blob: 47fe0a6e78ffcbbc2ccc9e74cf14ebf1e28e0f07 [file] [log] [blame]
/* $Id: ethernet.c,v 1.2 2001/12/18 13:35:15 bjornw Exp $
*
* e100net.c: A network driver for the ETRAX 100LX network controller.
*
* Copyright (c) 1998-2001 Axis Communications AB.
*
* The outline of this driver comes from skeleton.c.
*
* $Log: ethernet.c,v $
* Revision 1.2 2001/12/18 13:35:15 bjornw
* Applied the 2.4.13->2.4.16 CRIS patch to 2.5.1 (is a copy of 2.4.15).
*
* Revision 1.21 2001/11/23 11:54:49 starvik
* Added IFF_PROMISC and IFF_ALLMULTI handling in set_multicast_list
* Removed compiler warnings
*
* Revision 1.20 2001/11/12 19:26:00 pkj
* * Corrected e100_negotiate() to not assign half to current_duplex when
* it was supposed to compare them...
* * Cleaned up failure handling in e100_open().
* * Fixed compiler warnings.
*
* Revision 1.19 2001/11/09 07:43:09 starvik
* Added full duplex support
* Added ioctl to set speed and duplex
* Clear LED timer only runs when LED is lit
*
* Revision 1.18 2001/10/03 14:40:43 jonashg
* Update rx_bytes counter.
*
* Revision 1.17 2001/06/11 12:43:46 olof
* Modified defines for network LED behavior
*
* Revision 1.16 2001/05/30 06:12:46 markusl
* TxDesc.next should not be set to NULL
*
* Revision 1.15 2001/05/29 10:27:04 markusl
* Updated after review remarks:
* +Use IO_EXTRACT
* +Handle underrun
*
* Revision 1.14 2001/05/29 09:20:14 jonashg
* Use driver name on printk output so one can tell which driver that complains.
*
* Revision 1.13 2001/05/09 12:35:59 johana
* Use DMA_NBR and IRQ_NBR defines from dma.h and irq.h
*
* Revision 1.12 2001/04/05 11:43:11 tobiasa
* Check dev before panic.
*
* Revision 1.11 2001/04/04 11:21:05 markusl
* Updated according to review remarks
*
* Revision 1.10 2001/03/26 16:03:06 bjornw
* Needs linux/config.h
*
* Revision 1.9 2001/03/19 14:47:48 pkj
* * Make sure there is always a pause after the network LEDs are
* changed so they will not look constantly lit during heavy traffic.
* * Always use HZ when setting times relative to jiffies.
* * Use LED_NETWORK_SET() when setting the network LEDs.
*
* Revision 1.8 2001/02/27 13:52:48 bjornw
* malloc.h -> slab.h
*
* Revision 1.7 2001/02/23 13:46:38 bjornw
* Spellling check
*
* Revision 1.6 2001/01/26 15:21:04 starvik
* Don't disable interrupts while reading MDIO registers (MDIO is slow)
* Corrected promiscuous mode
* Improved deallocation of IRQs ("ifconfig eth0 down" now works)
*
* Revision 1.5 2000/11/29 17:22:22 bjornw
* Get rid of the udword types legacy stuff
*
* Revision 1.4 2000/11/22 16:36:09 bjornw
* Please marketing by using the correct case when spelling Etrax.
