blob: a36a7435edf51bd29cc32681cb8b211b29a9f8cb [file] [log] [blame]
/*
* raid5.c : Multiple Devices driver for Linux
* Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
* Copyright (C) 1999, 2000 Ingo Molnar
* Copyright (C) 2002, 2003 H. Peter Anvin
*
* RAID-4/5/6 management functions.
* Thanks to Penguin Computing for making the RAID-6 development possible
* by donating a test server!
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* You should have received a copy of the GNU General Public License
* (for example /usr/src/linux/COPYING); if not, write to the Free
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* BITMAP UNPLUGGING:
*
* The sequencing for updating the bitmap reliably is a little
* subtle (and I got it wrong the first time) so it deserves some
* explanation.
*
* We group bitmap updates into batches. Each batch has a number.
* We may write out several batches at once, but that isn't very important.
* conf->bm_write is the number of the last batch successfully written.
* conf->bm_flush is the number of the last batch that was closed to
* new additions.
* When we discover that we will need to write to any block in a stripe
* (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
* the number of the batch it will be in. This is bm_flush+1.
* When we are ready to do a write, if that batch hasn't been written yet,
* we plug the array and queue the stripe for later.
* When an unplug happens, we increment bm_flush, thus closing the current
* batch.
* When we notice that bm_flush > bm_write, we write out all pending updates
* to the bitmap, and advance bm_write to where bm_flush was.
* This may occasionally write a bit out twice, but is sure never to
* miss any bits.
*/
#include <linux/kthread.h>
#include "raid6.h"
#include <linux/raid/bitmap.h>
#include <linux/async_tx.h>
/*
* Stripe cache
*/
#define NR_STRIPES 256
#define STRIPE_SIZE PAGE_SIZE
#define STRIPE_SHIFT (PAGE_SHIFT - 9)
#define STRIPE_SECTORS (STRIPE_SIZE>>9)
#define IO_THRESHOLD 1
#define BYPASS_THRESHOLD 1
#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
#define HASH_MASK (NR_HASH - 1)
#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
/* bio's attached to a stripe+device for I/O are linked together in bi_sector
* order without overlap. There may be several bio's per stripe+device, and
* a bio could span several devices.
* When walking this list for a particular stripe+device, we must never proceed
* beyond a bio that extends past this device, as the next bio might no longer
* be valid.
* This macro is used to determine the 'next' bio in the list, given the sector
* of the current stripe+device
*/
#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
/*
* The following can be used to debug the driver
*/
#define RAID5_PARANOIA 1
#if RAID5_PARANOIA && defined(CONFIG_SMP)
# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
#else
# define CHECK_DEVLOCK()
#endif
#ifdef DEBUG
#define inline
#define __inline__
#endif
#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
#if !RAID6_USE_EMPTY_ZERO_PAGE
/* In .bss so it's zeroed */
const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
#endif
/*
* We maintain a biased count of active stripes in the bottom 16 bits of
* bi_phys_segments, and a count of processed stripes in the upper 16 bits
*/
static inline int raid5_bi_phys_segments(struct bio *bio)
{
return bio->bi_phys_segments & 0xffff;
}
static inline int raid5_bi_hw_segments(struct bio *bio)
{
return (bio->bi_phys_segments >> 16) & 0xffff;
}
static inline int raid5_dec_bi_phys_segments(struct bio *bio)
{
--bio->bi_phys_segments;
return raid5_bi_phys_segments(bio);
}
static inline int raid5_dec_bi_hw_segments(struct bio *bio)
{
unsigned short val = raid5_bi_hw_segments(bio);
--val;
bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
return val;
}
static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
{
bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
}
static inline int raid6_next_disk(int disk, int raid_disks)
{
disk++;
return (disk < raid_disks) ? disk : 0;
}
static void return_io(struct bio *return_bi)
{
struct bio *bi = return_bi;
while (bi) {
return_bi = bi->bi_next;
bi->bi_next = NULL;
bi->bi_size = 0;
bio_endio(bi, 0);
bi = return_bi;
}
}
static void print_raid5_conf (raid5_conf_t *conf);
static int stripe_operations_active(struct stripe_head *sh)
{
return sh->check_state || sh->reconstruct_state ||
test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}
static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
{
if (atomic_dec_and_test(&sh->count)) {
BUG_ON(!list_empty(&sh->lru));
BUG_ON(atomic_read(&conf->active_stripes)==0);
if (test_bit(STRIPE_HANDLE, &sh->state)) {
if (test_bit(STRIPE_DELAYED, &sh->state)) {
list_add_tail(&sh->lru, &conf->delayed_list);
blk_plug_device(conf->mddev->queue);
} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
sh->bm_seq - conf->seq_write > 0) {
list_add_tail(&sh->lru, &conf->bitmap_list);
blk_plug_device(conf->mddev->queue);
} else {
clear_bit(STRIPE_BIT_DELAY, &sh->state);
list_add_tail(&sh->lru, &conf->handle_list);
}
md_wakeup_thread(conf->mddev->thread);
} else {
BUG_ON(stripe_operations_active(sh));
if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
atomic_dec(&conf->preread_active_stripes);
if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
md_wakeup_thread(conf->mddev->thread);
}
atomic_dec(&conf->active_stripes);
if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
list_add_tail(&sh->lru, &conf->inactive_list);
wake_up(&conf->wait_for_stripe);
if (conf->retry_read_aligned)
md_wakeup_thread(conf->mddev->thread);
}
}
}
}
static void release_stripe(struct stripe_head *sh)
{
raid5_conf_t *conf = sh->raid_conf;
unsigned long flags;
spin_lock_irqsave(&conf->device_lock, flags);
__release_stripe(conf, sh);
spin_unlock_irqrestore(&conf->device_lock, flags);
}
static inline void remove_hash(struct stripe_head *sh)
{
pr_debug("remove_hash(), stripe %llu\n",
(unsigned long long)sh->sector);
hlist_del_init(&sh->hash);
}
static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
{
struct hlist_head *hp = stripe_hash(conf, sh->sector);
pr_debug("insert_hash(), stripe %llu\n",
(unsigned long long)sh->sector);
CHECK_DEVLOCK();
hlist_add_head(&sh->hash, hp);
}
/* find an idle stripe, make sure it is unhashed, and return it. */
static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
{
struct stripe_head *sh = NULL;
struct list_head *first;
CHECK_DEVLOCK();
if (list_empty(&conf->inactive_list))
goto out;
first = conf->inactive_list.next;
sh = list_entry(first, struct stripe_head, lru);
list_del_init(first);
remove_hash(sh);
atomic_inc(&conf->active_stripes);
out:
return sh;
}
static void shrink_buffers(struct stripe_head *sh, int num)
{
struct page *p;
int i;
for (i=0; i<num ; i++) {
p = sh->dev[i].page;
if (!p)
continue;
sh->dev[i].page = NULL;
put_page(p);
}
}
static int grow_buffers(struct stripe_head *sh, int num)
{
int i;
for (i=0; i<num; i++) {
struct page *page;
if (!(page = alloc_page(GFP_KERNEL))) {
return 1;
}
sh->dev[i].page = page;
}
return 0;
}
static void raid5_build_block(struct stripe_head *sh, int i);
static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
{
raid5_conf_t *conf = sh->raid_conf;
int i;
BUG_ON(atomic_read(&sh->count) != 0);
BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
BUG_ON(stripe_operations_active(sh));
CHECK_DEVLOCK();
pr_debug("init_stripe called, stripe %llu\n",
(unsigned long long)sh->sector);
remove_hash(sh);
sh->sector = sector;
sh->pd_idx = pd_idx;
sh->state = 0;
sh->disks = disks;
for (i = sh->disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (dev->toread || dev->read || dev->towrite || dev->written ||
test_bit(R5_LOCKED, &dev->flags)) {
printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
(unsigned long long)sh->sector, i, dev->toread,
dev->read, dev->towrite, dev->written,
test_bit(R5_LOCKED, &dev->flags));
BUG();
}
dev->flags = 0;
raid5_build_block(sh, i);
}
insert_hash(conf, sh);
}
static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
{
struct stripe_head *sh;
struct hlist_node *hn;
CHECK_DEVLOCK();
pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
if (sh->sector == sector && sh->disks == disks)
return sh;
pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
return NULL;
}
static void unplug_slaves(mddev_t *mddev);
static void raid5_unplug_device(struct request_queue *q);
static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
int pd_idx, int noblock)
{
struct stripe_head *sh;
pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
spin_lock_irq(&conf->device_lock);
do {
wait_event_lock_irq(conf->wait_for_stripe,
conf->quiesce == 0,
conf->device_lock, /* nothing */);
sh = __find_stripe(conf, sector, disks);
if (!sh) {
if (!conf->inactive_blocked)
sh = get_free_stripe(conf);
if (noblock && sh == NULL)
break;
if (!sh) {
conf->inactive_blocked = 1;
wait_event_lock_irq(conf->wait_for_stripe,
!list_empty(&conf->inactive_list) &&
(atomic_read(&conf->active_stripes)
< (conf->max_nr_stripes *3/4)
|| !conf->inactive_blocked),
conf->device_lock,
raid5_unplug_device(conf->mddev->queue)
);
conf->inactive_blocked = 0;
} else
init_stripe(sh, sector, pd_idx, disks);
} else {
if (atomic_read(&sh->count)) {
BUG_ON(!list_empty(&sh->lru));
} else {
if (!test_bit(STRIPE_HANDLE, &sh->state))
atomic_inc(&conf->active_stripes);
if (list_empty(&sh->lru) &&
!test_bit(STRIPE_EXPANDING, &sh->state))
BUG();
list_del_init(&sh->lru);
}
}
} while (sh == NULL);
if (sh)
atomic_inc(&sh->count);
spin_unlock_irq(&conf->device_lock);
return sh;
}
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
{
raid5_conf_t *conf = sh->raid_conf;
int i, disks = sh->disks;
might_sleep();
for (i = disks; i--; ) {
int rw;
struct bio *bi;
mdk_rdev_t *rdev;
if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
rw = WRITE;
else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
rw = READ;
else
continue;
bi = &sh->dev[i].req;
bi->bi_rw = rw;
if (rw == WRITE)
bi->bi_end_io = raid5_end_write_request;
else
bi->bi_end_io = raid5_end_read_request;
rcu_read_lock();
rdev = rcu_dereference(conf->disks[i].rdev);
if (rdev && test_bit(Faulty, &rdev->flags))
rdev = NULL;
if (rdev)
atomic_inc(&rdev->nr_pending);
rcu_read_unlock();
if (rdev) {
if (s->syncing || s->expanding || s->expanded)
md_sync_acct(rdev->bdev, STRIPE_SECTORS);
set_bit(STRIPE_IO_STARTED, &sh->state);
bi->bi_bdev = rdev->bdev;
pr_debug("%s: for %llu schedule op %ld on disc %d\n",
__func__, (unsigned long long)sh->sector,
bi->bi_rw, i);
atomic_inc(&sh->count);
bi->bi_sector = sh->sector + rdev->data_offset;
bi->bi_flags = 1 << BIO_UPTODATE;
bi->bi_vcnt = 1;
bi->bi_max_vecs = 1;
bi->bi_idx = 0;
bi->bi_io_vec = &sh->dev[i].vec;
bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
bi->bi_io_vec[0].bv_offset = 0;
bi->bi_size = STRIPE_SIZE;
bi->bi_next = NULL;
if (rw == WRITE &&
test_bit(R5_ReWrite, &sh->dev[i].flags))
atomic_add(STRIPE_SECTORS,
&rdev->corrected_errors);
generic_make_request(bi);
} else {
if (rw == WRITE)
set_bit(STRIPE_DEGRADED, &sh->state);
pr_debug("skip op %ld on disc %d for sector %llu\n",
bi->bi_rw, i, (unsigned long long)sh->sector);
clear_bit(R5_LOCKED, &sh->dev[i].flags);
set_bit(STRIPE_HANDLE, &sh->state);
}
}
}
static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
sector_t sector, struct dma_async_tx_descriptor *tx)
{
struct bio_vec *bvl;
struct page *bio_page;
int i;
int page_offset;
if (bio->bi_sector >= sector)
page_offset = (signed)(bio->bi_sector - sector) * 512;
else
page_offset = (signed)(sector - bio->bi_sector) * -512;
bio_for_each_segment(bvl, bio, i) {
int len = bio_iovec_idx(bio, i)->bv_len;
int clen;
int b_offset = 0;
if (page_offset < 0) {
b_offset = -page_offset;
page_offset += b_offset;
len -= b_offset;
}
if (len > 0 && page_offset + len > STRIPE_SIZE)
clen = STRIPE_SIZE - page_offset;
else
clen = len;
if (clen > 0) {
b_offset += bio_iovec_idx(bio, i)->bv_offset;
bio_page = bio_iovec_idx(bio, i)->bv_page;
if (frombio)
tx = async_memcpy(page, bio_page, page_offset,
b_offset, clen,
ASYNC_TX_DEP_ACK,
tx, NULL, NULL);
else
tx = async_memcpy(bio_page, page, b_offset,
page_offset, clen,
ASYNC_TX_DEP_ACK,
tx, NULL, NULL);
}
if (clen < len) /* hit end of page */
break;
page_offset += len;
}
return tx;
}
static void ops_complete_biofill(void *stripe_head_ref)
{
struct stripe_head *sh = stripe_head_ref;
struct bio *return_bi = NULL;
raid5_conf_t *conf = sh->raid_conf;
int i;
pr_debug("%s: stripe %llu\n", __func__,
(unsigned long long)sh->sector);
/* clear completed biofills */
spin_lock_irq(&conf->device_lock);
for (i = sh->disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
/* acknowledge completion of a biofill operation */
/* and check if we need to reply to a read request,
* new R5_Wantfill requests are held off until
* !STRIPE_BIOFILL_RUN
*/
if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
struct bio *rbi, *rbi2;
BUG_ON(!dev->read);
rbi = dev->read;
dev->read = NULL;
while (rbi && rbi->bi_sector <
dev->sector + STRIPE_SECTORS) {
rbi2 = r5_next_bio(rbi, dev->sector);
if (!raid5_dec_bi_phys_segments(rbi)) {
rbi->bi_next = return_bi;
return_bi = rbi;
}
rbi = rbi2;
}
}
}
spin_unlock_irq(&conf->device_lock);
clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
return_io(return_bi);
set_bit(STRIPE_HANDLE, &sh->state);
release_stripe(sh);
}
static void ops_run_biofill(struct stripe_head *sh)
{
struct dma_async_tx_descriptor *tx = NULL;
raid5_conf_t *conf = sh->raid_conf;
int i;
pr_debug("%s: stripe %llu\n", __func__,
(unsigned long long)sh->sector);
for (i = sh->disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (test_bit(R5_Wantfill, &dev->flags)) {
struct bio *rbi;
spin_lock_irq(&conf->device_lock);
dev->read = rbi = dev->toread;
dev->toread = NULL;
spin_unlock_irq(&conf->device_lock);
while (rbi && rbi->bi_sector <
dev->sector + STRIPE_SECTORS) {
tx = async_copy_data(0, rbi, dev->page,
dev->sector, tx);
rbi = r5_next_bio(rbi, dev->sector);
}
}
}
atomic_inc(&sh->count);
async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
ops_complete_biofill, sh);
}
static void ops_complete_compute5(void *stripe_head_ref)
{
struct stripe_head *sh = stripe_head_ref;
int target = sh->ops.target;
struct r5dev *tgt = &sh->dev[target];
pr_debug("%s: stripe %llu\n", __func__,
(unsigned long long)sh->sector);
set_bit(R5_UPTODATE, &tgt->flags);
BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
clear_bit(R5_Wantcompute, &tgt->flags);
clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
if (sh->check_state == check_state_compute_run)
sh->check_state = check_state_compute_result;
set_bit(STRIPE_HANDLE, &sh->state);
release_stripe(sh);
}
static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh)
{
/* kernel stack size limits the total number of disks */
int disks = sh->disks;
struct page *xor_srcs[disks];
int target = sh->ops.target;
struct r5dev *tgt = &sh->dev[target];
struct page *xor_dest = tgt->page;
int count = 0;
struct dma_async_tx_descriptor *tx;
int i;
pr_debug("%s: stripe %llu block: %d\n",
__func__, (unsigned long long)sh->sector, target);
BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
for (i = disks; i--; )
if (i != target)
xor_srcs[count++] = sh->dev[i].page;
atomic_inc(&sh->count);
if (unlikely(count == 1))
tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
0, NULL, ops_complete_compute5, sh);
else
tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
ASYNC_TX_XOR_ZERO_DST, NULL,
ops_complete_compute5, sh);
