blob: 522bd62c102eafe592349006206f2916ad67b15b [file] [log] [blame]
/*
* Copyright (C) 2012-2017 ARM Limited or its affiliates.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "ssi_config.h"
#include <linux/kernel.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <crypto/ctr.h>
#ifdef FLUSH_CACHE_ALL
#include <asm/cacheflush.h>
#endif
#include <linux/pm_runtime.h>
#include "ssi_driver.h"
#include "ssi_buffer_mgr.h"
#include "ssi_request_mgr.h"
#include "ssi_sysfs.h"
#include "ssi_ivgen.h"
#include "ssi_pm.h"
#include "ssi_fips.h"
#include "ssi_fips_local.h"
#define SSI_MAX_POLL_ITER 10
#define AXIM_MON_BASE_OFFSET CC_REG_OFFSET(CRY_KERNEL, AXIM_MON_COMP)
#ifdef CC_CYCLE_COUNT
#define MONITOR_CNTR_BIT 0
/**
* Monitor descriptor.
* Used to measure CC performance.
*/
#define INIT_CC_MONITOR_DESC(desc_p) \
do { \
HW_DESC_INIT(desc_p); \
HW_DESC_SET_DIN_MONITOR_CNTR(desc_p); \
} while (0)
/**
* Try adding monitor descriptor BEFORE enqueuing sequence.
*/
#define CC_CYCLE_DESC_HEAD(cc_base_addr, desc_p, lock_p, is_monitored_p) \
do { \
if (!test_and_set_bit(MONITOR_CNTR_BIT, (lock_p))) { \
enqueue_seq((cc_base_addr), (desc_p), 1); \
*(is_monitored_p) = true; \
} else { \
*(is_monitored_p) = false; \
} \
} while (0)
/**
* If CC_CYCLE_DESC_HEAD was successfully added:
* 1. Add memory barrier descriptor to ensure last AXI transaction.
* 2. Add monitor descriptor to sequence tail AFTER enqueuing sequence.
*/
#define CC_CYCLE_DESC_TAIL(cc_base_addr, desc_p, is_monitored) \
do { \
if ((is_monitored) == true) { \
HwDesc_s barrier_desc; \
HW_DESC_INIT(&barrier_desc); \
HW_DESC_SET_DIN_NO_DMA(&barrier_desc, 0, 0xfffff0); \
HW_DESC_SET_DOUT_NO_DMA(&barrier_desc, 0, 0, 1); \
enqueue_seq((cc_base_addr), &barrier_desc, 1); \
enqueue_seq((cc_base_addr), (desc_p), 1); \
} \
} while (0)
/**
* Try reading CC monitor counter value upon sequence complete.
* Can only succeed if the lock_p is taken by the owner of the given request.