*
* Revision 1.3 2000/11/21 16:43:04 bjornw
* Minor short->int change
*
* Revision 1.2 2000/11/08 14:27:57 bjornw
* 2.4 port
*
* Revision 1.1 2000/11/06 13:56:00 bjornw
* Verbatim copy of the 1.24 version of e100net.c from elinux
*
* Revision 1.24 2000/10/04 15:55:23 bjornw
* * Use virt_to_phys etc. for DMA addresses
* * Removed bogus CHECKSUM_UNNECESSARY
*
*
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/ptrace.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/spinlock.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <asm/svinto.h> /* DMA and register descriptions */
#include <asm/io.h> /* LED_* I/O functions */
#include <asm/irq.h>
#include <asm/dma.h>
#include <asm/system.h>
#include <asm/bitops.h>
#include <asm/ethernet.h>
//#define ETHDEBUG
#define D(x)
/*
* The name of the card. Is used for messages and in the requests for
* io regions, irqs and dma channels
*/
static const char* cardname = "ETRAX 100LX built-in ethernet controller";
/* A default ethernet address. Highlevel SW will set the real one later */
static struct sockaddr default_mac = {
0,
{ 0x00, 0x40, 0x8C, 0xCD, 0x00, 0x00 }
};
/* Information that need to be kept for each board. */
struct net_local {
struct net_device_stats stats;
/* Tx control lock. This protects the transmit buffer ring
* state along with the "tx full" state of the driver. This
* means all netif_queue flow control actions are protected
* by this lock as well.
*/
spinlock_t lock;
};
/* Duplex settings */
enum duplex
{
half,
full,
autoneg
};
/* Dma descriptors etc. */
#define RX_BUF_SIZE 32768
#define MAX_MEDIA_DATA_SIZE 1518
#define MIN_PACKET_LEN 46
#define ETHER_HEAD_LEN 14
/*
** MDIO constants.
*/
#define MDIO_BASE_STATUS_REG 0x1
#define MDIO_BASE_CONTROL_REG 0x0
#define MDIO_BC_NEGOTIATE 0x0200
#define MDIO_BC_FULL_DUPLEX_MASK 0x0100
#define MDIO_BC_AUTO_NEG_MASK 0x1000
#define MDIO_BC_SPEED_SELECT_MASK 0x2000
#define MDIO_ADVERTISMENT_REG 0x4
#define MDIO_ADVERT_100_FD 0x100
#define MDIO_ADVERT_100_HD 0x080
#define MDIO_ADVERT_10_FD 0x040
#define MDIO_ADVERT_10_HD 0x020
#define MDIO_LINK_UP_MASK 0x4
#define MDIO_START 0x1
#define MDIO_READ 0x2
#define MDIO_WRITE 0x1
#define MDIO_PREAMBLE 0xfffffffful
/* Broadcom specific */
#define MDIO_AUX_CTRL_STATUS_REG 0x18
#define MDIO_FULL_DUPLEX_IND 0x1
#define MDIO_SPEED 0x2
#define MDIO_PHYS_ADDR 0x0
/* Network flash constants */
#define NET_FLASH_TIME (HZ/50) /* 20 ms */
#define NET_FLASH_PAUSE (HZ/100) /* 10 ms */
#define NET_LINK_UP_CHECK_INTERVAL (2*HZ) /* 2 s */
#define NET_DUPLEX_CHECK_INTERVAL (2*HZ) /* 2 s */
#define NO_NETWORK_ACTIVITY 0
#define NETWORK_ACTIVITY 1
#define RX_DESC_BUF_SIZE 256
#define NBR_OF_RX_DESC (RX_BUF_SIZE / \
RX_DESC_BUF_SIZE)
#define GET_BIT(bit,val) (((val) >> (bit)) & 0x01)
/* Define some macros to access ETRAX 100 registers */
#define SETF(var, reg, field, val) var = (var & ~IO_MASK(##reg##, field)) | \
IO_FIELD(##reg##, field, val)
#define SETS(var, reg, field, val) var = (var & ~IO_MASK(##reg##, field)) | \
IO_STATE(##reg##, field, val)
static etrax_dma_descr *myNextRxDesc; /* Points to the next descriptor to
to be processed */
static etrax_dma_descr *myLastRxDesc; /* The last processed descriptor */
static etrax_dma_descr *myPrevRxDesc; /* The descriptor right before myNextRxDesc */