return tx;
}
static void ops_complete_prexor(void *stripe_head_ref)
{
struct stripe_head *sh = stripe_head_ref;
pr_debug("%s: stripe %llu\n", __func__,
(unsigned long long)sh->sector);
}
static struct dma_async_tx_descriptor *
ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
{
/* kernel stack size limits the total number of disks */
int disks = sh->disks;
struct page *xor_srcs[disks];
int count = 0, pd_idx = sh->pd_idx, i;
/* existing parity data subtracted */
struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
pr_debug("%s: stripe %llu\n", __func__,
(unsigned long long)sh->sector);
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
/* Only process blocks that are known to be uptodate */
if (test_bit(R5_Wantdrain, &dev->flags))
xor_srcs[count++] = dev->page;
}
tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
ops_complete_prexor, sh);
return tx;
}
static struct dma_async_tx_descriptor *
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
{
int disks = sh->disks;
int i;
pr_debug("%s: stripe %llu\n", __func__,
(unsigned long long)sh->sector);
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
struct bio *chosen;
if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
struct bio *wbi;
spin_lock(&sh->lock);
chosen = dev->towrite;
dev->towrite = NULL;
BUG_ON(dev->written);
wbi = dev->written = chosen;
spin_unlock(&sh->lock);
while (wbi && wbi->bi_sector <
dev->sector + STRIPE_SECTORS) {
tx = async_copy_data(1, wbi, dev->page,
dev->sector, tx);
wbi = r5_next_bio(wbi, dev->sector);
}
}
}
return tx;
}
static void ops_complete_postxor(void *stripe_head_ref)
{
struct stripe_head *sh = stripe_head_ref;
int disks = sh->disks, i, pd_idx = sh->pd_idx;
pr_debug("%s: stripe %llu\n", __func__,
(unsigned long long)sh->sector);
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (dev->written || i == pd_idx)
set_bit(R5_UPTODATE, &dev->flags);
}
if (sh->reconstruct_state == reconstruct_state_drain_run)
sh->reconstruct_state = reconstruct_state_drain_result;
else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
sh->reconstruct_state = reconstruct_state_prexor_drain_result;
else {
BUG_ON(sh->reconstruct_state != reconstruct_state_run);
sh->reconstruct_state = reconstruct_state_result;
}
set_bit(STRIPE_HANDLE, &sh->state);
release_stripe(sh);
}
static void
ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
{
/* kernel stack size limits the total number of disks */
int disks = sh->disks;
struct page *xor_srcs[disks];
int count = 0, pd_idx = sh->pd_idx, i;
struct page *xor_dest;
int prexor = 0;
unsigned long flags;
pr_debug("%s: stripe %llu\n", __func__,
(unsigned long long)sh->sector);
/* check if prexor is active which means only process blocks
* that are part of a read-modify-write (written)
*/
if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
prexor = 1;
xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (dev->written)
xor_srcs[count++] = dev->page;
}
} else {
xor_dest = sh->dev[pd_idx].page;
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (i != pd_idx)
xor_srcs[count++] = dev->page;
}
}
/* 1/ if we prexor'd then the dest is reused as a source
* 2/ if we did not prexor then we are redoing the parity
* set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
* for the synchronous xor case
*/
flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
atomic_inc(&sh->count);
if (unlikely(count == 1)) {
flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
flags, tx, ops_complete_postxor, sh);
} else
tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
flags, tx, ops_complete_postxor, sh);
}
static void ops_complete_check(void *stripe_head_ref)
{
struct stripe_head *sh = stripe_head_ref;
pr_debug("%s: stripe %llu\n", __func__,
(unsigned long long)sh->sector);
sh->check_state = check_state_check_result;
set_bit(STRIPE_HANDLE, &sh->state);
release_stripe(sh);
}
static void ops_run_check(struct stripe_head *sh)
{
/* kernel stack size limits the total number of disks */
int disks = sh->disks;
struct page *xor_srcs[disks];
struct dma_async_tx_descriptor *tx;
int count = 0, pd_idx = sh->pd_idx, i;
struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
pr_debug("%s: stripe %llu\n", __func__,
(unsigned long long)sh->sector);
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (i != pd_idx)
xor_srcs[count++] = dev->page;
}
tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
&sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
atomic_inc(&sh->count);
tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
ops_complete_check, sh);
}
static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
{
int overlap_clear = 0, i, disks = sh->disks;
struct dma_async_tx_descriptor *tx = NULL;
if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
ops_run_biofill(sh);
overlap_clear++;
}
if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
tx = ops_run_compute5(sh);
/* terminate the chain if postxor is not set to be run */
if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
async_tx_ack(tx);
}
if (test_bit(STRIPE_OP_PREXOR, &ops_request))
tx = ops_run_prexor(sh, tx);
if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
tx = ops_run_biodrain(sh, tx);
overlap_clear++;
}
if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
ops_run_postxor(sh, tx);
if (test_bit(STRIPE_OP_CHECK, &ops_request))
ops_run_check(sh);
if (overlap_clear)
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (test_and_clear_bit(R5_Overlap, &dev->flags))
wake_up(&sh->raid_conf->wait_for_overlap);
}
}
static int grow_one_stripe(raid5_conf_t *conf)
{
struct stripe_head *sh;
sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
if (!sh)
return 0;
memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
sh->raid_conf = conf;
spin_lock_init(&sh->lock);
if (grow_buffers(sh, conf->raid_disks)) {
shrink_buffers(sh, conf->raid_disks);
kmem_cache_free(conf->slab_cache, sh);
return 0;
}
sh->disks = conf->raid_disks;
/* we just created an active stripe so... */
atomic_set(&sh->count, 1);
atomic_inc(&conf->active_stripes);
INIT_LIST_HEAD(&sh->lru);
release_stripe(sh);
return 1;
}
static int grow_stripes(raid5_conf_t *conf, int num)
{
struct kmem_cache *sc;
int devs = conf->raid_disks;
sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
conf->active_name = 0;
sc = kmem_cache_create(conf->cache_name[conf->active_name],
sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
0, 0, NULL);
if (!sc)
return 1;
conf->slab_cache = sc;
conf->pool_size = devs;
while (num--)
if (!grow_one_stripe(conf))
return 1;
return 0;
}
#ifdef CONFIG_MD_RAID5_RESHAPE
static int resize_stripes(raid5_conf_t *conf, int newsize)
{
/* Make all the stripes able to hold 'newsize' devices.
* New slots in each stripe get 'page' set to a new page.
*
* This happens in stages:
* 1/ create a new kmem_cache and allocate the required number of
* stripe_heads.
* 2/ gather all the old stripe_heads and tranfer the pages across
* to the new stripe_heads. This will have the side effect of
* freezing the array as once all stripe_heads have been collected,
* no IO will be possible. Old stripe heads are freed once their
* pages have been transferred over, and the old kmem_cache is
* freed when all stripes are done.
* 3/ reallocate conf->disks to be suitable bigger. If this fails,
* we simple return a failre status - no need to clean anything up.
* 4/ allocate new pages for the new slots in the new stripe_heads.
* If this fails, we don't bother trying the shrink the
* stripe_heads down again, we just leave them as they are.
* As each stripe_head is processed the new one is released into
* active service.
*
* Once step2 is started, we cannot afford to wait for a write,
* so we use GFP_NOIO allocations.
*/
struct stripe_head *osh, *nsh;
LIST_HEAD(newstripes);
struct disk_info *ndisks;
int err;
struct kmem_cache *sc;
int i;
if (newsize <= conf->pool_size)
return 0; /* never bother to shrink */
err = md_allow_write(conf->mddev);
if (err)
return err;
/* Step 1 */
sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
0, 0, NULL);
if (!sc)
return -ENOMEM;
for (i = conf->max_nr_stripes; i; i--) {
nsh = kmem_cache_alloc(sc, GFP_KERNEL);
if (!nsh)
break;
memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
nsh->raid_conf = conf;
spin_lock_init(&nsh->lock);
list_add(&nsh->lru, &newstripes);
}
if (i) {
/* didn't get enough, give up */
while (!list_empty(&newstripes)) {
nsh = list_entry(newstripes.next, struct stripe_head, lru);
list_del(&nsh->lru);
kmem_cache_free(sc, nsh);
}
kmem_cache_destroy(sc);
return -ENOMEM;
}
/* Step 2 - Must use GFP_NOIO now.
* OK, we have enough stripes, start collecting inactive
* stripes and copying them over
*/
list_for_each_entry(nsh, &newstripes, lru) {
spin_lock_irq(&conf->device_lock);
wait_event_lock_irq(conf->wait_for_stripe,
!list_empty(&conf->inactive_list),
conf->device_lock,
unplug_slaves(conf->mddev)
);
osh = get_free_stripe(conf);
spin_unlock_irq(&conf->device_lock);
atomic_set(&nsh->count, 1);
for(i=0; i<conf->pool_size; i++)
nsh->dev[i].page = osh->dev[i].page;
for( ; i<newsize; i++)
nsh->dev[i].page = NULL;
kmem_cache_free(conf->slab_cache, osh);
}
kmem_cache_destroy(conf->slab_cache);
/* Step 3.
* At this point, we are holding all the stripes so the array
* is completely stalled, so now is a good time to resize
* conf->disks.
*/
ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
if (ndisks) {
for (i=0; i<conf->raid_disks; i++)
ndisks[i] = conf->disks[i];
kfree(conf->disks);
conf->disks = ndisks;
} else
err = -ENOMEM;
/* Step 4, return new stripes to service */
while(!list_empty(&newstripes)) {
nsh = list_entry(newstripes.next, struct stripe_head, lru);
list_del_init(&nsh->lru);
for (i=conf->raid_disks; i < newsize; i++)
if (nsh->dev[i].page == NULL) {
struct page *p = alloc_page(GFP_NOIO);
nsh->dev[i].page = p;
if (!p)
err = -ENOMEM;
}
release_stripe(nsh);
}
/* critical section pass, GFP_NOIO no longer needed */
conf->slab_cache = sc;
conf->active_name = 1-conf->active_name;
conf->pool_size = newsize;
return err;
}
#endif
static int drop_one_stripe(raid5_conf_t *conf)
{
struct stripe_head *sh;
spin_lock_irq(&conf->device_lock);
sh = get_free_stripe(conf);
spin_unlock_irq(&conf->device_lock);
if (!sh)
return 0;
BUG_ON(atomic_read(&sh->count));
shrink_buffers(sh, conf->pool_size);
kmem_cache_free(conf->slab_cache, sh);
atomic_dec(&conf->active_stripes);
return 1;
}
static void shrink_stripes(raid5_conf_t *conf)
{
while (drop_one_stripe(conf))
;
if (conf->slab_cache)
kmem_cache_destroy(conf->slab_cache);
conf->slab_cache = NULL;
}
static void raid5_end_read_request(struct bio * bi, int error)
{
struct stripe_head *sh = bi->bi_private;
raid5_conf_t *conf = sh->raid_conf;
int disks = sh->disks, i;
int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
char b[BDEVNAME_SIZE];
mdk_rdev_t *rdev;
for (i=0 ; i<disks; i++)
if (bi == &sh->dev[i].req)
break;
pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
(unsigned long long)sh->sector, i, atomic_read(&sh->count),
uptodate);
if (i == disks) {
BUG();
return;
}
if (uptodate) {
set_bit(R5_UPTODATE, &sh->dev[i].flags);
if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
rdev = conf->disks[i].rdev;
printk_rl(KERN_INFO "raid5:%s: read error corrected"
" (%lu sectors at %llu on %s)\n",
mdname(conf->mddev), STRIPE_SECTORS,
(unsigned long long)(sh->sector
+ rdev->data_offset),
bdevname(rdev->bdev, b));
clear_bit(R5_ReadError, &sh->dev[i].flags);
clear_bit(R5_ReWrite, &sh->dev[i].flags);
}
if (atomic_read(&conf->disks[i].rdev->read_errors))
atomic_set(&conf->disks[i].rdev->read_errors, 0);
} else {
const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
int retry = 0;
rdev = conf->disks[i].rdev;
clear_bit(R5_UPTODATE, &sh->dev[i].flags);
atomic_inc(&rdev->read_errors);
if (conf->mddev->degraded)
printk_rl(KERN_WARNING
"raid5:%s: read error not correctable "
"(sector %llu on %s).\n",
mdname(conf->mddev),
(unsigned long long)(sh->sector
+ rdev->data_offset),
bdn);
else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
/* Oh, no!!! */
printk_rl(KERN_WARNING
"raid5:%s: read error NOT corrected!! "
"(sector %llu on %s).\n",
mdname(conf->mddev),
(unsigned long long)(sh->sector
+ rdev->data_offset),
bdn);
else if (atomic_read(&rdev->read_errors)
> conf->max_nr_stripes)
printk(KERN_WARNING
"raid5:%s: Too many read errors, failing device %s.\n",
mdname(conf->mddev), bdn);
else
retry = 1;
if (retry)
set_bit(R5_ReadError, &sh->dev[i].flags);
else {
clear_bit(R5_ReadError, &sh->dev[i].flags);
clear_bit(R5_ReWrite, &sh->dev[i].flags);
md_error(conf->mddev, rdev);
}
}
rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
clear_bit(R5_LOCKED, &sh->dev[i].flags);
set_bit(STRIPE_HANDLE, &sh->state);
release_stripe(sh);
}
static void raid5_end_write_request(struct bio *bi, int error)
{
struct stripe_head *sh = bi->bi_private;
raid5_conf_t *conf = sh->raid_conf;
int disks = sh->disks, i;
int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
for (i=0 ; i<disks; i++)
if (bi == &sh->dev[i].req)
break;
pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
(unsigned long long)sh->sector, i, atomic_read(&sh->count),
uptodate);
if (i == disks) {
BUG();
return;
}
if (!uptodate)
md_error(conf->mddev, conf->disks[i].rdev);
rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
clear_bit(R5_LOCKED, &sh->dev[i].flags);
set_bit(STRIPE_HANDLE, &sh->state);
release_stripe(sh);
}
static sector_t compute_blocknr(struct stripe_head *sh, int i);
static void raid5_build_block(struct stripe_head *sh, int i)
{
struct r5dev *dev = &sh->dev[i];
bio_init(&dev->req);
dev->req.bi_io_vec = &dev->vec;
dev->req.bi_vcnt++;
dev->req.bi_max_vecs++;
dev->vec.bv_page = dev->page;
dev->vec.bv_len = STRIPE_SIZE;
dev->vec.bv_offset = 0;
dev->req.bi_sector = sh->sector;
dev->req.bi_private = sh;
dev->flags = 0;
dev->sector = compute_blocknr(sh, i);
}
static void error(mddev_t *mddev, mdk_rdev_t *rdev)
{
char b[BDEVNAME_SIZE];
raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
pr_debug("raid5: error called\n");
if (!test_bit(Faulty, &rdev->flags)) {
set_bit(MD_CHANGE_DEVS, &mddev->flags);
if (test_and_clear_bit(In_sync, &rdev->flags)) {
unsigned long flags;
spin_lock_irqsave(&conf->device_lock, flags);
mddev->degraded++;
spin_unlock_irqrestore(&conf->device_lock, flags);
/*
* if recovery was running, make sure it aborts.
*/
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
}
set_bit(Faulty, &rdev->flags);
printk(KERN_ALERT
"raid5: Disk failure on %s, disabling device.\n"
"raid5: Operation continuing on %d devices.\n",
bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
}
}
/*
* Input: a 'big' sector number,
* Output: index of the data and parity disk, and the sector # in them.
*/
static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
unsigned int data_disks, unsigned int * dd_idx,
unsigned int * pd_idx, raid5_conf_t *conf)
{
long stripe;
unsigned long chunk_number;
unsigned int chunk_offset;
sector_t new_sector;
int sectors_per_chunk = conf->chunk_size >> 9;
/* First compute the information on this sector */
/*
* Compute the chunk number and the sector offset inside the chunk
*/
chunk_offset = sector_div(r_sector, sectors_per_chunk);
chunk_number = r_sector;
BUG_ON(r_sector != chunk_number);
/*
* Compute the stripe number
*/
stripe = chunk_number / data_disks;
/*
* Compute the data disk and parity disk indexes inside the stripe
*/
*dd_idx = chunk_number % data_disks;
/*
* Select the parity disk based on the user selected algorithm.