*/
#define END_CC_MONITOR_COUNT(cc_base_addr, stat_op_type, stat_phase, monitor_null_cycles, lock_p, is_monitored) \
do { \
uint32_t elapsed_cycles; \
if ((is_monitored) == true) { \
elapsed_cycles = READ_REGISTER((cc_base_addr) + CC_REG_OFFSET(CRY_KERNEL, DSCRPTR_MEASURE_CNTR)); \
clear_bit(MONITOR_CNTR_BIT, (lock_p)); \
if (elapsed_cycles > 0) \
update_cc_stat(stat_op_type, stat_phase, (elapsed_cycles - monitor_null_cycles)); \
} \
} while (0)
#else /*CC_CYCLE_COUNT*/
#define INIT_CC_MONITOR_DESC(desc_p) do { } while (0)
#define CC_CYCLE_DESC_HEAD(cc_base_addr, desc_p, lock_p, is_monitored_p) do { } while (0)
#define CC_CYCLE_DESC_TAIL(cc_base_addr, desc_p, is_monitored) do { } while (0)
#define END_CC_MONITOR_COUNT(cc_base_addr, stat_op_type, stat_phase, monitor_null_cycles, lock_p, is_monitored) do { } while (0)
#endif /*CC_CYCLE_COUNT*/
struct ssi_request_mgr_handle {
/* Request manager resources */
unsigned int hw_queue_size; /* HW capability */
unsigned int min_free_hw_slots;
unsigned int max_used_sw_slots;
struct ssi_crypto_req req_queue[MAX_REQUEST_QUEUE_SIZE];
uint32_t req_queue_head;
uint32_t req_queue_tail;
uint32_t axi_completed;
uint32_t q_free_slots;
spinlock_t hw_lock;
HwDesc_s compl_desc;
uint8_t *dummy_comp_buff;
dma_addr_t dummy_comp_buff_dma;
HwDesc_s monitor_desc;
volatile unsigned long monitor_lock;
#ifdef COMP_IN_WQ
struct workqueue_struct *workq;
struct delayed_work compwork;
#else
struct tasklet_struct comptask;
#endif
#if defined (CONFIG_PM_RUNTIME) || defined (CONFIG_PM_SLEEP)
bool is_runtime_suspended;
#endif
};
static void comp_handler(unsigned long devarg);
#ifdef COMP_IN_WQ
static void comp_work_handler(struct work_struct *work);
#endif
void request_mgr_fini(struct ssi_drvdata *drvdata)
{
struct ssi_request_mgr_handle *req_mgr_h = drvdata->request_mgr_handle;
if (req_mgr_h == NULL)
return; /* Not allocated */
if (req_mgr_h->dummy_comp_buff_dma != 0) {
SSI_RESTORE_DMA_ADDR_TO_48BIT(req_mgr_h->dummy_comp_buff_dma);
dma_free_coherent(&drvdata->plat_dev->dev,
sizeof(uint32_t), req_mgr_h->dummy_comp_buff,
req_mgr_h->dummy_comp_buff_dma);
}
SSI_LOG_DEBUG("max_used_hw_slots=%d\n", (req_mgr_h->hw_queue_size -
req_mgr_h->min_free_hw_slots) );
SSI_LOG_DEBUG("max_used_sw_slots=%d\n", req_mgr_h->max_used_sw_slots);
#ifdef COMP_IN_WQ
flush_workqueue(req_mgr_h->workq);
destroy_workqueue(req_mgr_h->workq);
#else
/* Kill tasklet */
tasklet_kill(&req_mgr_h->comptask);
#endif
memset(req_mgr_h, 0, sizeof(struct ssi_request_mgr_handle));
kfree(req_mgr_h);
drvdata->request_mgr_handle = NULL;
}
int request_mgr_init(struct ssi_drvdata *drvdata)
{
#ifdef CC_CYCLE_COUNT
HwDesc_s monitor_desc[2];
struct ssi_crypto_req monitor_req = {0};
#endif
struct ssi_request_mgr_handle *req_mgr_h;
int rc = 0;
req_mgr_h = kzalloc(sizeof(struct ssi_request_mgr_handle),GFP_KERNEL);
if (req_mgr_h == NULL) {
rc = -ENOMEM;
goto req_mgr_init_err;
}
drvdata->request_mgr_handle = req_mgr_h;
spin_lock_init(&req_mgr_h->hw_lock);
#ifdef COMP_IN_WQ
SSI_LOG_DEBUG("Initializing completion workqueue\n");
req_mgr_h->workq = create_singlethread_workqueue("arm_cc7x_wq");
if (unlikely(req_mgr_h->workq == NULL)) {
SSI_LOG_ERR("Failed creating work queue\n");
rc = -ENOMEM;
