleep);
} while (time_before(jiffies, timeout));
/* work around errata */
if (IS_60XX(hpriv) &&
(sstatus != 0x0) && (sstatus != 0x113) && (sstatus != 0x123) &&
(retry-- > 0))
goto comreset_retry;
DPRINTK("S-regs after PHY wake: SStat 0x%08x SErr 0x%08x "
"SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
if (ata_port_online(ap)) {
ata_port_probe(ap);
} else {
sata_scr_read(ap, SCR_STATUS, &sstatus);
ata_port_printk(ap, KERN_INFO,
"no device found (phy stat %08x)\n", sstatus);
ata_port_disable(ap);
return;
}
ap->cbl = ATA_CBL_SATA;
/* even after SStatus reflects that device is ready,
* it seems to take a while for link to be fully
* established (and thus Status no longer 0x80/0x7F),
* so we poll a bit for that, here.
*/
retry = 20;
while (1) {
u8 drv_stat = ata_check_status(ap);
if ((drv_stat != 0x80) && (drv_stat != 0x7f))
break;
__msleep(500, can_sleep);
if (retry-- <= 0)
break;
}
tf.lbah = readb(ap->ioaddr.lbah_addr);
tf.lbam = readb(ap->ioaddr.lbam_addr);
tf.lbal = readb(ap->ioaddr.lbal_addr);
tf.nsect = readb(ap->ioaddr.nsect_addr);
dev->class = ata_dev_classify(&tf);
if (!ata_dev_enabled(dev)) {
VPRINTK("Port disabled post-sig: No device present.\n");
ata_port_disable(ap);
}
writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
VPRINTK("EXIT\n");
}
static void mv_phy_reset(struct ata_port *ap)
{
__mv_phy_reset(ap, 1);
}
/**
* mv_eng_timeout - Routine called by libata when SCSI times out I/O
* @ap: ATA channel to manipulate
*
* Intent is to clear all pending error conditions, reset the
* chip/bus, fail the command, and move on.
*
* LOCKING:
* This routine holds the host lock while failing the command.
*/
static void mv_eng_timeout(struct ata_port *ap)
{
void __iomem *mmio = ap->host->iomap[MV_PRIMARY_BAR];
struct ata_queued_cmd *qc;
unsigned long flags;
ata_port_printk(ap, KERN_ERR, "Entering mv_eng_timeout\n");
DPRINTK("All regs @ start of eng_timeout\n");
mv_dump_all_regs(mmio, ap->port_no, to_pci_dev(ap->host->dev));
qc = ata_qc_from_tag(ap, ap->active_tag);
printk(KERN_ERR "mmio_base %p ap %p qc %p scsi_cmnd %p &cmnd %p\n",
mmio, ap, qc, qc->scsicmd, &qc->scsicmd->cmnd);
spin_lock_irqsave(&ap->host->lock, flags);
mv_err_intr(ap, 0);
mv_stop_and_reset(ap);
spin_unlock_irqrestore(&ap->host->lock, flags);
WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
if (qc->flags & ATA_QCFLAG_ACTIVE) {
qc->err_mask |= AC_ERR_TIMEOUT;
ata_eh_qc_complete(qc);
}
}
/**
* mv_port_init - Perform some early initialization on a single port.
* @port: libata data structure storing shadow register addresses
* @port_mmio: base address of the port
*
* Initialize shadow register mmio addresses, clear outstanding
* interrupts on the port, and unmask interrupts for the future
* start of the port.
*
* LOCKING:
* Inherited from caller.