*/
switch(conf->level) {
case 4:
*pd_idx = data_disks;
break;
case 5:
switch (conf->algorithm) {
case ALGORITHM_LEFT_ASYMMETRIC:
*pd_idx = data_disks - stripe % raid_disks;
if (*dd_idx >= *pd_idx)
(*dd_idx)++;
break;
case ALGORITHM_RIGHT_ASYMMETRIC:
*pd_idx = stripe % raid_disks;
if (*dd_idx >= *pd_idx)
(*dd_idx)++;
break;
case ALGORITHM_LEFT_SYMMETRIC:
*pd_idx = data_disks - stripe % raid_disks;
*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
break;
case ALGORITHM_RIGHT_SYMMETRIC:
*pd_idx = stripe % raid_disks;
*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
break;
default:
printk(KERN_ERR "raid5: unsupported algorithm %d\n",
conf->algorithm);
}
break;
case 6:
/**** FIX THIS ****/
switch (conf->algorithm) {
case ALGORITHM_LEFT_ASYMMETRIC:
*pd_idx = raid_disks - 1 - (stripe % raid_disks);
if (*pd_idx == raid_disks-1)
(*dd_idx)++; /* Q D D D P */
else if (*dd_idx >= *pd_idx)
(*dd_idx) += 2; /* D D P Q D */
break;
case ALGORITHM_RIGHT_ASYMMETRIC:
*pd_idx = stripe % raid_disks;
if (*pd_idx == raid_disks-1)
(*dd_idx)++; /* Q D D D P */
else if (*dd_idx >= *pd_idx)
(*dd_idx) += 2; /* D D P Q D */
break;
case ALGORITHM_LEFT_SYMMETRIC:
*pd_idx = raid_disks - 1 - (stripe % raid_disks);
*dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
break;
case ALGORITHM_RIGHT_SYMMETRIC:
*pd_idx = stripe % raid_disks;
*dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
break;
default:
printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
conf->algorithm);
}
break;
}
/*
* Finally, compute the new sector number
*/
new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
return new_sector;
}
static sector_t compute_blocknr(struct stripe_head *sh, int i)
{
raid5_conf_t *conf = sh->raid_conf;
int raid_disks = sh->disks;
int data_disks = raid_disks - conf->max_degraded;
sector_t new_sector = sh->sector, check;
int sectors_per_chunk = conf->chunk_size >> 9;
sector_t stripe;
int chunk_offset;
int chunk_number, dummy1, dummy2, dd_idx = i;
sector_t r_sector;
chunk_offset = sector_div(new_sector, sectors_per_chunk);
stripe = new_sector;
BUG_ON(new_sector != stripe);
if (i == sh->pd_idx)
return 0;
switch(conf->level) {
case 4: break;
case 5:
switch (conf->algorithm) {
case ALGORITHM_LEFT_ASYMMETRIC:
case ALGORITHM_RIGHT_ASYMMETRIC:
if (i > sh->pd_idx)
i--;
break;
case ALGORITHM_LEFT_SYMMETRIC:
case ALGORITHM_RIGHT_SYMMETRIC:
if (i < sh->pd_idx)
i += raid_disks;
i -= (sh->pd_idx + 1);
break;
default:
printk(KERN_ERR "raid5: unsupported algorithm %d\n",
conf->algorithm);
}
break;
case 6:
if (i == raid6_next_disk(sh->pd_idx, raid_disks))
return 0; /* It is the Q disk */
switch (conf->algorithm) {
case ALGORITHM_LEFT_ASYMMETRIC:
case ALGORITHM_RIGHT_ASYMMETRIC:
if (sh->pd_idx == raid_disks-1)
i--; /* Q D D D P */
else if (i > sh->pd_idx)
i -= 2; /* D D P Q D */
break;
case ALGORITHM_LEFT_SYMMETRIC:
case ALGORITHM_RIGHT_SYMMETRIC:
if (sh->pd_idx == raid_disks-1)
i--; /* Q D D D P */
else {
/* D D P Q D */
if (i < sh->pd_idx)
i += raid_disks;
i -= (sh->pd_idx + 2);
}
break;
default:
printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
conf->algorithm);
}
break;
}
chunk_number = stripe * data_disks + i;
r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
check = raid5_compute_sector(r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
printk(KERN_ERR "compute_blocknr: map not correct\n");
return 0;
}
return r_sector;
}
/*
* Copy data between a page in the stripe cache, and one or more bion
* The page could align with the middle of the bio, or there could be
* several bion, each with several bio_vecs, which cover part of the page
* Multiple bion are linked together on bi_next. There may be extras
* at the end of this list. We ignore them.
*/
static void copy_data(int frombio, struct bio *bio,
struct page *page,
sector_t sector)
{
char *pa = page_address(page);
struct bio_vec *bvl;
int i;
int page_offset;
if (bio->bi_sector >= sector)
page_offset = (signed)(bio->bi_sector - sector) * 512;
else
page_offset = (signed)(sector - bio->bi_sector) * -512;
bio_for_each_segment(bvl, bio, i) {
int len = bio_iovec_idx(bio,i)->bv_len;
int clen;
int b_offset = 0;
if (page_offset < 0) {
b_offset = -page_offset;
page_offset += b_offset;
len -= b_offset;
}
if (len > 0 && page_offset + len > STRIPE_SIZE)
clen = STRIPE_SIZE - page_offset;
else clen = len;
if (clen > 0) {
char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
if (frombio)
memcpy(pa+page_offset, ba+b_offset, clen);
else
memcpy(ba+b_offset, pa+page_offset, clen);
__bio_kunmap_atomic(ba, KM_USER0);
}
if (clen < len) /* hit end of page */
break;
page_offset += len;
}
}
#define check_xor() do { \
if (count == MAX_XOR_BLOCKS) { \
xor_blocks(count, STRIPE_SIZE, dest, ptr);\
count = 0; \
} \
} while(0)
static void compute_parity6(struct stripe_head *sh, int method)
{
raid6_conf_t *conf = sh->raid_conf;
int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
struct bio *chosen;
/**** FIX THIS: This could be very bad if disks is close to 256 ****/
void *ptrs[disks];
qd_idx = raid6_next_disk(pd_idx, disks);
d0_idx = raid6_next_disk(qd_idx, disks);
pr_debug("compute_parity, stripe %llu, method %d\n",
(unsigned long long)sh->sector, method);
switch(method) {
case READ_MODIFY_WRITE:
BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
case RECONSTRUCT_WRITE:
for (i= disks; i-- ;)
if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
chosen = sh->dev[i].towrite;
sh->dev[i].towrite = NULL;
if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
wake_up(&conf->wait_for_overlap);
BUG_ON(sh->dev[i].written);
sh->dev[i].written = chosen;
}
break;
case CHECK_PARITY:
BUG(); /* Not implemented yet */
}
for (i = disks; i--;)
if (sh->dev[i].written) {
sector_t sector = sh->dev[i].sector;
struct bio *wbi = sh->dev[i].written;
while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
copy_data(1, wbi, sh->dev[i].page, sector);
wbi = r5_next_bio(wbi, sector);
}
set_bit(R5_LOCKED, &sh->dev[i].flags);
set_bit(R5_UPTODATE, &sh->dev[i].flags);
}
// switch(method) {
// case RECONSTRUCT_WRITE:
// case CHECK_PARITY:
// case UPDATE_PARITY:
/* Note that unlike RAID-5, the ordering of the disks matters greatly. */
/* FIX: Is this ordering of drives even remotely optimal? */
count = 0;
i = d0_idx;
do {
ptrs[count++] = page_address(sh->dev[i].page);
if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
printk("block %d/%d not uptodate on parity calc\n", i,count);
i = raid6_next_disk(i, disks);
} while ( i != d0_idx );
// break;
// }
raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
switch(method) {
case RECONSTRUCT_WRITE:
set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
break;
case UPDATE_PARITY:
set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
break;
}
}
/* Compute one missing block */
static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
{
int i, count, disks = sh->disks;
void *ptr[MAX_XOR_BLOCKS], *dest, *p;
int pd_idx = sh->pd_idx;
int qd_idx = raid6_next_disk(pd_idx, disks);
pr_debug("compute_block_1, stripe %llu, idx %d\n",
(unsigned long long)sh->sector, dd_idx);
if ( dd_idx == qd_idx ) {
/* We're actually computing the Q drive */
compute_parity6(sh, UPDATE_PARITY);
} else {
dest = page_address(sh->dev[dd_idx].page);
if (!nozero) memset(dest, 0, STRIPE_SIZE);
count = 0;
for (i = disks ; i--; ) {
if (i == dd_idx || i == qd_idx)
continue;
p = page_address(sh->dev[i].page);
if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
ptr[count++] = p;
else
printk("compute_block() %d, stripe %llu, %d"
" not present\n", dd_idx,
(unsigned long long)sh->sector, i);
check_xor();
}
if (count)
xor_blocks(count, STRIPE_SIZE, dest, ptr);
if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
}
}
/* Compute two missing blocks */
static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
{
int i, count, disks = sh->disks;
int pd_idx = sh->pd_idx;
int qd_idx = raid6_next_disk(pd_idx, disks);
int d0_idx = raid6_next_disk(qd_idx, disks);
int faila, failb;
/* faila and failb are disk numbers relative to d0_idx */
/* pd_idx become disks-2 and qd_idx become disks-1 */
faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
BUG_ON(faila == failb);
if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
(unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
if ( failb == disks-1 ) {
/* Q disk is one of the missing disks */
if ( faila == disks-2 ) {
/* Missing P+Q, just recompute */
compute_parity6(sh, UPDATE_PARITY);
return;
} else {
/* We're missing D+Q; recompute D from P */
compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
return;
}
}
/* We're missing D+P or D+D; build pointer table */
{
/**** FIX THIS: This could be very bad if disks is close to 256 ****/
void *ptrs[disks];
count = 0;
i = d0_idx;
do {
ptrs[count++] = page_address(sh->dev[i].page);
i = raid6_next_disk(i, disks);
if (i != dd_idx1 && i != dd_idx2 &&
!test_bit(R5_UPTODATE, &sh->dev[i].flags))
printk("compute_2 with missing block %d/%d\n", count, i);
} while ( i != d0_idx );
if ( failb == disks-2 ) {
/* We're missing D+P. */
raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
} else {
/* We're missing D+D. */
raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
}
/* Both the above update both missing blocks */
set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
}
}
static void
schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
int rcw, int expand)
{
int i, pd_idx = sh->pd_idx, disks = sh->disks;
if (rcw) {
/* if we are not expanding this is a proper write request, and
* there will be bios with new data to be drained into the
* stripe cache
*/
if (!expand) {
sh->reconstruct_state = reconstruct_state_drain_run;
set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
} else
sh->reconstruct_state = reconstruct_state_run;
set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (dev->towrite) {
set_bit(R5_LOCKED, &dev->flags);
set_bit(R5_Wantdrain, &dev->flags);
if (!expand)
clear_bit(R5_UPTODATE, &dev->flags);
s->locked++;
}
}
if (s->locked + 1 == disks)
if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
atomic_inc(&sh->raid_conf->pending_full_writes);
} else {
BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
sh->reconstruct_state = reconstruct_state_prexor_drain_run;
set_bit(STRIPE_OP_PREXOR, &s->ops_request);
set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (i == pd_idx)
continue;
if (dev->towrite &&
(test_bit(R5_UPTODATE, &dev->flags) ||
test_bit(R5_Wantcompute, &dev->flags))) {
set_bit(R5_Wantdrain, &dev->flags);
set_bit(R5_LOCKED, &dev->flags);
clear_bit(R5_UPTODATE, &dev->flags);
s->locked++;
}
}
}
/* keep the parity disk locked while asynchronous operations
* are in flight
*/
set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
s->locked++;
pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
__func__, (unsigned long long)sh->sector,
s->locked, s->ops_request);
}
/*
* Each stripe/dev can have one or more bion attached.
* toread/towrite point to the first in a chain.
* The bi_next chain must be in order.
*/
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
struct bio **bip;
raid5_conf_t *conf = sh->raid_conf;
int firstwrite=0;
pr_debug("adding bh b#%llu to stripe s#%llu\n",
(unsigned long long)bi->bi_sector,
(unsigned long long)sh->sector);
spin_lock(&sh->lock);
spin_lock_irq(&conf->device_lock);
if (forwrite) {
bip = &sh->dev[dd_idx].towrite;
if (*bip == NULL && sh->dev[dd_idx].written == NULL)
firstwrite = 1;
} else
bip = &sh->dev[dd_idx].toread;
while (*bip && (*bip)->bi_sector < bi->bi_sector) {
if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
goto overlap;
bip = & (*bip)->bi_next;
}
if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
goto overlap;
BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
if (*bip)
bi->bi_next = *bip;
*bip = bi;
bi->bi_phys_segments++;
spin_unlock_irq(&conf->device_lock);
spin_unlock(&sh->lock);
pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
(unsigned long long)bi->bi_sector,
(unsigned long long)sh->sector, dd_idx);
if (conf->mddev->bitmap && firstwrite) {
bitmap_startwrite(conf->mddev->bitmap, sh->sector,
STRIPE_SECTORS, 0);
sh->bm_seq = conf->seq_flush+1;
set_bit(STRIPE_BIT_DELAY, &sh->state);
}
if (forwrite) {
/* check if page is covered */
sector_t sector = sh->dev[dd_idx].sector;
for (bi=sh->dev[dd_idx].towrite;
sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
bi && bi->bi_sector <= sector;
bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
if (bi->bi_sector + (bi->bi_size>>9) >= sector)
sector = bi->bi_sector + (bi->bi_size>>9);
}
if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
}
return 1;
overlap:
set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
spin_unlock_irq(&conf->device_lock);
spin_unlock(&sh->lock);
return 0;
}
static void end_reshape(raid5_conf_t *conf);
static int page_is_zero(struct page *p)
{
char *a = page_address(p);
return ((*(u32*)a) == 0 &&
memcmp(a, a+4, STRIPE_SIZE-4)==0);
}
static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
{
int sectors_per_chunk = conf->chunk_size >> 9;
int pd_idx, dd_idx;
int chunk_offset = sector_div(stripe, sectors_per_chunk);
raid5_compute_sector(stripe * (disks - conf->max_degraded)
*sectors_per_chunk + chunk_offset,
disks, disks - conf->max_degraded,
&dd_idx, &pd_idx, conf);
return pd_idx;
}
static void
handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
struct stripe_head_state *s, int disks,
struct bio **return_bi)
{
int i;
for (i = disks; i--; ) {
struct bio *bi;
int bitmap_end = 0;
if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
mdk_rdev_t *rdev;
rcu_read_lock();
rdev = rcu_dereference(conf->disks[i].rdev);
if (rdev && test_bit(In_sync, &rdev->flags))
/* multiple read failures in one stripe */
md_error(conf->mddev, rdev);
rcu_read_unlock();
}
spin_lock_irq(&conf->device_lock);
/* fail all writes first */
bi = sh->dev[i].towrite;
sh->dev[i].towrite = NULL;
if (bi) {
s->to_write--;
bitmap_end = 1;
}
if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
wake_up(&conf->wait_for_overlap);
while (bi && bi->bi_sector <
sh->dev[i].sector + STRIPE_SECTORS) {
struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
clear_bit(BIO_UPTODATE, &bi->bi_flags);
if (!raid5_dec_bi_phys_segments(bi)) {
md_write_end(conf->mddev);
bi->bi_next = *return_bi;
*return_bi = bi;
}
bi = nextbi;
}
/* and fail all 'written' */
bi = sh->dev[i].written;
sh->dev[i].written = NULL;
if (bi) bitmap_end = 1;
while (bi && bi->bi_sector <
sh->dev[i].sector + STRIPE_SECTORS) {
struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
clear_bit(BIO_UPTODATE, &bi->bi_flags);
if (!raid5_dec_bi_phys_segments(bi)) {
md_write_end(conf->mddev);
bi->bi_next = *return_bi;
*return_bi = bi;
}
bi = bi2;
}
/* fail any reads if this device is non-operational and
* the data has not reached the cache yet.