static unsigned char RxBuf[RX_BUF_SIZE];
static etrax_dma_descr RxDescList[NBR_OF_RX_DESC] __attribute__ ((aligned(4)));
static etrax_dma_descr TxDesc __attribute__ ((aligned(4)));
static struct sk_buff *tx_skb;
static unsigned int network_rec_config_shadow = 0;
/* Network speed indication. */
static struct timer_list speed_timer;
static struct timer_list clear_led_timer;
static int current_speed; /* Speed read from tranceiver */
static int current_speed_selection; /* Speed selected by user */
static int led_next_time;
static int led_active;
/* Duplex */
static struct timer_list duplex_timer;
static int full_duplex;
static enum duplex current_duplex;
/* Index to functions, as function prototypes. */
static int etrax_ethernet_init(struct net_device *dev);
static int e100_open(struct net_device *dev);
static int e100_set_mac_address(struct net_device *dev, void *addr);
static int e100_send_packet(struct sk_buff *skb, struct net_device *dev);
static void e100rx_interrupt(int irq, void *dev_id, struct pt_regs *regs);
static void e100tx_interrupt(int irq, void *dev_id, struct pt_regs *regs);
static void e100nw_interrupt(int irq, void *dev_id, struct pt_regs *regs);
static void e100_rx(struct net_device *dev);
static int e100_close(struct net_device *dev);
static int e100_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
static void e100_tx_timeout(struct net_device *dev);
static struct net_device_stats *e100_get_stats(struct net_device *dev);
static void set_multicast_list(struct net_device *dev);
static void e100_hardware_send_packet(char *buf, int length);
static void update_rx_stats(struct net_device_stats *);
static void update_tx_stats(struct net_device_stats *);
static void e100_check_speed(unsigned long dummy);
static void e100_set_speed(unsigned long speed);
static void e100_check_duplex(unsigned long dummy);
static void e100_set_duplex(enum duplex);
static void e100_negotiate(void);
static unsigned short e100_get_mdio_reg(unsigned char reg_num);
static void e100_send_mdio_cmd(unsigned short cmd, int write_cmd);
static void e100_send_mdio_bit(unsigned char bit);
static unsigned char e100_receive_mdio_bit(void);
static void e100_reset_tranceiver(void);
static void e100_clear_network_leds(unsigned long dummy);
static void e100_set_network_leds(int active);
#define tx_done(dev) (*R_DMA_CH0_CMD == 0)
/*
* Check for a network adaptor of this type, and return '0' if one exists.
* If dev->base_addr == 0, probe all likely locations.
* If dev->base_addr == 1, always return failure.
* If dev->base_addr == 2, allocate space for the device and return success
* (detachable devices only).
*/
static int __init
etrax_ethernet_init(struct net_device *dev)
{
int i;
int anOffset = 0;
printk("ETRAX 100LX 10/100MBit ethernet v2.0 (c) 2000-2001 Axis Communications AB\n");
dev->base_addr = (unsigned int)R_NETWORK_SA_0; /* just to have something to show */
printk("%s initialized\n", dev->name);
/* make Linux aware of the new hardware */
if (!dev) {
printk(KERN_WARNING "%s: dev == NULL. Should this happen?\n",
cardname);
dev = init_etherdev(dev, sizeof(struct net_local));
if (!dev)
panic("init_etherdev failed\n");
}
/* setup generic handlers and stuff in the dev struct */