goto req_mgr_init_err;
}
INIT_DELAYED_WORK(&req_mgr_h->compwork, comp_work_handler);
#else
SSI_LOG_DEBUG("Initializing completion tasklet\n");
tasklet_init(&req_mgr_h->comptask, comp_handler, (unsigned long)drvdata);
#endif
req_mgr_h->hw_queue_size = READ_REGISTER(drvdata->cc_base +
CC_REG_OFFSET(CRY_KERNEL, DSCRPTR_QUEUE_SRAM_SIZE));
SSI_LOG_DEBUG("hw_queue_size=0x%08X\n", req_mgr_h->hw_queue_size);
if (req_mgr_h->hw_queue_size < MIN_HW_QUEUE_SIZE) {
SSI_LOG_ERR("Invalid HW queue size = %u (Min. required is %u)\n",
req_mgr_h->hw_queue_size, MIN_HW_QUEUE_SIZE);
rc = -ENOMEM;
goto req_mgr_init_err;
}
req_mgr_h->min_free_hw_slots = req_mgr_h->hw_queue_size;
req_mgr_h->max_used_sw_slots = 0;
/* Allocate DMA word for "dummy" completion descriptor use */
req_mgr_h->dummy_comp_buff = dma_alloc_coherent(&drvdata->plat_dev->dev,
sizeof(uint32_t), &req_mgr_h->dummy_comp_buff_dma, GFP_KERNEL);
if (!req_mgr_h->dummy_comp_buff) {
SSI_LOG_ERR("Not enough memory to allocate DMA (%zu) dropped "
"buffer\n", sizeof(uint32_t));
rc = -ENOMEM;
goto req_mgr_init_err;
}
SSI_UPDATE_DMA_ADDR_TO_48BIT(req_mgr_h->dummy_comp_buff_dma,
sizeof(uint32_t));
/* Init. "dummy" completion descriptor */
HW_DESC_INIT(&req_mgr_h->compl_desc);
HW_DESC_SET_DIN_CONST(&req_mgr_h->compl_desc, 0, sizeof(uint32_t));
HW_DESC_SET_DOUT_DLLI(&req_mgr_h->compl_desc,
req_mgr_h->dummy_comp_buff_dma,
sizeof(uint32_t), NS_BIT, 1);
HW_DESC_SET_FLOW_MODE(&req_mgr_h->compl_desc, BYPASS);
HW_DESC_SET_QUEUE_LAST_IND(&req_mgr_h->compl_desc);
#ifdef CC_CYCLE_COUNT
/* For CC-HW cycle performance trace */
INIT_CC_MONITOR_DESC(&req_mgr_h->monitor_desc);
set_bit(MONITOR_CNTR_BIT, &req_mgr_h->monitor_lock);
monitor_desc[0] = req_mgr_h->monitor_desc;
monitor_desc[1] = req_mgr_h->monitor_desc;
rc = send_request(drvdata, &monitor_req, monitor_desc, 2, 0);
if (unlikely(rc != 0))
goto req_mgr_init_err;
drvdata->monitor_null_cycles = READ_REGISTER(drvdata->cc_base +
CC_REG_OFFSET(CRY_KERNEL, DSCRPTR_MEASURE_CNTR));
SSI_LOG_ERR("Calibration time=0x%08x\n", drvdata->monitor_null_cycles);
clear_bit(MONITOR_CNTR_BIT, &req_mgr_h->monitor_lock);
#endif
return 0;
req_mgr_init_err:
request_mgr_fini(drvdata);
return rc;
}
static inline void enqueue_seq(
void __iomem *cc_base,
HwDesc_s seq[], unsigned int seq_len)
{
int i;
for (i = 0; i < seq_len; i++) {
writel_relaxed(seq[i].word[0], (volatile void __iomem *)(cc_base+CC_REG_OFFSET(CRY_KERNEL, DSCRPTR_QUEUE_WORD0)));
writel_relaxed(seq[i].word[1], (volatile void __iomem *)(cc_base+CC_REG_OFFSET(CRY_KERNEL, DSCRPTR_QUEUE_WORD0)));
writel_relaxed(seq[i].word[2], (volatile void __iomem *)(cc_base+CC_REG_OFFSET(CRY_KERNEL, DSCRPTR_QUEUE_WORD0)));
writel_relaxed(seq[i].word[3], (volatile void __iomem *)(cc_base+CC_REG_OFFSET(CRY_KERNEL, DSCRPTR_QUEUE_WORD0)));
writel_relaxed(seq[i].word[4], (volatile void __iomem *)(cc_base+CC_REG_OFFSET(CRY_KERNEL, DSCRPTR_QUEUE_WORD0)));
wmb();
writel_relaxed(seq[i].word[5], (volatile void __iomem *)(cc_base+CC_REG_OFFSET(CRY_KERNEL, DSCRPTR_QUEUE_WORD0)));
#ifdef DX_DUMP_DESCS
SSI_LOG_DEBUG("desc[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
seq[i].word[0], seq[i].word[1], seq[i].word[2], seq[i].word[3], seq[i].word[4], seq[i].word[5]);
#endif
}
}
/*!