*/
if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
(!test_bit(R5_Insync, &sh->dev[i].flags) ||
test_bit(R5_ReadError, &sh->dev[i].flags))) {
bi = sh->dev[i].toread;
sh->dev[i].toread = NULL;
if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
wake_up(&conf->wait_for_overlap);
if (bi) s->to_read--;
while (bi && bi->bi_sector <
sh->dev[i].sector + STRIPE_SECTORS) {
struct bio *nextbi =
r5_next_bio(bi, sh->dev[i].sector);
clear_bit(BIO_UPTODATE, &bi->bi_flags);
if (!raid5_dec_bi_phys_segments(bi)) {
bi->bi_next = *return_bi;
*return_bi = bi;
}
bi = nextbi;
}
}
spin_unlock_irq(&conf->device_lock);
if (bitmap_end)
bitmap_endwrite(conf->mddev->bitmap, sh->sector,
STRIPE_SECTORS, 0, 0);
}
if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
if (atomic_dec_and_test(&conf->pending_full_writes))
md_wakeup_thread(conf->mddev->thread);
}
/* fetch_block5 - checks the given member device to see if its data needs
* to be read or computed to satisfy a request.
*
* Returns 1 when no more member devices need to be checked, otherwise returns
* 0 to tell the loop in handle_stripe_fill5 to continue
*/
static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
int disk_idx, int disks)
{
struct r5dev *dev = &sh->dev[disk_idx];
struct r5dev *failed_dev = &sh->dev[s->failed_num];
/* is the data in this block needed, and can we get it? */
if (!test_bit(R5_LOCKED, &dev->flags) &&
!test_bit(R5_UPTODATE, &dev->flags) &&
(dev->toread ||
(dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
s->syncing || s->expanding ||
(s->failed &&
(failed_dev->toread ||
(failed_dev->towrite &&
!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
/* We would like to get this block, possibly by computing it,
* otherwise read it if the backing disk is insync
*/
if ((s->uptodate == disks - 1) &&
(s->failed && disk_idx == s->failed_num)) {
set_bit(STRIPE_COMPUTE_RUN, &sh->state);
set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
set_bit(R5_Wantcompute, &dev->flags);
sh->ops.target = disk_idx;
s->req_compute = 1;
/* Careful: from this point on 'uptodate' is in the eye
* of raid5_run_ops which services 'compute' operations
* before writes. R5_Wantcompute flags a block that will
* be R5_UPTODATE by the time it is needed for a
* subsequent operation.
*/
s->uptodate++;
return 1; /* uptodate + compute == disks */
} else if (test_bit(R5_Insync, &dev->flags)) {
set_bit(R5_LOCKED, &dev->flags);
set_bit(R5_Wantread, &dev->flags);
s->locked++;
pr_debug("Reading block %d (sync=%d)\n", disk_idx,
s->syncing);
}
}
return 0;
}
/**
* handle_stripe_fill5 - read or compute data to satisfy pending requests.
*/
static void handle_stripe_fill5(struct stripe_head *sh,
struct stripe_head_state *s, int disks)
{
int i;
/* look for blocks to read/compute, skip this if a compute
* is already in flight, or if the stripe contents are in the
* midst of changing due to a write
*/
if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
!sh->reconstruct_state)
for (i = disks; i--; )
if (fetch_block5(sh, s, i, disks))
break;
set_bit(STRIPE_HANDLE, &sh->state);
}
static void handle_stripe_fill6(struct stripe_head *sh,
struct stripe_head_state *s, struct r6_state *r6s,
int disks)
{
int i;
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (!test_bit(R5_LOCKED, &dev->flags) &&
!test_bit(R5_UPTODATE, &dev->flags) &&
(dev->toread || (dev->towrite &&
!test_bit(R5_OVERWRITE, &dev->flags)) ||
s->syncing || s->expanding ||
(s->failed >= 1 &&
(sh->dev[r6s->failed_num[0]].toread ||
s->to_write)) ||
(s->failed >= 2 &&
(sh->dev[r6s->failed_num[1]].toread ||
s->to_write)))) {
/* we would like to get this block, possibly
* by computing it, but we might not be able to
*/
if ((s->uptodate == disks - 1) &&
(s->failed && (i == r6s->failed_num[0] ||
i == r6s->failed_num[1]))) {
pr_debug("Computing stripe %llu block %d\n",
(unsigned long long)sh->sector, i);
compute_block_1(sh, i, 0);
s->uptodate++;
} else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
/* Computing 2-failure is *very* expensive; only
* do it if failed >= 2
*/
int other;
for (other = disks; other--; ) {
if (other == i)
continue;
if (!test_bit(R5_UPTODATE,
&sh->dev[other].flags))
break;
}
BUG_ON(other < 0);
pr_debug("Computing stripe %llu blocks %d,%d\n",
(unsigned long long)sh->sector,
i, other);
compute_block_2(sh, i, other);
s->uptodate += 2;
} else if (test_bit(R5_Insync, &dev->flags)) {
set_bit(R5_LOCKED, &dev->flags);
set_bit(R5_Wantread, &dev->flags);
s->locked++;
pr_debug("Reading block %d (sync=%d)\n",
i, s->syncing);
}
}
}
set_bit(STRIPE_HANDLE, &sh->state);
}
/* handle_stripe_clean_event
* any written block on an uptodate or failed drive can be returned.
* Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
* never LOCKED, so we don't need to test 'failed' directly.
*/
static void handle_stripe_clean_event(raid5_conf_t *conf,
struct stripe_head *sh, int disks, struct bio **return_bi)
{
int i;
struct r5dev *dev;
for (i = disks; i--; )
if (sh->dev[i].written) {
dev = &sh->dev[i];
if (!test_bit(R5_LOCKED, &dev->flags) &&
test_bit(R5_UPTODATE, &dev->flags)) {
/* We can return any write requests */
struct bio *wbi, *wbi2;
int bitmap_end = 0;
pr_debug("Return write for disc %d\n", i);
spin_lock_irq(&conf->device_lock);
wbi = dev->written;
dev->written = NULL;
while (wbi && wbi->bi_sector <
dev->sector + STRIPE_SECTORS) {
wbi2 = r5_next_bio(wbi, dev->sector);
if (!raid5_dec_bi_phys_segments(wbi)) {
md_write_end(conf->mddev);
wbi->bi_next = *return_bi;
*return_bi = wbi;
}
wbi = wbi2;
}
if (dev->towrite == NULL)
bitmap_end = 1;
spin_unlock_irq(&conf->device_lock);
if (bitmap_end)
bitmap_endwrite(conf->mddev->bitmap,
sh->sector,
STRIPE_SECTORS,
!test_bit(STRIPE_DEGRADED, &sh->state),
0);
}
}
if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
if (atomic_dec_and_test(&conf->pending_full_writes))
md_wakeup_thread(conf->mddev->thread);
}
static void handle_stripe_dirtying5(raid5_conf_t *conf,
struct stripe_head *sh, struct stripe_head_state *s, int disks)
{
int rmw = 0, rcw = 0, i;
for (i = disks; i--; ) {
/* would I have to read this buffer for read_modify_write */
struct r5dev *dev = &sh->dev[i];
if ((dev->towrite || i == sh->pd_idx) &&
!test_bit(R5_LOCKED, &dev->flags) &&
!(test_bit(R5_UPTODATE, &dev->flags) ||
test_bit(R5_Wantcompute, &dev->flags))) {
if (test_bit(R5_Insync, &dev->flags))
rmw++;
else
rmw += 2*disks; /* cannot read it */
}
/* Would I have to read this buffer for reconstruct_write */
if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
!test_bit(R5_LOCKED, &dev->flags) &&
!(test_bit(R5_UPTODATE, &dev->flags) ||
test_bit(R5_Wantcompute, &dev->flags))) {
if (test_bit(R5_Insync, &dev->flags)) rcw++;
else
rcw += 2*disks;
}
}
pr_debug("for sector %llu, rmw=%d rcw=%d\n",
(unsigned long long)sh->sector, rmw, rcw);
set_bit(STRIPE_HANDLE, &sh->state);
if (rmw < rcw && rmw > 0)
/* prefer read-modify-write, but need to get some data */
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if ((dev->towrite || i == sh->pd_idx) &&
!test_bit(R5_LOCKED, &dev->flags) &&
!(test_bit(R5_UPTODATE, &dev->flags) ||
test_bit(R5_Wantcompute, &dev->flags)) &&
test_bit(R5_Insync, &dev->flags)) {
if (
test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
pr_debug("Read_old block "
"%d for r-m-w\n", i);
set_bit(R5_LOCKED, &dev->flags);
set_bit(R5_Wantread, &dev->flags);
s->locked++;
} else {
set_bit(STRIPE_DELAYED, &sh->state);
set_bit(STRIPE_HANDLE, &sh->state);
}
}
}
if (rcw <= rmw && rcw > 0)
/* want reconstruct write, but need to get some data */
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (!test_bit(R5_OVERWRITE, &dev->flags) &&
i != sh->pd_idx &&
!test_bit(R5_LOCKED, &dev->flags) &&
!(test_bit(R5_UPTODATE, &dev->flags) ||
test_bit(R5_Wantcompute, &dev->flags)) &&
test_bit(R5_Insync, &dev->flags)) {
if (
test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
pr_debug("Read_old block "
"%d for Reconstruct\n", i);
set_bit(R5_LOCKED, &dev->flags);
set_bit(R5_Wantread, &dev->flags);
s->locked++;
} else {
set_bit(STRIPE_DELAYED, &sh->state);
set_bit(STRIPE_HANDLE, &sh->state);
}
}
}
/* now if nothing is locked, and if we have enough data,
* we can start a write request
*/
/* since handle_stripe can be called at any time we need to handle the
* case where a compute block operation has been submitted and then a
* subsequent call wants to start a write request. raid5_run_ops only
* handles the case where compute block and postxor are requested
* simultaneously. If this is not the case then new writes need to be
* held off until the compute completes.
*/
if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
(s->locked == 0 && (rcw == 0 || rmw == 0) &&
!test_bit(STRIPE_BIT_DELAY, &sh->state)))
schedule_reconstruction5(sh, s, rcw == 0, 0);
}
static void handle_stripe_dirtying6(raid5_conf_t *conf,
struct stripe_head *sh, struct stripe_head_state *s,
struct r6_state *r6s, int disks)
{
int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
int qd_idx = r6s->qd_idx;
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
/* Would I have to read this buffer for reconstruct_write */
if (!test_bit(R5_OVERWRITE, &dev->flags)
&& i != pd_idx && i != qd_idx
&& (!test_bit(R5_LOCKED, &dev->flags)
) &&
!test_bit(R5_UPTODATE, &dev->flags)) {
if (test_bit(R5_Insync, &dev->flags)) rcw++;
else {
pr_debug("raid6: must_compute: "
"disk %d flags=%#lx\n", i, dev->flags);
must_compute++;
}
}
}
pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
(unsigned long long)sh->sector, rcw, must_compute);
set_bit(STRIPE_HANDLE, &sh->state);
if (rcw > 0)
/* want reconstruct write, but need to get some data */
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (!test_bit(R5_OVERWRITE, &dev->flags)
&& !(s->failed == 0 && (i == pd_idx || i == qd_idx))
&& !test_bit(R5_LOCKED, &dev->flags) &&
!test_bit(R5_UPTODATE, &dev->flags) &&
test_bit(R5_Insync, &dev->flags)) {
if (
test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
pr_debug("Read_old stripe %llu "
"block %d for Reconstruct\n",
(unsigned long long)sh->sector, i);
set_bit(R5_LOCKED, &dev->flags);
set_bit(R5_Wantread, &dev->flags);
s->locked++;
} else {
pr_debug("Request delayed stripe %llu "
"block %d for Reconstruct\n",
(unsigned long long)sh->sector, i);
set_bit(STRIPE_DELAYED, &sh->state);
set_bit(STRIPE_HANDLE, &sh->state);
}
}
}
/* now if nothing is locked, and if we have enough data, we can start a
* write request
*/
if (s->locked == 0 && rcw == 0 &&
!test_bit(STRIPE_BIT_DELAY, &sh->state)) {
if (must_compute > 0) {
/* We have failed blocks and need to compute them */
switch (s->failed) {
case 0:
BUG();
case 1:
compute_block_1(sh, r6s->failed_num[0], 0);
break;
case 2:
compute_block_2(sh, r6s->failed_num[0],
r6s->failed_num[1]);
break;
default: /* This request should have been failed? */
BUG();
}
}
pr_debug("Computing parity for stripe %llu\n",
(unsigned long long)sh->sector);
compute_parity6(sh, RECONSTRUCT_WRITE);
/* now every locked buffer is ready to be written */
for (i = disks; i--; )
if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
pr_debug("Writing stripe %llu block %d\n",
(unsigned long long)sh->sector, i);
s->locked++;
set_bit(R5_Wantwrite, &sh->dev[i].flags);
}
if (s->locked == disks)
if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
atomic_inc(&conf->pending_full_writes);
/* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
set_bit(STRIPE_INSYNC, &sh->state);
if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
atomic_dec(&conf->preread_active_stripes);
if (atomic_read(&conf->preread_active_stripes) <
IO_THRESHOLD)
md_wakeup_thread(conf->mddev->thread);
}
}
}
static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
struct stripe_head_state *s, int disks)
{
struct r5dev *dev = NULL;
set_bit(STRIPE_HANDLE, &sh->state);
switch (sh->check_state) {
case check_state_idle:
/* start a new check operation if there are no failures */
if (s->failed == 0) {
BUG_ON(s->uptodate != disks);
sh->check_state = check_state_run;
set_bit(STRIPE_OP_CHECK, &s->ops_request);
clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
s->uptodate--;
break;
}
dev = &sh->dev[s->failed_num];
/* fall through */
case check_state_compute_result:
sh->check_state = check_state_idle;
if (!dev)
dev = &sh->dev[sh->pd_idx];
/* check that a write has not made the stripe insync */
if (test_bit(STRIPE_INSYNC, &sh->state))
break;
/* either failed parity check, or recovery is happening */
BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
BUG_ON(s->uptodate != disks);
set_bit(R5_LOCKED, &dev->flags);
s->locked++;
set_bit(R5_Wantwrite, &dev->flags);
clear_bit(STRIPE_DEGRADED, &sh->state);
set_bit(STRIPE_INSYNC, &sh->state);
break;
case check_state_run:
break; /* we will be called again upon completion */
case check_state_check_result:
sh->check_state = check_state_idle;
/* if a failure occurred during the check operation, leave
* STRIPE_INSYNC not set and let the stripe be handled again
*/
if (s->failed)
break;
/* handle a successful check operation, if parity is correct
* we are done. Otherwise update the mismatch count and repair
* parity if !MD_RECOVERY_CHECK
*/
if (sh->ops.zero_sum_result == 0)
/* parity is correct (on disc,
* not in buffer any more)
*/
set_bit(STRIPE_INSYNC, &sh->state);
else {
conf->mddev->resync_mismatches += STRIPE_SECTORS;
if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
/* don't try to repair!! */
set_bit(STRIPE_INSYNC, &sh->state);
else {
sh->check_state = check_state_compute_run;
set_bit(STRIPE_COMPUTE_RUN, &sh->state);
set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
set_bit(R5_Wantcompute,
&sh->dev[sh->pd_idx].flags);
sh->ops.target = sh->pd_idx;
s->uptodate++;
}
}
break;
case check_state_compute_run:
break;
default:
printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
__func__, sh->check_state,
(unsigned long long) sh->sector);
BUG();
}
}
static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
struct stripe_head_state *s,
struct r6_state *r6s, struct page *tmp_page,
int disks)
{
int update_p = 0, update_q = 0;
struct r5dev *dev;
int pd_idx = sh->pd_idx;
int qd_idx = r6s->qd_idx;
set_bit(STRIPE_HANDLE, &sh->state);
BUG_ON(s->failed > 2);
BUG_ON(s->uptodate < disks);
/* Want to check and possibly repair P and Q.
* However there could be one 'failed' device, in which
* case we can only check one of them, possibly using the
* other to generate missing data
*/
/* If !tmp_page, we cannot do the calculations,
* but as we have set STRIPE_HANDLE, we will soon be called
* by stripe_handle with a tmp_page - just wait until then.
*/
if (tmp_page) {
if (s->failed == r6s->q_failed) {
/* The only possible failed device holds 'Q', so it
* makes sense to check P (If anything else were failed,
* we would have used P to recreate it).