ether_setup(dev);
/* make room for the local structure containing stats etc */
dev->priv = kmalloc(sizeof(struct net_local), GFP_KERNEL);
if (dev->priv == NULL)
return -ENOMEM;
memset(dev->priv, 0, sizeof(struct net_local));
/* now setup our etrax specific stuff */
dev->irq = NETWORK_DMA_RX_IRQ_NBR; /* we really use DMATX as well... */
dev->dma = NETWORK_RX_DMA_NBR;
/* fill in our handlers so the network layer can talk to us in the future */
dev->open = e100_open;
dev->hard_start_xmit = e100_send_packet;
dev->stop = e100_close;
dev->get_stats = e100_get_stats;
dev->set_multicast_list = set_multicast_list;
dev->set_mac_address = e100_set_mac_address;
dev->do_ioctl = e100_ioctl;
dev->tx_timeout = e100_tx_timeout;
/* set the default MAC address */
e100_set_mac_address(dev, &default_mac);
/* Initialise the list of Etrax DMA-descriptors */
/* Initialise receive descriptors */
for (i = 0; i < (NBR_OF_RX_DESC - 1); i++) {
RxDescList[i].ctrl = 0;
RxDescList[i].sw_len = RX_DESC_BUF_SIZE;
RxDescList[i].next = virt_to_phys(&RxDescList[i + 1]);
RxDescList[i].buf = virt_to_phys(RxBuf + anOffset);
RxDescList[i].status = 0;
RxDescList[i].hw_len = 0;
anOffset += RX_DESC_BUF_SIZE;
}
RxDescList[i].ctrl = d_eol;
RxDescList[i].sw_len = RX_DESC_BUF_SIZE;
RxDescList[i].next = virt_to_phys(&RxDescList[0]);
RxDescList[i].buf = virt_to_phys(RxBuf + anOffset);
RxDescList[i].status = 0;
RxDescList[i].hw_len = 0;
/* Initialise initial pointers */
myNextRxDesc = &RxDescList[0];
myLastRxDesc = &RxDescList[NBR_OF_RX_DESC - 1];
myPrevRxDesc = &RxDescList[NBR_OF_RX_DESC - 1];
/* Initialize speed indicator stuff. */
current_speed = 10;
current_speed_selection = 0; /* Auto */
speed_timer.expires = jiffies + NET_LINK_UP_CHECK_INTERVAL;
speed_timer.function = e100_check_speed;
add_timer(&speed_timer);
clear_led_timer.function = e100_clear_network_leds;
full_duplex = 0;
current_duplex = autoneg;
duplex_timer.expires = jiffies + NET_DUPLEX_CHECK_INTERVAL;
duplex_timer.function = e100_check_duplex;
add_timer(&duplex_timer);
return 0;
}
/* set MAC address of the interface. called from the core after a
* SIOCSIFADDR ioctl, and from the bootup above.
*/
static int
e100_set_mac_address(struct net_device *dev, void *p)
{
struct sockaddr *addr = p;
int i;
/* remember it */
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
/* Write it to the hardware.
* Note the way the address is wrapped:
* *R_NETWORK_SA_0 = a0_0 | (a0_1 << 8) | (a0_2 << 16) | (a0_3 << 24);
* *R_NETWORK_SA_1 = a0_4 | (a0_5 << 8);
*/
*R_NETWORK_SA_0 = dev->dev_addr[0] | (dev->dev_addr[1] << 8) |
(dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24);
*R_NETWORK_SA_1 = dev->dev_addr[4] | (dev->dev_addr[5] << 8);
*R_NETWORK_SA_2 = 0;
/* show it in the log as well */
printk("%s: changed MAC to ", dev->name);
for (i = 0; i < 5; i++)
printk("%02X:", dev->dev_addr[i]);
printk("%02X\n", dev->dev_addr[i]);
return 0;
}
/*
* Open/initialize the board. This is called (in the current kernel)
* sometime after booting when the 'ifconfig' program is run.
*
* This routine should set everything up anew at each open, even
* registers that "should" only need to be set once at boot, so that
* there is non-reboot way to recover if something goes wrong.