* Completion will take place if and only if user requested completion
* by setting "is_dout = 0" in send_request().
*
* \param dev
* \param dx_compl_h The completion event to signal
*/
static void request_mgr_complete(struct device *dev, void *dx_compl_h, void __iomem *cc_base)
{
struct completion *this_compl = dx_compl_h;
complete(this_compl);
}
static inline int request_mgr_queues_status_check(
struct ssi_request_mgr_handle *req_mgr_h,
void __iomem *cc_base,
unsigned int total_seq_len)
{
unsigned long poll_queue;
/* SW queue is checked only once as it will not
be chaned during the poll becasue the spinlock_bh
is held by the thread */
if (unlikely(((req_mgr_h->req_queue_head + 1) &
(MAX_REQUEST_QUEUE_SIZE - 1)) ==
req_mgr_h->req_queue_tail)) {
SSI_LOG_ERR("SW FIFO is full. req_queue_head=%d sw_fifo_len=%d\n",
req_mgr_h->req_queue_head, MAX_REQUEST_QUEUE_SIZE);
return -EBUSY;
}
if ((likely(req_mgr_h->q_free_slots >= total_seq_len)) ) {
return 0;
}
/* Wait for space in HW queue. Poll constant num of iterations. */
for (poll_queue =0; poll_queue < SSI_MAX_POLL_ITER ; poll_queue ++) {
req_mgr_h->q_free_slots =
CC_HAL_READ_REGISTER(
CC_REG_OFFSET(CRY_KERNEL,
DSCRPTR_QUEUE_CONTENT));
if (unlikely(req_mgr_h->q_free_slots <
req_mgr_h->min_free_hw_slots)) {
req_mgr_h->min_free_hw_slots = req_mgr_h->q_free_slots;
}
if (likely (req_mgr_h->q_free_slots >= total_seq_len)) {
/* If there is enough place return */
return 0;
}
SSI_LOG_DEBUG("HW FIFO is full. q_free_slots=%d total_seq_len=%d\n",
req_mgr_h->q_free_slots, total_seq_len);
}
/* No room in the HW queue try again later */
SSI_LOG_DEBUG("HW FIFO full, timeout. req_queue_head=%d "
"sw_fifo_len=%d q_free_slots=%d total_seq_len=%d\n",
req_mgr_h->req_queue_head,
MAX_REQUEST_QUEUE_SIZE,
req_mgr_h->q_free_slots,
total_seq_len);
return -EAGAIN;
}
/*!
* Enqueue caller request to crypto hardware.
*
* \param drvdata
* \param ssi_req The request to enqueue
* \param desc The crypto sequence
* \param len The crypto sequence length
* \param is_dout If "true": completion is handled by the caller
* If "false": this function adds a dummy descriptor completion
* and waits upon completion signal.