*/
compute_block_1(sh, pd_idx, 1);
if (!page_is_zero(sh->dev[pd_idx].page)) {
compute_block_1(sh, pd_idx, 0);
update_p = 1;
}
}
if (!r6s->q_failed && s->failed < 2) {
/* q is not failed, and we didn't use it to generate
* anything, so it makes sense to check it
*/
memcpy(page_address(tmp_page),
page_address(sh->dev[qd_idx].page),
STRIPE_SIZE);
compute_parity6(sh, UPDATE_PARITY);
if (memcmp(page_address(tmp_page),
page_address(sh->dev[qd_idx].page),
STRIPE_SIZE) != 0) {
clear_bit(STRIPE_INSYNC, &sh->state);
update_q = 1;
}
}
if (update_p || update_q) {
conf->mddev->resync_mismatches += STRIPE_SECTORS;
if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
/* don't try to repair!! */
update_p = update_q = 0;
}
/* now write out any block on a failed drive,
* or P or Q if they need it
*/
if (s->failed == 2) {
dev = &sh->dev[r6s->failed_num[1]];
s->locked++;
set_bit(R5_LOCKED, &dev->flags);
set_bit(R5_Wantwrite, &dev->flags);
}
if (s->failed >= 1) {
dev = &sh->dev[r6s->failed_num[0]];
s->locked++;
set_bit(R5_LOCKED, &dev->flags);
set_bit(R5_Wantwrite, &dev->flags);
}
if (update_p) {
dev = &sh->dev[pd_idx];
s->locked++;
set_bit(R5_LOCKED, &dev->flags);
set_bit(R5_Wantwrite, &dev->flags);
}
if (update_q) {
dev = &sh->dev[qd_idx];
s->locked++;
set_bit(R5_LOCKED, &dev->flags);
set_bit(R5_Wantwrite, &dev->flags);
}
clear_bit(STRIPE_DEGRADED, &sh->state);
set_bit(STRIPE_INSYNC, &sh->state);
}
}
static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
struct r6_state *r6s)
{
int i;
/* We have read all the blocks in this stripe and now we need to
* copy some of them into a target stripe for expand.
*/
struct dma_async_tx_descriptor *tx = NULL;
clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
for (i = 0; i < sh->disks; i++)
if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
int dd_idx, pd_idx, j;
struct stripe_head *sh2;
sector_t bn = compute_blocknr(sh, i);
sector_t s = raid5_compute_sector(bn, conf->raid_disks,
conf->raid_disks -
conf->max_degraded, &dd_idx,
&pd_idx, conf);
sh2 = get_active_stripe(conf, s, conf->raid_disks,
pd_idx, 1);
if (sh2 == NULL)
/* so far only the early blocks of this stripe
* have been requested. When later blocks
* get requested, we will try again
*/
continue;
if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
/* must have already done this block */
release_stripe(sh2);
continue;
}
/* place all the copies on one channel */
tx = async_memcpy(sh2->dev[dd_idx].page,
sh->dev[i].page, 0, 0, STRIPE_SIZE,
ASYNC_TX_DEP_ACK, tx, NULL, NULL);
set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
for (j = 0; j < conf->raid_disks; j++)
if (j != sh2->pd_idx &&
(!r6s || j != raid6_next_disk(sh2->pd_idx,
sh2->disks)) &&
!test_bit(R5_Expanded, &sh2->dev[j].flags))
break;
if (j == conf->raid_disks) {
set_bit(STRIPE_EXPAND_READY, &sh2->state);
set_bit(STRIPE_HANDLE, &sh2->state);
}
release_stripe(sh2);
}
/* done submitting copies, wait for them to complete */
if (tx) {
async_tx_ack(tx);
dma_wait_for_async_tx(tx);
}
}
/*
* handle_stripe - do things to a stripe.
*
* We lock the stripe and then examine the state of various bits
* to see what needs to be done.
* Possible results:
* return some read request which now have data
* return some write requests which are safely on disc
* schedule a read on some buffers
* schedule a write of some buffers
* return confirmation of parity correctness
*
* buffers are taken off read_list or write_list, and bh_cache buffers
* get BH_Lock set before the stripe lock is released.
*
*/
static bool handle_stripe5(struct stripe_head *sh)
{
raid5_conf_t *conf = sh->raid_conf;
int disks = sh->disks, i;
struct bio *return_bi = NULL;
struct stripe_head_state s;
struct r5dev *dev;
mdk_rdev_t *blocked_rdev = NULL;
int prexor;
memset(&s, 0, sizeof(s));
pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
"reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
atomic_read(&sh->count), sh->pd_idx, sh->check_state,
sh->reconstruct_state);
spin_lock(&sh->lock);
clear_bit(STRIPE_HANDLE, &sh->state);
clear_bit(STRIPE_DELAYED, &sh->state);
s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
/* Now to look around and see what can be done */
rcu_read_lock();
for (i=disks; i--; ) {
mdk_rdev_t *rdev;
struct r5dev *dev = &sh->dev[i];
clear_bit(R5_Insync, &dev->flags);
pr_debug("check %d: state 0x%lx toread %p read %p write %p "
"written %p\n", i, dev->flags, dev->toread, dev->read,
dev->towrite, dev->written);
/* maybe we can request a biofill operation
*
* new wantfill requests are only permitted while
* ops_complete_biofill is guaranteed to be inactive
*/
if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
!test_bit(STRIPE_BIOFILL_RUN, &sh->state))
set_bit(R5_Wantfill, &dev->flags);
/* now count some things */
if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
if (test_bit(R5_Wantfill, &dev->flags))
s.to_fill++;
else if (dev->toread)
s.to_read++;
if (dev->towrite) {
s.to_write++;
if (!test_bit(R5_OVERWRITE, &dev->flags))
s.non_overwrite++;
}
if (dev->written)
s.written++;
rdev = rcu_dereference(conf->disks[i].rdev);
if (blocked_rdev == NULL &&
rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
blocked_rdev = rdev;
atomic_inc(&rdev->nr_pending);
}
if (!rdev || !test_bit(In_sync, &rdev->flags)) {
/* The ReadError flag will just be confusing now */
clear_bit(R5_ReadError, &dev->flags);
clear_bit(R5_ReWrite, &dev->flags);
}
if (!rdev || !test_bit(In_sync, &rdev->flags)
|| test_bit(R5_ReadError, &dev->flags)) {
s.failed++;
s.failed_num = i;
} else
set_bit(R5_Insync, &dev->flags);
}
rcu_read_unlock();
if (unlikely(blocked_rdev)) {
if (s.syncing || s.expanding || s.expanded ||
s.to_write || s.written) {
set_bit(STRIPE_HANDLE, &sh->state);
goto unlock;
}
/* There is nothing for the blocked_rdev to block */
rdev_dec_pending(blocked_rdev, conf->mddev);
blocked_rdev = NULL;
}
if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
set_bit(STRIPE_BIOFILL_RUN, &sh->state);
}
pr_debug("locked=%d uptodate=%d to_read=%d"
" to_write=%d failed=%d failed_num=%d\n",
s.locked, s.uptodate, s.to_read, s.to_write,
s.failed, s.failed_num);
/* check if the array has lost two devices and, if so, some requests might
* need to be failed
*/
if (s.failed > 1 && s.to_read+s.to_write+s.written)
handle_failed_stripe(conf, sh, &s, disks, &return_bi);
if (s.failed > 1 && s.syncing) {
md_done_sync(conf->mddev, STRIPE_SECTORS,0);
clear_bit(STRIPE_SYNCING, &sh->state);
s.syncing = 0;
}
/* might be able to return some write requests if the parity block
* is safe, or on a failed drive
*/
dev = &sh->dev[sh->pd_idx];
if ( s.written &&
((test_bit(R5_Insync, &dev->flags) &&
!test_bit(R5_LOCKED, &dev->flags) &&
test_bit(R5_UPTODATE, &dev->flags)) ||
(s.failed == 1 && s.failed_num == sh->pd_idx)))
handle_stripe_clean_event(conf, sh, disks, &return_bi);
/* Now we might consider reading some blocks, either to check/generate
* parity, or to satisfy requests
* or to load a block that is being partially written.
*/
if (s.to_read || s.non_overwrite ||
(s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
handle_stripe_fill5(sh, &s, disks);
/* Now we check to see if any write operations have recently
* completed
*/
prexor = 0;
if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
prexor = 1;
if (sh->reconstruct_state == reconstruct_state_drain_result ||
sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
sh->reconstruct_state = reconstruct_state_idle;
/* All the 'written' buffers and the parity block are ready to
* be written back to disk
*/
BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
for (i = disks; i--; ) {
dev = &sh->dev[i];
if (test_bit(R5_LOCKED, &dev->flags) &&
(i == sh->pd_idx || dev->written)) {
pr_debug("Writing block %d\n", i);
set_bit(R5_Wantwrite, &dev->flags);
if (prexor)
continue;
if (!test_bit(R5_Insync, &dev->flags) ||
(i == sh->pd_idx && s.failed == 0))
set_bit(STRIPE_INSYNC, &sh->state);
}
}
if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
atomic_dec(&conf->preread_active_stripes);
if (atomic_read(&conf->preread_active_stripes) <
IO_THRESHOLD)
md_wakeup_thread(conf->mddev->thread);
}
}
/* Now to consider new write requests and what else, if anything
* should be read. We do not handle new writes when:
* 1/ A 'write' operation (copy+xor) is already in flight.
* 2/ A 'check' operation is in flight, as it may clobber the parity
* block.
*/
if (s.to_write && !sh->reconstruct_state && !sh->check_state)
handle_stripe_dirtying5(conf, sh, &s, disks);
/* maybe we need to check and possibly fix the parity for this stripe
* Any reads will already have been scheduled, so we just see if enough
* data is available. The parity check is held off while parity
* dependent operations are in flight.
*/
if (sh->check_state ||
(s.syncing && s.locked == 0 &&
!test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
!test_bit(STRIPE_INSYNC, &sh->state)))
handle_parity_checks5(conf, sh, &s, disks);
if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
md_done_sync(conf->mddev, STRIPE_SECTORS,1);
clear_bit(STRIPE_SYNCING, &sh->state);
}
/* If the failed drive is just a ReadError, then we might need to progress
* the repair/check process
*/
if (s.failed == 1 && !conf->mddev->ro &&
test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
&& !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
&& test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
) {
dev = &sh->dev[s.failed_num];
if (!test_bit(R5_ReWrite, &dev->flags)) {
set_bit(R5_Wantwrite, &dev->flags);
set_bit(R5_ReWrite, &dev->flags);
set_bit(R5_LOCKED, &dev->flags);
s.locked++;
} else {
/* let's read it back */
set_bit(R5_Wantread, &dev->flags);
set_bit(R5_LOCKED, &dev->flags);
s.locked++;
}
}
/* Finish reconstruct operations initiated by the expansion process */
if (sh->reconstruct_state == reconstruct_state_result) {
sh->reconstruct_state = reconstruct_state_idle;
clear_bit(STRIPE_EXPANDING, &sh->state);
for (i = conf->raid_disks; i--; ) {
set_bit(R5_Wantwrite, &sh->dev[i].flags);
set_bit(R5_LOCKED, &sh->dev[i].flags);
s.locked++;
}
}
if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
!sh->reconstruct_state) {
/* Need to write out all blocks after computing parity */
sh->disks = conf->raid_disks;
sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
conf->raid_disks);
schedule_reconstruction5(sh, &s, 1, 1);
} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
clear_bit(STRIPE_EXPAND_READY, &sh->state);
atomic_dec(&conf->reshape_stripes);
wake_up(&conf->wait_for_overlap);
md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
}
if (s.expanding && s.locked == 0 &&
!test_bit(STRIPE_COMPUTE_RUN, &sh->state))
handle_stripe_expansion(conf, sh, NULL);
unlock:
spin_unlock(&sh->lock);
/* wait for this device to become unblocked */
if (unlikely(blocked_rdev))
md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
if (s.ops_request)
raid5_run_ops(sh, s.ops_request);
ops_run_io(sh, &s);
return_io(return_bi);
return blocked_rdev == NULL;
}
static bool handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
{
raid6_conf_t *conf = sh->raid_conf;
int disks = sh->disks;
struct bio *return_bi = NULL;
int i, pd_idx = sh->pd_idx;
struct stripe_head_state s;
struct r6_state r6s;
struct r5dev *dev, *pdev, *qdev;
mdk_rdev_t *blocked_rdev = NULL;
r6s.qd_idx = raid6_next_disk(pd_idx, disks);
pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
"pd_idx=%d, qd_idx=%d\n",
(unsigned long long)sh->sector, sh->state,
atomic_read(&sh->count), pd_idx, r6s.qd_idx);
memset(&s, 0, sizeof(s));
spin_lock(&sh->lock);
clear_bit(STRIPE_HANDLE, &sh->state);
clear_bit(STRIPE_DELAYED, &sh->state);
s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
/* Now to look around and see what can be done */
rcu_read_lock();
for (i=disks; i--; ) {
mdk_rdev_t *rdev;
dev = &sh->dev[i];
clear_bit(R5_Insync, &dev->flags);
pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
i, dev->flags, dev->toread, dev->towrite, dev->written);
/* maybe we can reply to a read */
if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
struct bio *rbi, *rbi2;
pr_debug("Return read for disc %d\n", i);
spin_lock_irq(&conf->device_lock);
rbi = dev->toread;
dev->toread = NULL;
if (test_and_clear_bit(R5_Overlap, &dev->flags))
wake_up(&conf->wait_for_overlap);
spin_unlock_irq(&conf->device_lock);
while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
copy_data(0, rbi, dev->page, dev->sector);
rbi2 = r5_next_bio(rbi, dev->sector);
spin_lock_irq(&conf->device_lock);
if (!raid5_dec_bi_phys_segments(rbi)) {
rbi->bi_next = return_bi;
return_bi = rbi;
}
spin_unlock_irq(&conf->device_lock);
rbi = rbi2;
}
}
/* now count some things */
if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
if (dev->toread)
s.to_read++;
if (dev->towrite) {
s.to_write++;
if (!test_bit(R5_OVERWRITE, &dev->flags))
s.non_overwrite++;
}
if (dev->written)
s.written++;
rdev = rcu_dereference(conf->disks[i].rdev);
if (blocked_rdev == NULL &&
rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
blocked_rdev = rdev;
atomic_inc(&rdev->nr_pending);
}
if (!rdev || !test_bit(In_sync, &rdev->flags)) {
/* The ReadError flag will just be confusing now */
clear_bit(R5_ReadError, &dev->flags);
clear_bit(R5_ReWrite, &dev->flags);
}
if (!rdev || !test_bit(In_sync, &rdev->flags)
|| test_bit(R5_ReadError, &dev->flags)) {
if (s.failed < 2)
r6s.failed_num[s.failed] = i;
s.failed++;
} else
set_bit(R5_Insync, &dev->flags);
}
rcu_read_unlock();
if (unlikely(blocked_rdev)) {
if (s.syncing || s.expanding || s.expanded ||
s.to_write || s.written) {
set_bit(STRIPE_HANDLE, &sh->state);
goto unlock;
}
/* There is nothing for the blocked_rdev to block */
rdev_dec_pending(blocked_rdev, conf->mddev);
blocked_rdev = NULL;
}
pr_debug("locked=%d uptodate=%d to_read=%d"
" to_write=%d failed=%d failed_num=%d,%d\n",
s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
r6s.failed_num[0], r6s.failed_num[1]);
/* check if the array has lost >2 devices and, if so, some requests
* might need to be failed
*/
if (s.failed > 2 && s.to_read+s.to_write+s.written)
handle_failed_stripe(conf, sh, &s, disks, &return_bi);
if (s.failed > 2 && s.syncing) {
md_done_sync(conf->mddev, STRIPE_SECTORS,0);
clear_bit(STRIPE_SYNCING, &sh->state);
s.syncing = 0;
}
/*
* might be able to return some write requests if the parity blocks
* are safe, or on a failed drive
*/
pdev = &sh->dev[pd_idx];
r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
qdev = &sh->dev[r6s.qd_idx];
r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
|| (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
if ( s.written &&
( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
&& !test_bit(R5_LOCKED, &pdev->flags)
&& test_bit(R5_UPTODATE, &pdev->flags)))) &&
( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
&& !test_bit(R5_LOCKED, &qdev->flags)
&& test_bit(R5_UPTODATE, &qdev->flags)))))
handle_stripe_clean_event(conf, sh, disks, &return_bi);
/* Now we might consider reading some blocks, either to check/generate
* parity, or to satisfy requests
* or to load a block that is being partially written.