*/
static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
{
void __iomem *shd_base = port_mmio + SHD_BLK_OFS;
unsigned serr_ofs;
/* PIO related setup
*/
port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
port->error_addr =
port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
port->status_addr =
port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
/* special case: control/altstatus doesn't have ATA_REG_ address */
port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
/* unused: */
port->cmd_addr = port->bmdma_addr = port->scr_addr = 0;
/* Clear any currently outstanding port interrupt conditions */
serr_ofs = mv_scr_offset(SCR_ERROR);
writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
/* unmask all EDMA error interrupts */
writelfl(~0, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
readl(port_mmio + EDMA_CFG_OFS),
readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
}
static int mv_chip_id(struct pci_dev *pdev, struct mv_host_priv *hpriv,
unsigned int board_idx)
{
u8 rev_id;
u32 hp_flags = hpriv->hp_flags;
pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
switch(board_idx) {
case chip_5080:
hpriv->ops = &mv5xxx_ops;
hp_flags |= MV_HP_50XX;
switch (rev_id) {
case 0x1:
hp_flags |= MV_HP_ERRATA_50XXB0;
break;
case 0x3:
hp_flags |= MV_HP_ERRATA_50XXB2;
break;
default:
dev_printk(KERN_WARNING, &pdev->dev,
"Applying 50XXB2 workarounds to unknown rev\n");
hp_flags |= MV_HP_ERRATA_50XXB2;
break;
}
break;
case chip_504x:
case chip_508x:
hpriv->ops = &mv5xxx_ops;
hp_flags |= MV_HP_50XX;
switch (rev_id) {
case 0x0:
hp_flags |= MV_HP_ERRATA_50XXB0;
break;
case 0x3:
hp_flags |= MV_HP_ERRATA_50XXB2;
break;
default:
dev_printk(KERN_WARNING, &pdev->dev,
"Applying B2 workarounds to unknown rev\n");
hp_flags |= MV_HP_ERRATA_50XXB2;
break;
}
break;
case chip_604x:
case chip_608x:
hpriv->ops = &mv6xxx_ops;
switch (rev_id) {
case 0x7:
hp_flags |= MV_HP_ERRATA_60X1B2;
break;
case 0x9:
hp_flags |= MV_HP_ERRATA_60X1C0;
break;
default:
dev_printk(KERN_WARNING, &pdev->dev,
"Applying B2 workarounds to unknown rev\n");
hp_flags |= MV_HP_ERRATA_60X1B2;
break;
}
break;
case chip_7042:
case chip_6042:
hpriv->ops = &mv6xxx_ops;
hp_flags |= MV_HP_GEN_IIE;
switch (rev_id) {
case 0x0:
hp_flags |= MV_HP_ERRATA_XX42A0;
break;
case 0x1:
hp_flags |= MV_HP_ERRATA_60X1C0;
break;
default:
dev_printk(KERN_WARNING, &pdev->dev,
"Applying 60X1C0 workarounds to unknown rev\n");
hp_flags |= MV_HP_ERRATA_60X1C0;
break;
}
break;
default:
printk(KERN_ERR DRV_NAME ": BUG: invalid board index %u\n", board_idx);
return 1;
}
hpriv->hp_flags = hp_flags;
return 0;
}
/**
* mv_init_host - Perform some early initialization of the host.
* @pdev: host PCI device
* @probe_ent: early data struct representing the host
*
* If possible, do an early global reset of the host. Then do
* our port init and clear/unmask all/relevant host interrupts.
*
* LOCKING:
* Inherited from caller.
*/
static int mv_init_host(struct pci_dev *pdev, struct ata_probe_ent *probe_ent,
unsigned int board_idx)
{
int rc = 0, n_hc, port, hc;
void __iomem *mmio = probe_ent->iomap[MV_PRIMARY_BAR];
struct mv_host_priv *hpriv = probe_ent->private_data;
/* global interrupt mask */
writel(0, mmio + HC_MAIN_IRQ_MASK_OFS);
rc = mv_chip_id(pdev, hpriv, board_idx);
if (rc)
goto done;
n_hc = mv_get_hc_count(probe_ent->port_flags);
probe_ent->n_ports = MV_PORTS_PER_HC * n_hc;
for (port = 0; port < probe_ent->n_ports; port++)
hpriv->ops->read_preamp(hpriv, port, mmio);
rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
if (rc)
goto done;
hpriv->ops->reset_flash(hpriv, mmio);
hpriv->ops->reset_bus(pdev, mmio);
hpriv->ops->enable_leds(hpriv, mmio);
for (port = 0; port < probe_ent->n_ports; port++) {
if (IS_60XX(hpriv)) {
void __iomem *port_mmio = mv_port_base(mmio, port);
u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
ifctl |= (1 << 7); /* enable gen2i speed */
ifctl = (ifctl & 0xfff) | 0x9b1000; /* from chip spec */
writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
}
hpriv->ops->phy_errata(hpriv, mmio, port);
}
for (port = 0; port < probe_ent->n_ports; port++) {
void __iomem *port_mmio = mv_port_base(mmio, port);
mv_port_init(&probe_ent->port[port], port_mmio);
}
for (hc = 0; hc < n_hc; hc++) {
void __iomem *hc_mmio = mv_hc_base(mmio, hc);
VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
"(before clear)=0x%08x\n", hc,
readl(hc_mmio + HC_CFG_OFS),
readl(hc_mmio + HC_IRQ_CAUSE_OFS));
/* Clear any currently outstanding hc interrupt conditions */
writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
}
/* Clear any currently outstanding host interrupt conditions */
writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
/* and unmask interrupt generation for host regs */
writelfl(PCI_UNMASK_ALL_IRQS, mmio + PCI_IRQ_MASK_OFS);
writelfl(~HC_MAIN_MASKED_IRQS, mmio + HC_MAIN_IRQ_MASK_OFS);
VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
"PCI int cause/mask=0x%08x/0x%08x\n",
readl(mmio + HC_MAIN_IRQ_CAUSE_OFS),
readl(mmio + HC_MAIN_IRQ_MASK_OFS),
readl(mmio + PCI_IRQ_CAUSE_OFS),
readl(mmio + PCI_IRQ_MASK_OFS));
done:
return rc;
}
/**
* mv_print_info - Dump key info to kernel log for perusal.