*
* \return int Returns -EINPROGRESS if "is_dout=true"; "0" if "is_dout=false"
*/
int send_request(
struct ssi_drvdata *drvdata, struct ssi_crypto_req *ssi_req,
HwDesc_s *desc, unsigned int len, bool is_dout)
{
void __iomem *cc_base = drvdata->cc_base;
struct ssi_request_mgr_handle *req_mgr_h = drvdata->request_mgr_handle;
unsigned int used_sw_slots;
unsigned int iv_seq_len = 0;
unsigned int total_seq_len = len; /*initial sequence length*/
HwDesc_s iv_seq[SSI_IVPOOL_SEQ_LEN];
int rc;
unsigned int max_required_seq_len = (total_seq_len +
((ssi_req->ivgen_dma_addr_len == 0) ? 0 :
SSI_IVPOOL_SEQ_LEN ) +
((is_dout == 0 )? 1 : 0));
DECL_CYCLE_COUNT_RESOURCES;
#if defined (CONFIG_PM_RUNTIME) || defined (CONFIG_PM_SLEEP)
rc = ssi_power_mgr_runtime_get(&drvdata->plat_dev->dev);
if (rc != 0) {
SSI_LOG_ERR("ssi_power_mgr_runtime_get returned %x\n",rc);
spin_unlock_bh(&req_mgr_h->hw_lock);
return rc;
}
#endif
do {
spin_lock_bh(&req_mgr_h->hw_lock);
/* Check if there is enough place in the SW/HW queues
in case iv gen add the max size and in case of no dout add 1
for the internal completion descriptor */
rc = request_mgr_queues_status_check(req_mgr_h,
cc_base,
max_required_seq_len);
if (likely(rc == 0 ))
/* There is enough place in the queue */
break;
/* something wrong release the spinlock*/
spin_unlock_bh(&req_mgr_h->hw_lock);
if (rc != -EAGAIN) {
/* Any error other than HW queue full
(SW queue is full) */
#if defined (CONFIG_PM_RUNTIME) || defined (CONFIG_PM_SLEEP)
ssi_power_mgr_runtime_put_suspend(&drvdata->plat_dev->dev);
#endif
return rc;
}
/* HW queue is full - short sleep */
msleep(1);
} while (1);
/* Additional completion descriptor is needed incase caller did not
enabled any DLLI/MLLI DOUT bit in the given sequence */
if (!is_dout) {
init_completion(&ssi_req->seq_compl);
ssi_req->user_cb = request_mgr_complete;
ssi_req->user_arg = &(ssi_req->seq_compl);
total_seq_len++;
}
if (ssi_req->ivgen_dma_addr_len > 0) {
SSI_LOG_DEBUG("Acquire IV from pool into %d DMA addresses 0x%llX, 0x%llX, 0x%llX, IV-size=%u\n",
ssi_req->ivgen_dma_addr_len,
(unsigned long long)ssi_req->ivgen_dma_addr[0],
(unsigned long long)ssi_req->ivgen_dma_addr[1],
(unsigned long long)ssi_req->ivgen_dma_addr[2],
ssi_req->ivgen_size);
/* Acquire IV from pool */
rc = ssi_ivgen_getiv(drvdata, ssi_req->ivgen_dma_addr, ssi_req->ivgen_dma_addr_len,
ssi_req->ivgen_size, iv_seq, &iv_seq_len);
if (unlikely(rc != 0)) {
SSI_LOG_ERR("Failed to generate IV (rc=%d)\n", rc);
spin_unlock_bh(&req_mgr_h->hw_lock);
#if defined (CONFIG_PM_RUNTIME) || defined (CONFIG_PM_SLEEP)
ssi_power_mgr_runtime_put_suspend(&drvdata->plat_dev->dev);
#endif
return rc;
}
total_seq_len += iv_seq_len;
}
used_sw_slots = ((req_mgr_h->req_queue_head - req_mgr_h->req_queue_tail) & (MAX_REQUEST_QUEUE_SIZE-1));
if (unlikely(used_sw_slots > req_mgr_h->max_used_sw_slots)) {
req_mgr_h->max_used_sw_slots = used_sw_slots;
}
CC_CYCLE_DESC_HEAD(cc_base, &req_mgr_h->monitor_desc,
&req_mgr_h->monitor_lock, &ssi_req->is_monitored_p);