*/
if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
(s.syncing && (s.uptodate < disks)) || s.expanding)
handle_stripe_fill6(sh, &s, &r6s, disks);
/* now to consider writing and what else, if anything should be read */
if (s.to_write)
handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
/* maybe we need to check and possibly fix the parity for this stripe
* Any reads will already have been scheduled, so we just see if enough
* data is available
*/
if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
md_done_sync(conf->mddev, STRIPE_SECTORS,1);
clear_bit(STRIPE_SYNCING, &sh->state);
}
/* If the failed drives are just a ReadError, then we might need
* to progress the repair/check process
*/
if (s.failed <= 2 && !conf->mddev->ro)
for (i = 0; i < s.failed; i++) {
dev = &sh->dev[r6s.failed_num[i]];
if (test_bit(R5_ReadError, &dev->flags)
&& !test_bit(R5_LOCKED, &dev->flags)
&& test_bit(R5_UPTODATE, &dev->flags)
) {
if (!test_bit(R5_ReWrite, &dev->flags)) {
set_bit(R5_Wantwrite, &dev->flags);
set_bit(R5_ReWrite, &dev->flags);
set_bit(R5_LOCKED, &dev->flags);
} else {
/* let's read it back */
set_bit(R5_Wantread, &dev->flags);
set_bit(R5_LOCKED, &dev->flags);
}
}
}
if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
/* Need to write out all blocks after computing P&Q */
sh->disks = conf->raid_disks;
sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
conf->raid_disks);
compute_parity6(sh, RECONSTRUCT_WRITE);
for (i = conf->raid_disks ; i-- ; ) {
set_bit(R5_LOCKED, &sh->dev[i].flags);
s.locked++;
set_bit(R5_Wantwrite, &sh->dev[i].flags);
}
clear_bit(STRIPE_EXPANDING, &sh->state);
} else if (s.expanded) {
clear_bit(STRIPE_EXPAND_READY, &sh->state);
atomic_dec(&conf->reshape_stripes);
wake_up(&conf->wait_for_overlap);
md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
}
if (s.expanding && s.locked == 0 &&
!test_bit(STRIPE_COMPUTE_RUN, &sh->state))
handle_stripe_expansion(conf, sh, &r6s);
unlock:
spin_unlock(&sh->lock);
/* wait for this device to become unblocked */
if (unlikely(blocked_rdev))
md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
ops_run_io(sh, &s);
return_io(return_bi);
return blocked_rdev == NULL;
}
/* returns true if the stripe was handled */
static bool handle_stripe(struct stripe_head *sh, struct page *tmp_page)
{
if (sh->raid_conf->level == 6)
return handle_stripe6(sh, tmp_page);
else
return handle_stripe5(sh);
}
static void raid5_activate_delayed(raid5_conf_t *conf)
{
if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
while (!list_empty(&conf->delayed_list)) {
struct list_head *l = conf->delayed_list.next;
struct stripe_head *sh;
sh = list_entry(l, struct stripe_head, lru);
list_del_init(l);
clear_bit(STRIPE_DELAYED, &sh->state);
if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
atomic_inc(&conf->preread_active_stripes);
list_add_tail(&sh->lru, &conf->hold_list);
}
} else
blk_plug_device(conf->mddev->queue);
}
static void activate_bit_delay(raid5_conf_t *conf)
{
/* device_lock is held */
struct list_head head;
list_add(&head, &conf->bitmap_list);
list_del_init(&conf->bitmap_list);
while (!list_empty(&head)) {
struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
list_del_init(&sh->lru);
atomic_inc(&sh->count);
__release_stripe(conf, sh);
}
}
static void unplug_slaves(mddev_t *mddev)
{
raid5_conf_t *conf = mddev_to_conf(mddev);
int i;
rcu_read_lock();
for (i=0; i<mddev->raid_disks; i++) {
mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
atomic_inc(&rdev->nr_pending);
rcu_read_unlock();
blk_unplug(r_queue);
rdev_dec_pending(rdev, mddev);
rcu_read_lock();
}
}
rcu_read_unlock();
}
static void raid5_unplug_device(struct request_queue *q)
{
mddev_t *mddev = q->queuedata;
raid5_conf_t *conf = mddev_to_conf(mddev);
unsigned long flags;
spin_lock_irqsave(&conf->device_lock, flags);
if (blk_remove_plug(q)) {
conf->seq_flush++;
raid5_activate_delayed(conf);
}
md_wakeup_thread(mddev->thread);
spin_unlock_irqrestore(&conf->device_lock, flags);
unplug_slaves(mddev);
}
static int raid5_congested(void *data, int bits)
{
mddev_t *mddev = data;
raid5_conf_t *conf = mddev_to_conf(mddev);
/* No difference between reads and writes. Just check
* how busy the stripe_cache is
*/
if (conf->inactive_blocked)
return 1;
if (conf->quiesce)
return 1;
if (list_empty_careful(&conf->inactive_list))
return 1;
return 0;
}
/* We want read requests to align with chunks where possible,
* but write requests don't need to.
*/
static int raid5_mergeable_bvec(struct request_queue *q,
struct bvec_merge_data *bvm,
struct bio_vec *biovec)
{
mddev_t *mddev = q->queuedata;
sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
int max;
unsigned int chunk_sectors = mddev->chunk_size >> 9;
unsigned int bio_sectors = bvm->bi_size >> 9;
if ((bvm->bi_rw & 1) == WRITE)
return biovec->bv_len; /* always allow writes to be mergeable */
max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
if (max < 0) max = 0;
if (max <= biovec->bv_len && bio_sectors == 0)
return biovec->bv_len;
else
return max;
}
static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
{
sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
unsigned int chunk_sectors = mddev->chunk_size >> 9;
unsigned int bio_sectors = bio->bi_size >> 9;
return chunk_sectors >=
((sector & (chunk_sectors - 1)) + bio_sectors);
}
/*
* add bio to the retry LIFO ( in O(1) ... we are in interrupt )
* later sampled by raid5d.
*/
static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
{
unsigned long flags;
spin_lock_irqsave(&conf->device_lock, flags);
bi->bi_next = conf->retry_read_aligned_list;
conf->retry_read_aligned_list = bi;
spin_unlock_irqrestore(&conf->device_lock, flags);
md_wakeup_thread(conf->mddev->thread);
}
static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
{
struct bio *bi;
bi = conf->retry_read_aligned;
if (bi) {
conf->retry_read_aligned = NULL;
return bi;
}
bi = conf->retry_read_aligned_list;
if(bi) {
conf->retry_read_aligned_list = bi->bi_next;
bi->bi_next = NULL;
/*
* this sets the active strip count to 1 and the processed
* strip count to zero (upper 8 bits)
*/
bi->bi_phys_segments = 1; /* biased count of active stripes */
}
return bi;
}
/*
* The "raid5_align_endio" should check if the read succeeded and if it
* did, call bio_endio on the original bio (having bio_put the new bio
* first).
* If the read failed..
*/
static void raid5_align_endio(struct bio *bi, int error)
{
struct bio* raid_bi = bi->bi_private;
mddev_t *mddev;
raid5_conf_t *conf;
int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
mdk_rdev_t *rdev;
bio_put(bi);
mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
conf = mddev_to_conf(mddev);
rdev = (void*)raid_bi->bi_next;
raid_bi->bi_next = NULL;
rdev_dec_pending(rdev, conf->mddev);
if (!error && uptodate) {
bio_endio(raid_bi, 0);
if (atomic_dec_and_test(&conf->active_aligned_reads))
wake_up(&conf->wait_for_stripe);
return;
}
pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
add_bio_to_retry(raid_bi, conf);
}
static int bio_fits_rdev(struct bio *bi)
{
struct request_queue *q = bdev_get_queue(bi->bi_bdev);
if ((bi->bi_size>>9) > q->max_sectors)
return 0;
blk_recount_segments(q, bi);
if (bi->bi_phys_segments > q->max_phys_segments)
return 0;
if (q->merge_bvec_fn)
/* it's too hard to apply the merge_bvec_fn at this stage,
* just just give up
*/
return 0;
return 1;
}
static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
{
mddev_t *mddev = q->queuedata;
raid5_conf_t *conf = mddev_to_conf(mddev);
const unsigned int raid_disks = conf->raid_disks;
const unsigned int data_disks = raid_disks - conf->max_degraded;
unsigned int dd_idx, pd_idx;
struct bio* align_bi;
mdk_rdev_t *rdev;
if (!in_chunk_boundary(mddev, raid_bio)) {
pr_debug("chunk_aligned_read : non aligned\n");
return 0;
}
/*
* use bio_clone to make a copy of the bio
*/
align_bi = bio_clone(raid_bio, GFP_NOIO);
if (!align_bi)
return 0;
/*
* set bi_end_io to a new function, and set bi_private to the
* original bio.
*/
align_bi->bi_end_io = raid5_align_endio;
align_bi->bi_private = raid_bio;
/*
* compute position
*/
align_bi->bi_sector = raid5_compute_sector(raid_bio->bi_sector,
raid_disks,
data_disks,
&dd_idx,
&pd_idx,
conf);
rcu_read_lock();
rdev = rcu_dereference(conf->disks[dd_idx].rdev);
if (rdev && test_bit(In_sync, &rdev->flags)) {
atomic_inc(&rdev->nr_pending);
rcu_read_unlock();
raid_bio->bi_next = (void*)rdev;
align_bi->bi_bdev = rdev->bdev;
align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
align_bi->bi_sector += rdev->data_offset;
if (!bio_fits_rdev(align_bi)) {
/* too big in some way */
bio_put(align_bi);
rdev_dec_pending(rdev, mddev);
return 0;
}
spin_lock_irq(&conf->device_lock);
wait_event_lock_irq(conf->wait_for_stripe,
conf->quiesce == 0,
conf->device_lock, /* nothing */);
atomic_inc(&conf->active_aligned_reads);
spin_unlock_irq(&conf->device_lock);
generic_make_request(align_bi);
return 1;
} else {
rcu_read_unlock();
bio_put(align_bi);
return 0;
}
}
/* __get_priority_stripe - get the next stripe to process
*
* Full stripe writes are allowed to pass preread active stripes up until
* the bypass_threshold is exceeded. In general the bypass_count
* increments when the handle_list is handled before the hold_list; however, it
* will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
* stripe with in flight i/o. The bypass_count will be reset when the
* head of the hold_list has changed, i.e. the head was promoted to the
* handle_list.
*/
static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
{
struct stripe_head *sh;
pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
__func__,
list_empty(&conf->handle_list) ? "empty" : "busy",
list_empty(&conf->hold_list) ? "empty" : "busy",
atomic_read(&conf->pending_full_writes), conf->bypass_count);
if (!list_empty(&conf->handle_list)) {
sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
if (list_empty(&conf->hold_list))
conf->bypass_count = 0;
else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
if (conf->hold_list.next == conf->last_hold)
conf->bypass_count++;
else {
conf->last_hold = conf->hold_list.next;
conf->bypass_count -= conf->bypass_threshold;
if (conf->bypass_count < 0)
conf->bypass_count = 0;
}
}
} else if (!list_empty(&conf->hold_list) &&
((conf->bypass_threshold &&
conf->bypass_count > conf->bypass_threshold) ||
atomic_read(&conf->pending_full_writes) == 0)) {
sh = list_entry(conf->hold_list.next,
typeof(*sh), lru);
conf->bypass_count -= conf->bypass_threshold;
if (conf->bypass_count < 0)
conf->bypass_count = 0;
} else
return NULL;
list_del_init(&sh->lru);
atomic_inc(&sh->count);
BUG_ON(atomic_read(&sh->count) != 1);
return sh;
}
static int make_request(struct request_queue *q, struct bio * bi)
{
mddev_t *mddev = q->queuedata;
raid5_conf_t *conf = mddev_to_conf(mddev);
unsigned int dd_idx, pd_idx;
sector_t new_sector;
sector_t logical_sector, last_sector;
struct stripe_head *sh;
const int rw = bio_data_dir(bi);
int cpu, remaining;
if (unlikely(bio_barrier(bi))) {
bio_endio(bi, -EOPNOTSUPP);
return 0;
}
md_write_start(mddev, bi);
cpu = part_stat_lock();
part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
bio_sectors(bi));
part_stat_unlock();
if (rw == READ &&
mddev->reshape_position == MaxSector &&
chunk_aligned_read(q,bi))
return 0;
logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
last_sector = bi->bi_sector + (bi->bi_size>>9);
bi->bi_next = NULL;
bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
DEFINE_WAIT(w);
int disks, data_disks;
retry:
prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
if (likely(conf->expand_progress == MaxSector))
disks = conf->raid_disks;
else {
/* spinlock is needed as expand_progress may be
* 64bit on a 32bit platform, and so it might be
* possible to see a half-updated value
* Ofcourse expand_progress could change after
* the lock is dropped, so once we get a reference
* to the stripe that we think it is, we will have
* to check again.
*/
spin_lock_irq(&conf->device_lock);
disks = conf->raid_disks;
if (logical_sector >= conf->expand_progress)
disks = conf->previous_raid_disks;
else {
if (logical_sector >= conf->expand_lo) {
spin_unlock_irq(&conf->device_lock);
schedule();
goto retry;
}
}
spin_unlock_irq(&conf->device_lock);
}
data_disks = disks - conf->max_degraded;
new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
&dd_idx, &pd_idx, conf);
pr_debug("raid5: make_request, sector %llu logical %llu\n",
(unsigned long long)new_sector,
(unsigned long long)logical_sector);
sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
if (sh) {
if (unlikely(conf->expand_progress != MaxSector)) {
/* expansion might have moved on while waiting for a
* stripe, so we must do the range check again.
* Expansion could still move past after this
* test, but as we are holding a reference to
* 'sh', we know that if that happens,
* STRIPE_EXPANDING will get set and the expansion
* won't proceed until we finish with the stripe.
*/
int must_retry = 0;
spin_lock_irq(&conf->device_lock);
if (logical_sector < conf->expand_progress &&
disks == conf->previous_raid_disks)
/* mismatch, need to try again */
must_retry = 1;
spin_unlock_irq(&conf->device_lock);
if (must_retry) {
release_stripe(sh);
goto retry;
}
}
/* FIXME what if we get a false positive because these
* are being updated.
*/
if (logical_sector >= mddev->suspend_lo &&
logical_sector < mddev->suspend_hi) {
release_stripe(sh);
schedule();
goto retry;
}
if (test_bit(STRIPE_EXPANDING, &sh->state) ||
!add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
/* Stripe is busy expanding or
* add failed due to overlap. Flush everything
* and wait a while
*/
raid5_unplug_device(mddev->queue);
release_stripe(sh);
schedule();
goto retry;
}
finish_wait(&conf->wait_for_overlap, &w);
set_bit(STRIPE_HANDLE, &sh->state);
clear_bit(STRIPE_DELAYED, &sh->state);
release_stripe(sh);
} else {
/* cannot get stripe for read-ahead, just give-up */
clear_bit(BIO_UPTODATE, &bi->bi_flags);
finish_wait(&conf->wait_for_overlap, &w);
break;
}
}
spin_lock_irq(&conf->device_lock);
remaining = raid5_dec_bi_phys_segments(bi);
spin_unlock_irq(&conf->device_lock);
if (remaining == 0) {
if ( rw == WRITE )
md_write_end(mddev);
bio_endio(bi, 0);
}
return 0;
}
static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
{
/* reshaping is quite different to recovery/resync so it is
* handled quite separately ... here.
*
* On each call to sync_request, we gather one chunk worth of
* destination stripes and flag them as expanding.
* Then we find all the source stripes and request reads.
* As the reads complete, handle_stripe will copy the data
* into the destination stripe and release that stripe.
*/
raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
struct stripe_head *sh;
int pd_idx;
sector_t first_sector, last_sector;
int raid_disks = conf->previous_raid_disks;
int data_disks = raid_disks - conf->max_degraded;
int new_data_disks = conf->raid_disks - conf->max_degraded;
int i;
int dd_idx;
sector_t writepos, safepos, gap;
if (sector_nr == 0 &&
conf->expand_progress != 0) {
/* restarting in the middle, skip the initial sectors */
sector_nr = conf->expand_progress;
sector_div(sector_nr, new_data_disks);
*skipped = 1;
return sector_nr;
}
/* we update the metadata when there is more than 3Meg
* in the block range (that is rather arbitrary, should
* probably be time based) or when the data about to be
* copied would over-write the source of the data at
* the front of the range.