* @probe_ent: early data struct representing the host
*
* FIXME: complete this.
*
* LOCKING:
* Inherited from caller.
*/
static void mv_print_info(struct ata_probe_ent *probe_ent)
{
struct pci_dev *pdev = to_pci_dev(probe_ent->dev);
struct mv_host_priv *hpriv = probe_ent->private_data;
u8 rev_id, scc;
const char *scc_s;
/* Use this to determine the HW stepping of the chip so we know
* what errata to workaround
*/
pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
if (scc == 0)
scc_s = "SCSI";
else if (scc == 0x01)
scc_s = "RAID";
else
scc_s = "unknown";
dev_printk(KERN_INFO, &pdev->dev,
"%u slots %u ports %s mode IRQ via %s\n",
(unsigned)MV_MAX_Q_DEPTH, probe_ent->n_ports,
scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
}
/**
* mv_init_one - handle a positive probe of a Marvell host
* @pdev: PCI device found
* @ent: PCI device ID entry for the matched host
*
* LOCKING:
* Inherited from caller.
*/
static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
static int printed_version = 0;
struct device *dev = &pdev->dev;
struct ata_probe_ent *probe_ent;
struct mv_host_priv *hpriv;
unsigned int board_idx = (unsigned int)ent->driver_data;
int rc;
if (!printed_version++)
dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
rc = pcim_enable_device(pdev);
if (rc)
return rc;
pci_set_master(pdev);
rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
if (rc == -EBUSY)
pcim_pin_device(pdev);
if (rc)
return rc;
probe_ent = devm_kzalloc(dev, sizeof(*probe_ent), GFP_KERNEL);
if (probe_ent == NULL)
return -ENOMEM;
probe_ent->dev = pci_dev_to_dev(pdev);
INIT_LIST_HEAD(&probe_ent->node);
hpriv = devm_kzalloc(dev, sizeof(*hpriv), GFP_KERNEL);
if (!hpriv)
return -ENOMEM;
probe_ent->sht = mv_port_info[board_idx].sht;
probe_ent->port_flags = mv_port_info[board_idx].flags;
probe_ent->pio_mask = mv_port_info[board_idx].pio_mask;
probe_ent->udma_mask = mv_port_info[board_idx].udma_mask;
probe_ent->port_ops = mv_port_info[board_idx].port_ops;
probe_ent->irq = pdev->irq;
probe_ent->irq_flags = IRQF_SHARED;
probe_ent->iomap = pcim_iomap_table(pdev);
probe_ent->private_data = hpriv;
/* initialize adapter */
rc = mv_init_host(pdev, probe_ent, board_idx);
if (rc)
return rc;
/* Enable interrupts */
if (msi && !pci_enable_msi(pdev))
pci_intx(pdev, 1);
mv_dump_pci_cfg(pdev, 0x68);
mv_print_info(probe_ent);
if (ata_device_add(probe_ent) == 0)
return -ENODEV;
devm_kfree(dev, probe_ent);
return 0;
}
static int __init mv_init(void)
{
return pci_register_driver(&mv_pci_driver);
}
static void __exit mv_exit(void)
{
pci_unregister_driver(&mv_pci_driver);
}
MODULE_AUTHOR("Brett Russ");
MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
MODULE_VERSION(DRV_VERSION);
module_param(msi, int, 0444);
MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
module_init(mv_init);
module_exit(mv_exit);