/* Enqueue request - must be locked with HW lock*/
req_mgr_h->req_queue[req_mgr_h->req_queue_head] = *ssi_req;
START_CYCLE_COUNT_AT(req_mgr_h->req_queue[req_mgr_h->req_queue_head].submit_cycle);
req_mgr_h->req_queue_head = (req_mgr_h->req_queue_head + 1) & (MAX_REQUEST_QUEUE_SIZE - 1);
/* TODO: Use circ_buf.h ? */
SSI_LOG_DEBUG("Enqueue request head=%u\n", req_mgr_h->req_queue_head);
#ifdef FLUSH_CACHE_ALL
flush_cache_all();
#endif
/* STAT_PHASE_4: Push sequence */
START_CYCLE_COUNT();
enqueue_seq(cc_base, iv_seq, iv_seq_len);
enqueue_seq(cc_base, desc, len);
enqueue_seq(cc_base, &req_mgr_h->compl_desc, (is_dout ? 0 : 1));
END_CYCLE_COUNT(ssi_req->op_type, STAT_PHASE_4);
CC_CYCLE_DESC_TAIL(cc_base, &req_mgr_h->monitor_desc, ssi_req->is_monitored_p);
if (unlikely(req_mgr_h->q_free_slots < total_seq_len)) {
/*This means that there was a problem with the resume*/
BUG();
}
/* Update the free slots in HW queue */
req_mgr_h->q_free_slots -= total_seq_len;
spin_unlock_bh(&req_mgr_h->hw_lock);
if (!is_dout) {
/* Wait upon sequence completion.
* Return "0" -Operation done successfully. */
return wait_for_completion_interruptible(&ssi_req->seq_compl);
} else {
/* Operation still in process */
return -EINPROGRESS;
}
}
/*!
* Enqueue caller request to crypto hardware during init process.
* assume this function is not called in middle of a flow,
* since we set QUEUE_LAST_IND flag in the last descriptor.
*
* \param drvdata
* \param desc The crypto sequence
* \param len The crypto sequence length
*
* \return int Returns "0" upon success
*/
int send_request_init(
struct ssi_drvdata *drvdata, HwDesc_s *desc, unsigned int len)
{
void __iomem *cc_base = drvdata->cc_base;
struct ssi_request_mgr_handle *req_mgr_h = drvdata->request_mgr_handle;
unsigned int total_seq_len = len; /*initial sequence length*/
int rc = 0;
/* Wait for space in HW and SW FIFO. Poll for as much as FIFO_TIMEOUT. */
rc = request_mgr_queues_status_check(req_mgr_h, cc_base, total_seq_len);
if (unlikely(rc != 0 )) {
return rc;
}
HW_DESC_SET_QUEUE_LAST_IND(&desc[len-1]);
enqueue_seq(cc_base, desc, len);
/* Update the free slots in HW queue */
req_mgr_h->q_free_slots = CC_HAL_READ_REGISTER(
CC_REG_OFFSET(CRY_KERNEL,
DSCRPTR_QUEUE_CONTENT));
return 0;
}
void complete_request(struct ssi_drvdata *drvdata)
{
struct ssi_request_mgr_handle *request_mgr_handle =
drvdata->request_mgr_handle;
#ifdef COMP_IN_WQ
queue_delayed_work(request_mgr_handle->workq, &request_mgr_handle->compwork, 0);
#else
tasklet_schedule(&request_mgr_handle->comptask);
#endif
}
#ifdef COMP_IN_WQ
static void comp_work_handler(struct work_struct *work)
{
struct ssi_drvdata *drvdata =
container_of(work, struct ssi_drvdata, compwork.work);
comp_handler((unsigned long)drvdata);
}
#endif
static void proc_completions(struct ssi_drvdata *drvdata)
{
struct ssi_crypto_req *ssi_req;
struct platform_device *plat_dev = drvdata->plat_dev;
struct ssi_request_mgr_handle * request_mgr_handle =
drvdata->request_mgr_handle;