* i.e. one new_stripe forward from expand_progress new_maps
* to after where expand_lo old_maps to
*/
writepos = conf->expand_progress +
conf->chunk_size/512*(new_data_disks);
sector_div(writepos, new_data_disks);
safepos = conf->expand_lo;
sector_div(safepos, data_disks);
gap = conf->expand_progress - conf->expand_lo;
if (writepos >= safepos ||
gap > (new_data_disks)*3000*2 /*3Meg*/) {
/* Cannot proceed until we've updated the superblock... */
wait_event(conf->wait_for_overlap,
atomic_read(&conf->reshape_stripes)==0);
mddev->reshape_position = conf->expand_progress;
set_bit(MD_CHANGE_DEVS, &mddev->flags);
md_wakeup_thread(mddev->thread);
wait_event(mddev->sb_wait, mddev->flags == 0 ||
kthread_should_stop());
spin_lock_irq(&conf->device_lock);
conf->expand_lo = mddev->reshape_position;
spin_unlock_irq(&conf->device_lock);
wake_up(&conf->wait_for_overlap);
}
for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
int j;
int skipped = 0;
pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
sh = get_active_stripe(conf, sector_nr+i,
conf->raid_disks, pd_idx, 0);
set_bit(STRIPE_EXPANDING, &sh->state);
atomic_inc(&conf->reshape_stripes);
/* If any of this stripe is beyond the end of the old
* array, then we need to zero those blocks
*/
for (j=sh->disks; j--;) {
sector_t s;
if (j == sh->pd_idx)
continue;
if (conf->level == 6 &&
j == raid6_next_disk(sh->pd_idx, sh->disks))
continue;
s = compute_blocknr(sh, j);
if (s < mddev->array_sectors) {
skipped = 1;
continue;
}
memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
set_bit(R5_Expanded, &sh->dev[j].flags);
set_bit(R5_UPTODATE, &sh->dev[j].flags);
}
if (!skipped) {
set_bit(STRIPE_EXPAND_READY, &sh->state);
set_bit(STRIPE_HANDLE, &sh->state);
}
release_stripe(sh);
}
spin_lock_irq(&conf->device_lock);
conf->expand_progress = (sector_nr + i) * new_data_disks;
spin_unlock_irq(&conf->device_lock);
/* Ok, those stripe are ready. We can start scheduling
* reads on the source stripes.
* The source stripes are determined by mapping the first and last
* block on the destination stripes.
*/
first_sector =
raid5_compute_sector(sector_nr*(new_data_disks),
raid_disks, data_disks,
&dd_idx, &pd_idx, conf);
last_sector =
raid5_compute_sector((sector_nr+conf->chunk_size/512)
*(new_data_disks) -1,
raid_disks, data_disks,
&dd_idx, &pd_idx, conf);
if (last_sector >= (mddev->size<<1))
last_sector = (mddev->size<<1)-1;
while (first_sector <= last_sector) {
pd_idx = stripe_to_pdidx(first_sector, conf,
conf->previous_raid_disks);
sh = get_active_stripe(conf, first_sector,
conf->previous_raid_disks, pd_idx, 0);
set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
set_bit(STRIPE_HANDLE, &sh->state);
release_stripe(sh);
first_sector += STRIPE_SECTORS;
}
/* If this takes us to the resync_max point where we have to pause,
* then we need to write out the superblock.
*/
sector_nr += conf->chunk_size>>9;
if (sector_nr >= mddev->resync_max) {
/* Cannot proceed until we've updated the superblock... */
wait_event(conf->wait_for_overlap,
atomic_read(&conf->reshape_stripes) == 0);
mddev->reshape_position = conf->expand_progress;
set_bit(MD_CHANGE_DEVS, &mddev->flags);
md_wakeup_thread(mddev->thread);
wait_event(mddev->sb_wait,
!test_bit(MD_CHANGE_DEVS, &mddev->flags)
|| kthread_should_stop());
spin_lock_irq(&conf->device_lock);
conf->expand_lo = mddev->reshape_position;
spin_unlock_irq(&conf->device_lock);
wake_up(&conf->wait_for_overlap);
}
return conf->chunk_size>>9;
}
/* FIXME go_faster isn't used */
static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
{
raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
struct stripe_head *sh;
int pd_idx;
int raid_disks = conf->raid_disks;
sector_t max_sector = mddev->size << 1;
int sync_blocks;
int still_degraded = 0;
int i;
if (sector_nr >= max_sector) {
/* just being told to finish up .. nothing much to do */
unplug_slaves(mddev);
if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
end_reshape(conf);
return 0;
}
if (mddev->curr_resync < max_sector) /* aborted */
bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
&sync_blocks, 1);
else /* completed sync */
conf->fullsync = 0;
bitmap_close_sync(mddev->bitmap);
return 0;
}
if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
return reshape_request(mddev, sector_nr, skipped);
/* No need to check resync_max as we never do more than one
* stripe, and as resync_max will always be on a chunk boundary,
* if the check in md_do_sync didn't fire, there is no chance
* of overstepping resync_max here
*/
/* if there is too many failed drives and we are trying
* to resync, then assert that we are finished, because there is
* nothing we can do.
*/
if (mddev->degraded >= conf->max_degraded &&
test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
sector_t rv = (mddev->size << 1) - sector_nr;
*skipped = 1;
return rv;
}
if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
!conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
/* we can skip this block, and probably more */
sync_blocks /= STRIPE_SECTORS;
*skipped = 1;
return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
}
bitmap_cond_end_sync(mddev->bitmap, sector_nr);
pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
if (sh == NULL) {
sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
/* make sure we don't swamp the stripe cache if someone else
* is trying to get access
*/
schedule_timeout_uninterruptible(1);
}
/* Need to check if array will still be degraded after recovery/resync
* We don't need to check the 'failed' flag as when that gets set,
* recovery aborts.
*/
for (i=0; i<mddev->raid_disks; i++)
if (conf->disks[i].rdev == NULL)
still_degraded = 1;
bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
spin_lock(&sh->lock);
set_bit(STRIPE_SYNCING, &sh->state);
clear_bit(STRIPE_INSYNC, &sh->state);
spin_unlock(&sh->lock);
/* wait for any blocked device to be handled */
while(unlikely(!handle_stripe(sh, NULL)))
;
release_stripe(sh);
return STRIPE_SECTORS;
}
static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
{
/* We may not be able to submit a whole bio at once as there
* may not be enough stripe_heads available.
* We cannot pre-allocate enough stripe_heads as we may need
* more than exist in the cache (if we allow ever large chunks).
* So we do one stripe head at a time and record in
* ->bi_hw_segments how many have been done.
*
* We *know* that this entire raid_bio is in one chunk, so
* it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
*/
struct stripe_head *sh;
int dd_idx, pd_idx;
sector_t sector, logical_sector, last_sector;
int scnt = 0;
int remaining;
int handled = 0;
logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
sector = raid5_compute_sector( logical_sector,
conf->raid_disks,
conf->raid_disks - conf->max_degraded,
&dd_idx,
&pd_idx,
conf);
last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
for (; logical_sector < last_sector;
logical_sector += STRIPE_SECTORS,
sector += STRIPE_SECTORS,
scnt++) {
if (scnt < raid5_bi_hw_segments(raid_bio))
/* already done this stripe */
continue;
sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
if (!sh) {
/* failed to get a stripe - must wait */
raid5_set_bi_hw_segments(raid_bio, scnt);
conf->retry_read_aligned = raid_bio;
return handled;
}
set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
release_stripe(sh);
raid5_set_bi_hw_segments(raid_bio, scnt);
conf->retry_read_aligned = raid_bio;
return handled;
}
handle_stripe(sh, NULL);
release_stripe(sh);
handled++;
}
spin_lock_irq(&conf->device_lock);
remaining = raid5_dec_bi_phys_segments(raid_bio);
spin_unlock_irq(&conf->device_lock);
if (remaining == 0)
bio_endio(raid_bio, 0);
if (atomic_dec_and_test(&conf->active_aligned_reads))
wake_up(&conf->wait_for_stripe);
return handled;
}
/*
* This is our raid5 kernel thread.
*
* We scan the hash table for stripes which can be handled now.
* During the scan, completed stripes are saved for us by the interrupt
* handler, so that they will not have to wait for our next wakeup.
*/
static void raid5d(mddev_t *mddev)
{
struct stripe_head *sh;
raid5_conf_t *conf = mddev_to_conf(mddev);
int handled;
pr_debug("+++ raid5d active\n");
md_check_recovery(mddev);
handled = 0;
spin_lock_irq(&conf->device_lock);
while (1) {
struct bio *bio;
if (conf->seq_flush != conf->seq_write) {
int seq = conf->seq_flush;
spin_unlock_irq(&conf->device_lock);
bitmap_unplug(mddev->bitmap);
spin_lock_irq(&conf->device_lock);
conf->seq_write = seq;
activate_bit_delay(conf);
}
while ((bio = remove_bio_from_retry(conf))) {
int ok;
spin_unlock_irq(&conf->device_lock);
ok = retry_aligned_read(conf, bio);
spin_lock_irq(&conf->device_lock);
if (!ok)
break;
handled++;
}
sh = __get_priority_stripe(conf);
if (!sh)
break;
spin_unlock_irq(&conf->device_lock);
handled++;
handle_stripe(sh, conf->spare_page);
release_stripe(sh);
spin_lock_irq(&conf->device_lock);
}
pr_debug("%d stripes handled\n", handled);
spin_unlock_irq(&conf->device_lock);
async_tx_issue_pending_all();
unplug_slaves(mddev);
pr_debug("--- raid5d inactive\n");
}
static ssize_t
raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
{
raid5_conf_t *conf = mddev_to_conf(mddev);
if (conf)
return sprintf(page, "%d\n", conf->max_nr_stripes);
else
return 0;
}
static ssize_t
raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
{
raid5_conf_t *conf = mddev_to_conf(mddev);
unsigned long new;
int err;
if (len >= PAGE_SIZE)
return -EINVAL;
if (!conf)
return -ENODEV;
if (strict_strtoul(page, 10, &new))
return -EINVAL;
if (new <= 16 || new > 32768)
return -EINVAL;
while (new < conf->max_nr_stripes) {
if (drop_one_stripe(conf))
conf->max_nr_stripes--;
else
break;
}
err = md_allow_write(mddev);
if (err)
return err;
while (new > conf->max_nr_stripes) {
if (grow_one_stripe(conf))
conf->max_nr_stripes++;
else break;
}
return len;
}
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
raid5_show_stripe_cache_size,
raid5_store_stripe_cache_size);
static ssize_t
raid5_show_preread_threshold(mddev_t *mddev, char *page)
{
raid5_conf_t *conf = mddev_to_conf(mddev);
if (conf)
return sprintf(page, "%d\n", conf->bypass_threshold);
else
return 0;
}
static ssize_t
raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
{
raid5_conf_t *conf = mddev_to_conf(mddev);
unsigned long new;
if (len >= PAGE_SIZE)
return -EINVAL;
if (!conf)
return -ENODEV;
if (strict_strtoul(page, 10, &new))
return -EINVAL;
if (new > conf->max_nr_stripes)
return -EINVAL;
conf->bypass_threshold = new;
return len;
}
static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
S_IRUGO | S_IWUSR,
raid5_show_preread_threshold,
raid5_store_preread_threshold);
static ssize_t
stripe_cache_active_show(mddev_t *mddev, char *page)
{
raid5_conf_t *conf = mddev_to_conf(mddev);
if (conf)
return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
else
return 0;
}
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
static struct attribute *raid5_attrs[] = {
&raid5_stripecache_size.attr,
&raid5_stripecache_active.attr,
&raid5_preread_bypass_threshold.attr,
NULL,
};
static struct attribute_group raid5_attrs_group = {
.name = NULL,
.attrs = raid5_attrs,
};
static int run(mddev_t *mddev)
{
raid5_conf_t *conf;
int raid_disk, memory;
mdk_rdev_t *rdev;
struct disk_info *disk;
struct list_head *tmp;
int working_disks = 0;
if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
mdname(mddev), mddev->level);
return -EIO;
}
if (mddev->chunk_size < PAGE_SIZE) {
printk(KERN_ERR "md/raid5: chunk_size must be at least "
"PAGE_SIZE but %d < %ld\n",
mddev->chunk_size, PAGE_SIZE);
return -EINVAL;
}
if (mddev->reshape_position != MaxSector) {
/* Check that we can continue the reshape.
* Currently only disks can change, it must
* increase, and we must be past the point where
* a stripe over-writes itself
*/
sector_t here_new, here_old;
int old_disks;
int max_degraded = (mddev->level == 5 ? 1 : 2);
if (mddev->new_level != mddev->level ||
mddev->new_layout != mddev->layout ||
mddev->new_chunk != mddev->chunk_size) {
printk(KERN_ERR "raid5: %s: unsupported reshape "
"required - aborting.\n",
mdname(mddev));
return -EINVAL;
}
if (mddev->delta_disks <= 0) {
printk(KERN_ERR "raid5: %s: unsupported reshape "
"(reduce disks) required - aborting.\n",
mdname(mddev));
return -EINVAL;
}
old_disks = mddev->raid_disks - mddev->delta_disks;
/* reshape_position must be on a new-stripe boundary, and one
* further up in new geometry must map after here in old
* geometry.
*/
here_new = mddev->reshape_position;
if (sector_div(here_new, (mddev->chunk_size>>9)*
(mddev->raid_disks - max_degraded))) {
printk(KERN_ERR "raid5: reshape_position not "
"on a stripe boundary\n");
return -EINVAL;
}
/* here_new is the stripe we will write to */
here_old = mddev->reshape_position;
sector_div(here_old, (mddev->chunk_size>>9)*
(old_disks-max_degraded));
/* here_old is the first stripe that we might need to read
* from */
if (here_new >= here_old) {
/* Reading from the same stripe as writing to - bad */
printk(KERN_ERR "raid5: reshape_position too early for "
"auto-recovery - aborting.\n");
return -EINVAL;
}
printk(KERN_INFO "raid5: reshape will continue\n");
/* OK, we should be able to continue; */
}
mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
if ((conf = mddev->private) == NULL)
goto abort;
if (mddev->reshape_position == MaxSector) {
conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
} else {
conf->raid_disks = mddev->raid_disks;
conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
}
conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
GFP_KERNEL);
if (!conf->disks)
goto abort;
conf->mddev = mddev;
if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
goto abort;
if (mddev->level == 6) {
conf->spare_page = alloc_page(GFP_KERNEL);
if (!conf->spare_page)
goto abort;
}
spin_lock_init(&conf->device_lock);
mddev->queue->queue_lock = &conf->device_lock;
init_waitqueue_head(&conf->wait_for_stripe);
init_waitqueue_head(&conf->wait_for_overlap);
INIT_LIST_HEAD(&conf->handle_list);
INIT_LIST_HEAD(&conf->hold_list);
INIT_LIST_HEAD(&conf->delayed_list);
INIT_LIST_HEAD(&conf->bitmap_list);
INIT_LIST_HEAD(&conf->inactive_list);
atomic_set(&conf->active_stripes, 0);
atomic_set(&conf->preread_active_stripes, 0);
atomic_set(&conf->active_aligned_reads, 0);
conf->bypass_threshold = BYPASS_THRESHOLD;
pr_debug("raid5: run(%s) called.\n", mdname(mddev));
rdev_for_each(rdev, tmp, mddev) {
raid_disk = rdev->raid_disk;
if (raid_disk >= conf->raid_disks
|| raid_disk < 0)
continue;
disk = conf->disks + raid_disk;
disk->rdev = rdev;
if (test_bit(In_sync, &rdev->flags)) {
char b[BDEVNAME_SIZE];
printk(KERN_INFO "raid5: device %s operational as raid"
" disk %d\n", bdevname(rdev->bdev,b),
raid_disk);
working_disks++;
} else
/* Cannot rely on bitmap to complete recovery */
conf->fullsync = 1;
}
/*
* 0 for a fully functional array, 1 or 2 for a degraded array.