#if defined (CONFIG_PM_RUNTIME) || defined (CONFIG_PM_SLEEP)
int rc = 0;
#endif
DECL_CYCLE_COUNT_RESOURCES;
while(request_mgr_handle->axi_completed) {
request_mgr_handle->axi_completed--;
/* Dequeue request */
if (unlikely(request_mgr_handle->req_queue_head == request_mgr_handle->req_queue_tail)) {
SSI_LOG_ERR("Request queue is empty req_queue_head==req_queue_tail==%u\n", request_mgr_handle->req_queue_head);
BUG();
}
ssi_req = &request_mgr_handle->req_queue[request_mgr_handle->req_queue_tail];
END_CYCLE_COUNT_AT(ssi_req->submit_cycle, ssi_req->op_type, STAT_PHASE_5); /* Seq. Comp. */
END_CC_MONITOR_COUNT(drvdata->cc_base, ssi_req->op_type, STAT_PHASE_6,
drvdata->monitor_null_cycles, &request_mgr_handle->monitor_lock, ssi_req->is_monitored_p);
#ifdef FLUSH_CACHE_ALL
flush_cache_all();
#endif
#ifdef COMPLETION_DELAY
/* Delay */
{
uint32_t axi_err;
int i;
SSI_LOG_INFO("Delay\n");
for (i=0;i<1000000;i++) {
axi_err = READ_REGISTER(drvdata->cc_base + CC_REG_OFFSET(CRY_KERNEL, AXIM_MON_ERR));
}
}
#endif /* COMPLETION_DELAY */
if (likely(ssi_req->user_cb != NULL)) {
START_CYCLE_COUNT();
ssi_req->user_cb(&plat_dev->dev, ssi_req->user_arg, drvdata->cc_base);
END_CYCLE_COUNT(STAT_OP_TYPE_GENERIC, STAT_PHASE_3);
}
request_mgr_handle->req_queue_tail = (request_mgr_handle->req_queue_tail + 1) & (MAX_REQUEST_QUEUE_SIZE - 1);
SSI_LOG_DEBUG("Dequeue request tail=%u\n", request_mgr_handle->req_queue_tail);
SSI_LOG_DEBUG("Request completed. axi_completed=%d\n", request_mgr_handle->axi_completed);
#if defined (CONFIG_PM_RUNTIME) || defined (CONFIG_PM_SLEEP)
rc = ssi_power_mgr_runtime_put_suspend(&plat_dev->dev);
if (rc != 0) {
SSI_LOG_ERR("Failed to set runtime suspension %d\n",rc);
}
#endif
}
}
/* Deferred service handler, run as interrupt-fired tasklet */
static void comp_handler(unsigned long devarg)
{
struct ssi_drvdata *drvdata = (struct ssi_drvdata *)devarg;
void __iomem *cc_base = drvdata->cc_base;
struct ssi_request_mgr_handle * request_mgr_handle =
drvdata->request_mgr_handle;
uint32_t irq;
DECL_CYCLE_COUNT_RESOURCES;
START_CYCLE_COUNT();
irq = (drvdata->irq & SSI_COMP_IRQ_MASK);
if (irq & SSI_COMP_IRQ_MASK) {
/* To avoid the interrupt from firing as we unmask it, we clear it now */
CC_HAL_WRITE_REGISTER(CC_REG_OFFSET(HOST_RGF, HOST_ICR), SSI_COMP_IRQ_MASK);
/* Avoid race with above clear: Test completion counter once more */
request_mgr_handle->axi_completed += CC_REG_FLD_GET(CRY_KERNEL, AXIM_MON_COMP, VALUE,
CC_HAL_READ_REGISTER(AXIM_MON_BASE_OFFSET));
/* ISR-to-Tasklet latency */
if (request_mgr_handle->axi_completed) {
/* Only if actually reflects ISR-to-completion-handling latency, i.e.,
not duplicate as a result of interrupt after AXIM_MON_ERR clear, before end of loop */
END_CYCLE_COUNT_AT(drvdata->isr_exit_cycles, STAT_OP_TYPE_GENERIC, STAT_PHASE_1);
}
while (request_mgr_handle->axi_completed) {
do {
proc_completions(drvdata);
/* At this point (after proc_completions()), request_mgr_handle->axi_completed is always 0.
The following assignment was changed to = (previously was +=) to conform KW restrictions. */
request_mgr_handle->axi_completed = CC_REG_FLD_GET(CRY_KERNEL, AXIM_MON_COMP, VALUE,
CC_HAL_READ_REGISTER(AXIM_MON_BASE_OFFSET));
} while (request_mgr_handle->axi_completed > 0);
/* To avoid the interrupt from firing as we unmask it, we clear it now */
CC_HAL_WRITE_REGISTER(CC_REG_OFFSET(HOST_RGF, HOST_ICR), SSI_COMP_IRQ_MASK);
/* Avoid race with above clear: Test completion counter once more */
request_mgr_handle->axi_completed += CC_REG_FLD_GET(CRY_KERNEL, AXIM_MON_COMP, VALUE,
CC_HAL_READ_REGISTER(AXIM_MON_BASE_OFFSET));
}
}
/* after verifing that there is nothing to do, Unmask AXI completion interrupt */
CC_HAL_WRITE_REGISTER(CC_REG_OFFSET(HOST_RGF, HOST_IMR),
CC_HAL_READ_REGISTER(
CC_REG_OFFSET(HOST_RGF, HOST_IMR)) & ~irq);
END_CYCLE_COUNT(STAT_OP_TYPE_GENERIC, STAT_PHASE_2);
}
/*
resume the queue configuration - no need to take the lock as this happens inside
the spin lock protection
*/
#if defined (CONFIG_PM_RUNTIME) || defined (CONFIG_PM_SLEEP)
int ssi_request_mgr_runtime_resume_queue(struct ssi_drvdata *drvdata)
{
struct ssi_request_mgr_handle * request_mgr_handle = drvdata->request_mgr_handle;
spin_lock_bh(&request_mgr_handle->hw_lock);
request_mgr_handle->is_runtime_suspended = false;
spin_unlock_bh(&request_mgr_handle->hw_lock);
return 0 ;
}
/*
suspend the queue configuration. Since it is used for the runtime suspend
only verify that the queue can be suspended.
*/
int ssi_request_mgr_runtime_suspend_queue(struct ssi_drvdata *drvdata)
{
struct ssi_request_mgr_handle * request_mgr_handle =
drvdata->request_mgr_handle;
/* lock the send_request */
spin_lock_bh(&request_mgr_handle->hw_lock);
if (request_mgr_handle->req_queue_head !=
request_mgr_handle->req_queue_tail) {
spin_unlock_bh(&request_mgr_handle->hw_lock);
return -EBUSY;
}
request_mgr_handle->is_runtime_suspended = true;
spin_unlock_bh(&request_mgr_handle->hw_lock);
return 0;
}
bool ssi_request_mgr_is_queue_runtime_suspend(struct ssi_drvdata *drvdata)
{
struct ssi_request_mgr_handle * request_mgr_handle =
drvdata->request_mgr_handle;
return request_mgr_handle->is_runtime_suspended;
}
#endif