*/
mddev->degraded = conf->raid_disks - working_disks;
conf->mddev = mddev;
conf->chunk_size = mddev->chunk_size;
conf->level = mddev->level;
if (conf->level == 6)
conf->max_degraded = 2;
else
conf->max_degraded = 1;
conf->algorithm = mddev->layout;
conf->max_nr_stripes = NR_STRIPES;
conf->expand_progress = mddev->reshape_position;
/* device size must be a multiple of chunk size */
mddev->size &= ~(mddev->chunk_size/1024 -1);
mddev->resync_max_sectors = mddev->size << 1;
if (conf->level == 6 && conf->raid_disks < 4) {
printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
mdname(mddev), conf->raid_disks);
goto abort;
}
if (!conf->chunk_size || conf->chunk_size % 4) {
printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
conf->chunk_size, mdname(mddev));
goto abort;
}
if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
printk(KERN_ERR
"raid5: unsupported parity algorithm %d for %s\n",
conf->algorithm, mdname(mddev));
goto abort;
}
if (mddev->degraded > conf->max_degraded) {
printk(KERN_ERR "raid5: not enough operational devices for %s"
" (%d/%d failed)\n",
mdname(mddev), mddev->degraded, conf->raid_disks);
goto abort;
}
if (mddev->degraded > 0 &&
mddev->recovery_cp != MaxSector) {
if (mddev->ok_start_degraded)
printk(KERN_WARNING
"raid5: starting dirty degraded array: %s"
"- data corruption possible.\n",
mdname(mddev));
else {
printk(KERN_ERR
"raid5: cannot start dirty degraded array for %s\n",
mdname(mddev));
goto abort;
}
}
{
mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
if (!mddev->thread) {
printk(KERN_ERR
"raid5: couldn't allocate thread for %s\n",
mdname(mddev));
goto abort;
}
}
memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
if (grow_stripes(conf, conf->max_nr_stripes)) {
printk(KERN_ERR
"raid5: couldn't allocate %dkB for buffers\n", memory);
shrink_stripes(conf);
md_unregister_thread(mddev->thread);
goto abort;
} else
printk(KERN_INFO "raid5: allocated %dkB for %s\n",
memory, mdname(mddev));
if (mddev->degraded == 0)
printk("raid5: raid level %d set %s active with %d out of %d"
" devices, algorithm %d\n", conf->level, mdname(mddev),
mddev->raid_disks-mddev->degraded, mddev->raid_disks,
conf->algorithm);
else
printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
" out of %d devices, algorithm %d\n", conf->level,
mdname(mddev), mddev->raid_disks - mddev->degraded,
mddev->raid_disks, conf->algorithm);
print_raid5_conf(conf);
if (conf->expand_progress != MaxSector) {
printk("...ok start reshape thread\n");
conf->expand_lo = conf->expand_progress;
atomic_set(&conf->reshape_stripes, 0);
clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
mddev->sync_thread = md_register_thread(md_do_sync, mddev,
"%s_reshape");
}
/* read-ahead size must cover two whole stripes, which is
* 2 * (datadisks) * chunksize where 'n' is the number of raid devices
*/
{
int data_disks = conf->previous_raid_disks - conf->max_degraded;
int stripe = data_disks *
(mddev->chunk_size / PAGE_SIZE);
if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
}
/* Ok, everything is just fine now */
if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
printk(KERN_WARNING
"raid5: failed to create sysfs attributes for %s\n",
mdname(mddev));
mddev->queue->unplug_fn = raid5_unplug_device;
mddev->queue->backing_dev_info.congested_data = mddev;
mddev->queue->backing_dev_info.congested_fn = raid5_congested;
mddev->array_sectors = 2 * mddev->size * (conf->previous_raid_disks -
conf->max_degraded);
blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
return 0;
abort:
if (conf) {
print_raid5_conf(conf);
safe_put_page(conf->spare_page);
kfree(conf->disks);
kfree(conf->stripe_hashtbl);
kfree(conf);
}
mddev->private = NULL;
printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
return -EIO;
}
static int stop(mddev_t *mddev)
{
raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
md_unregister_thread(mddev->thread);
mddev->thread = NULL;
shrink_stripes(conf);
kfree(conf->stripe_hashtbl);
mddev->queue->backing_dev_info.congested_fn = NULL;
blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
kfree(conf->disks);
kfree(conf);
mddev->private = NULL;
return 0;
}
#ifdef DEBUG
static void print_sh(struct seq_file *seq, struct stripe_head *sh)
{
int i;
seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
(unsigned long long)sh->sector, sh->pd_idx, sh->state);
seq_printf(seq, "sh %llu, count %d.\n",
(unsigned long long)sh->sector, atomic_read(&sh->count));
seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
for (i = 0; i < sh->disks; i++) {
seq_printf(seq, "(cache%d: %p %ld) ",
i, sh->dev[i].page, sh->dev[i].flags);
}
seq_printf(seq, "\n");
}
static void printall(struct seq_file *seq, raid5_conf_t *conf)
{
struct stripe_head *sh;
struct hlist_node *hn;
int i;
spin_lock_irq(&conf->device_lock);
for (i = 0; i < NR_HASH; i++) {
hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
if (sh->raid_conf != conf)
continue;
print_sh(seq, sh);
}
}
spin_unlock_irq(&conf->device_lock);
}
#endif
static void status(struct seq_file *seq, mddev_t *mddev)
{
raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
int i;
seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
for (i = 0; i < conf->raid_disks; i++)
seq_printf (seq, "%s",
conf->disks[i].rdev &&
test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
seq_printf (seq, "]");
#ifdef DEBUG
seq_printf (seq, "\n");
printall(seq, conf);
#endif
}
static void print_raid5_conf (raid5_conf_t *conf)
{
int i;
struct disk_info *tmp;
printk("RAID5 conf printout:\n");
if (!conf) {
printk("(conf==NULL)\n");
return;
}
printk(" --- rd:%d wd:%d\n", conf->raid_disks,
conf->raid_disks - conf->mddev->degraded);
for (i = 0; i < conf->raid_disks; i++) {
char b[BDEVNAME_SIZE];
tmp = conf->disks + i;
if (tmp->rdev)
printk(" disk %d, o:%d, dev:%s\n",
i, !test_bit(Faulty, &tmp->rdev->flags),
bdevname(tmp->rdev->bdev,b));
}
}
static int raid5_spare_active(mddev_t *mddev)
{
int i;
raid5_conf_t *conf = mddev->private;
struct disk_info *tmp;
for (i = 0; i < conf->raid_disks; i++) {
tmp = conf->disks + i;
if (tmp->rdev
&& !test_bit(Faulty, &tmp->rdev->flags)
&& !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
unsigned long flags;
spin_lock_irqsave(&conf->device_lock, flags);
mddev->degraded--;
spin_unlock_irqrestore(&conf->device_lock, flags);
}
}
print_raid5_conf(conf);
return 0;
}
static int raid5_remove_disk(mddev_t *mddev, int number)
{
raid5_conf_t *conf = mddev->private;
int err = 0;
mdk_rdev_t *rdev;
struct disk_info *p = conf->disks + number;
print_raid5_conf(conf);
rdev = p->rdev;
if (rdev) {
if (test_bit(In_sync, &rdev->flags) ||
atomic_read(&rdev->nr_pending)) {
err = -EBUSY;
goto abort;
}
/* Only remove non-faulty devices if recovery
* isn't possible.
*/
if (!test_bit(Faulty, &rdev->flags) &&
mddev->degraded <= conf->max_degraded) {
err = -EBUSY;
goto abort;
}
p->rdev = NULL;
synchronize_rcu();
if (atomic_read(&rdev->nr_pending)) {
/* lost the race, try later */
err = -EBUSY;
p->rdev = rdev;
}
}
abort:
print_raid5_conf(conf);
return err;
}
static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
{
raid5_conf_t *conf = mddev->private;
int err = -EEXIST;
int disk;
struct disk_info *p;
int first = 0;
int last = conf->raid_disks - 1;
if (mddev->degraded > conf->max_degraded)
/* no point adding a device */
return -EINVAL;
if (rdev->raid_disk >= 0)
first = last = rdev->raid_disk;
/*
* find the disk ... but prefer rdev->saved_raid_disk
* if possible.
*/
if (rdev->saved_raid_disk >= 0 &&
rdev->saved_raid_disk >= first &&
conf->disks[rdev->saved_raid_disk].rdev == NULL)
disk = rdev->saved_raid_disk;
else
disk = first;
for ( ; disk <= last ; disk++)
if ((p=conf->disks + disk)->rdev == NULL) {
clear_bit(In_sync, &rdev->flags);
rdev->raid_disk = disk;
err = 0;
if (rdev->saved_raid_disk != disk)
conf->fullsync = 1;
rcu_assign_pointer(p->rdev, rdev);
break;
}
print_raid5_conf(conf);
return err;
}
static int raid5_resize(mddev_t *mddev, sector_t sectors)
{
/* no resync is happening, and there is enough space
* on all devices, so we can resize.
* We need to make sure resync covers any new space.
* If the array is shrinking we should possibly wait until
* any io in the removed space completes, but it hardly seems
* worth it.
*/
raid5_conf_t *conf = mddev_to_conf(mddev);
sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
mddev->array_sectors = sectors * (mddev->raid_disks
- conf->max_degraded);
set_capacity(mddev->gendisk, mddev->array_sectors);
mddev->changed = 1;
if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
mddev->recovery_cp = mddev->size << 1;
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
}
mddev->size = sectors /2;
mddev->resync_max_sectors = sectors;
return 0;
}
#ifdef CONFIG_MD_RAID5_RESHAPE
static int raid5_check_reshape(mddev_t *mddev)
{
raid5_conf_t *conf = mddev_to_conf(mddev);
int err;
if (mddev->delta_disks < 0 ||
mddev->new_level != mddev->level)
return -EINVAL; /* Cannot shrink array or change level yet */
if (mddev->delta_disks == 0)
return 0; /* nothing to do */
if (mddev->bitmap)
/* Cannot grow a bitmap yet */
return -EBUSY;
/* Can only proceed if there are plenty of stripe_heads.
* We need a minimum of one full stripe,, and for sensible progress
* it is best to have about 4 times that.
* If we require 4 times, then the default 256 4K stripe_heads will
* allow for chunk sizes up to 256K, which is probably OK.
* If the chunk size is greater, user-space should request more
* stripe_heads first.
*/
if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
(mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
(mddev->chunk_size / STRIPE_SIZE)*4);
return -ENOSPC;
}
err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
if (err)
return err;
if (mddev->degraded > conf->max_degraded)
return -EINVAL;
/* looks like we might be able to manage this */
return 0;
}
static int raid5_start_reshape(mddev_t *mddev)
{
raid5_conf_t *conf = mddev_to_conf(mddev);
mdk_rdev_t *rdev;
struct list_head *rtmp;
int spares = 0;
int added_devices = 0;
unsigned long flags;
if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
return -EBUSY;
rdev_for_each(rdev, rtmp, mddev)
if (rdev->raid_disk < 0 &&
!test_bit(Faulty, &rdev->flags))
spares++;
if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
/* Not enough devices even to make a degraded array
* of that size
*/
return -EINVAL;
atomic_set(&conf->reshape_stripes, 0);
spin_lock_irq(&conf->device_lock);
conf->previous_raid_disks = conf->raid_disks;
conf->raid_disks += mddev->delta_disks;
conf->expand_progress = 0;
conf->expand_lo = 0;
spin_unlock_irq(&conf->device_lock);
/* Add some new drives, as many as will fit.
* We know there are enough to make the newly sized array work.
*/
rdev_for_each(rdev, rtmp, mddev)
if (rdev->raid_disk < 0 &&
!test_bit(Faulty, &rdev->flags)) {
if (raid5_add_disk(mddev, rdev) == 0) {
char nm[20];
set_bit(In_sync, &rdev->flags);
added_devices++;
rdev->recovery_offset = 0;
sprintf(nm, "rd%d", rdev->raid_disk);
if (sysfs_create_link(&mddev->kobj,
&rdev->kobj, nm))
printk(KERN_WARNING
"raid5: failed to create "
" link %s for %s\n",
nm, mdname(mddev));
} else
break;
}
spin_lock_irqsave(&conf->device_lock, flags);
mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
spin_unlock_irqrestore(&conf->device_lock, flags);
mddev->raid_disks = conf->raid_disks;
mddev->reshape_position = 0;
set_bit(MD_CHANGE_DEVS, &mddev->flags);
clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
mddev->sync_thread = md_register_thread(md_do_sync, mddev,
"%s_reshape");
if (!mddev->sync_thread) {
mddev->recovery = 0;
spin_lock_irq(&conf->device_lock);
mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
conf->expand_progress = MaxSector;
spin_unlock_irq(&conf->device_lock);
return -EAGAIN;
}
md_wakeup_thread(mddev->sync_thread);
md_new_event(mddev);
return 0;
}
#endif
static void end_reshape(raid5_conf_t *conf)
{
struct block_device *bdev;
if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
conf->mddev->array_sectors = 2 * conf->mddev->size *
(conf->raid_disks - conf->max_degraded);
set_capacity(conf->mddev->gendisk, conf->mddev->array_sectors);
conf->mddev->changed = 1;
bdev = bdget_disk(conf->mddev->gendisk, 0);
if (bdev) {
mutex_lock(&bdev->bd_inode->i_mutex);
i_size_write(bdev->bd_inode,
(loff_t)conf->mddev->array_sectors << 9);
mutex_unlock(&bdev->bd_inode->i_mutex);
bdput(bdev);
}
spin_lock_irq(&conf->device_lock);
conf->expand_progress = MaxSector;
spin_unlock_irq(&conf->device_lock);
conf->mddev->reshape_position = MaxSector;
/* read-ahead size must cover two whole stripes, which is
* 2 * (datadisks) * chunksize where 'n' is the number of raid devices
*/
{
int data_disks = conf->previous_raid_disks - conf->max_degraded;
int stripe = data_disks *
(conf->mddev->chunk_size / PAGE_SIZE);
if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
}
}
}
static void raid5_quiesce(mddev_t *mddev, int state)
{
raid5_conf_t *conf = mddev_to_conf(mddev);
switch(state) {
case 2: /* resume for a suspend */
wake_up(&conf->wait_for_overlap);
break;
case 1: /* stop all writes */
spin_lock_irq(&conf->device_lock);
conf->quiesce = 1;
wait_event_lock_irq(conf->wait_for_stripe,
atomic_read(&conf->active_stripes) == 0 &&
atomic_read(&conf->active_aligned_reads) == 0,
conf->device_lock, /* nothing */);
spin_unlock_irq(&conf->device_lock);
break;
case 0: /* re-enable writes */
spin_lock_irq(&conf->device_lock);
conf->quiesce = 0;
wake_up(&conf->wait_for_stripe);
wake_up(&conf->wait_for_overlap);
spin_unlock_irq(&conf->device_lock);
break;
}
}
static struct mdk_personality raid6_personality =
{
.name = "raid6",
.level = 6,
.owner = THIS_MODULE,
.make_request = make_request,
.run = run,
.stop = stop,
.status = status,
.error_handler = error,
.hot_add_disk = raid5_add_disk,
.hot_remove_disk= raid5_remove_disk,
.spare_active = raid5_spare_active,
.sync_request = sync_request,
.resize = raid5_resize,
#ifdef CONFIG_MD_RAID5_RESHAPE
.check_reshape = raid5_check_reshape,
.start_reshape = raid5_start_reshape,
#endif
.quiesce = raid5_quiesce,
};
static struct mdk_personality raid5_personality =
{
.name = "raid5",
.level = 5,
.owner = THIS_MODULE,
.make_request = make_request,
.run = run,
.stop = stop,
.status = status,
.error_handler = error,
.hot_add_disk = raid5_add_disk,
.hot_remove_disk= raid5_remove_disk,
.spare_active = raid5_spare_active,
.sync_request = sync_request,
.resize = raid5_resize,
#ifdef CONFIG_MD_RAID5_RESHAPE
.check_reshape = raid5_check_reshape,
.start_reshape = raid5_start_reshape,
#endif
.quiesce = raid5_quiesce,
};
static struct mdk_personality raid4_personality =
{
.name = "raid4",
.level = 4,
.owner = THIS_MODULE,
.make_request = make_request,
.run = run,
.stop = stop,
.status = status,
.error_handler = error,
.hot_add_disk = raid5_add_disk,
.hot_remove_disk= raid5_remove_disk,
.spare_active = raid5_spare_active,
.sync_request = sync_request,
.resize = raid5_resize,
#ifdef CONFIG_MD_RAID5_RESHAPE
.check_reshape = raid5_check_reshape,
.start_reshape = raid5_start_reshape,
#endif
.quiesce = raid5_quiesce,
};
static int __init raid5_init(void)
{
int e;
e = raid6_select_algo();
if ( e )
return e;
register_md_personality(&raid6_personality);
register_md_personality(&raid5_personality);
register_md_personality(&raid4_personality);
return 0;
}
static void raid5_exit(void)
{
unregister_md_personality(&raid6_personality);
unregister_md_personality(&raid5_personality);
unregister_md_personality(&raid4_personality);
}
module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
MODULE_ALIAS("md-personality-4"); /* RAID5 */
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");
/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");