*/
static int
e100_open(struct net_device *dev)
{
unsigned long flags;
/* disable the ethernet interface while we configure it */
*R_NETWORK_GEN_CONFIG =
IO_STATE(R_NETWORK_GEN_CONFIG, phy, mii_clk) |
IO_STATE(R_NETWORK_GEN_CONFIG, enable, off);
/* enable the MDIO output pin */
*R_NETWORK_MGM_CTRL = IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable);
*R_IRQ_MASK0_CLR =
IO_STATE(R_IRQ_MASK0_CLR, overrun, clr) |
IO_STATE(R_IRQ_MASK0_CLR, underrun, clr) |
IO_STATE(R_IRQ_MASK0_CLR, excessive_col, clr);
/* clear dma0 and 1 eop and descr irq masks */
*R_IRQ_MASK2_CLR =
IO_STATE(R_IRQ_MASK2_CLR, dma0_descr, clr) |
IO_STATE(R_IRQ_MASK2_CLR, dma0_eop, clr) |
IO_STATE(R_IRQ_MASK2_CLR, dma1_descr, clr) |
IO_STATE(R_IRQ_MASK2_CLR, dma1_eop, clr);
/* Reset and wait for the DMA channels */
RESET_DMA(NETWORK_TX_DMA_NBR);
RESET_DMA(NETWORK_RX_DMA_NBR);
WAIT_DMA(NETWORK_TX_DMA_NBR);
WAIT_DMA(NETWORK_RX_DMA_NBR);
/* Initialise the etrax network controller */
/* allocate the irq corresponding to the receiving DMA */
if (request_irq(NETWORK_DMA_RX_IRQ_NBR, e100rx_interrupt, 0,
cardname, (void *)dev)) {
goto grace_exit0;
}
/* allocate the irq corresponding to the transmitting DMA */
if (request_irq(NETWORK_DMA_TX_IRQ_NBR, e100tx_interrupt, 0,
cardname, (void *)dev)) {
goto grace_exit1;
}
/* allocate the irq corresponding to the network errors etc */
if (request_irq(NETWORK_STATUS_IRQ_NBR, e100nw_interrupt, 0,
cardname, (void *)dev)) {
goto grace_exit2;
}
/*
* Always allocate the DMA channels after the IRQ,
* and clean up on failure.
*/
if (request_dma(NETWORK_TX_DMA_NBR, cardname)) {
goto grace_exit3;
}
if (request_dma(NETWORK_RX_DMA_NBR, cardname)) {
goto grace_exit4;
}
/* give the HW an idea of what MAC address we want */
*R_NETWORK_SA_0 = dev->dev_addr[0] | (dev->dev_addr[1] << 8) |
(dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24);
*R_NETWORK_SA_1 = dev->dev_addr[4] | (dev->dev_addr[5] << 8);
*R_NETWORK_SA_2 = 0;
#if 0
/* use promiscuous mode for testing */
*R_NETWORK_GA_0 = 0xffffffff;
*R_NETWORK_GA_1 = 0xffffffff;
*R_NETWORK_REC_CONFIG = 0xd; /* broadcast rec, individ. rec, ma0 enabled */
#else
SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, broadcast, receive);
SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, ma0, enable);
SETF(network_rec_config_shadow, R_NETWORK_REC_CONFIG, duplex, full_duplex);
*R_NETWORK_REC_CONFIG = network_rec_config_shadow;
#endif
*R_NETWORK_GEN_CONFIG =
IO_STATE(R_NETWORK_GEN_CONFIG, phy, mii_clk) |
IO_STATE(R_NETWORK_GEN_CONFIG, enable, on);
save_flags(flags);
cli();
/* enable the irq's for ethernet DMA */
*R_IRQ_MASK2_SET =
IO_STATE(R_IRQ_MASK2_SET, dma0_eop, set) |
IO_STATE(R_IRQ_MASK2_SET, dma1_eop, set);
*R_IRQ_MASK0_SET =
IO_STATE(R_IRQ_MASK0_SET, overrun, set) |
IO_STATE(R_IRQ_MASK0_SET, underrun, set) |
IO_STATE(R_IRQ_MASK0_SET, excessive_col, set);
tx_skb = 0;
/* make sure the irqs are cleared */
*R_DMA_CH0_CLR_INTR = IO_STATE(R_DMA_CH0_CLR_INTR, clr_eop, do);
*R_DMA_CH1_CLR_INTR = IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do);
/* make sure the rec and transmit error counters are cleared */
(void)*R_REC_COUNTERS; /* dummy read */
(void)*R_TR_COUNTERS; /* dummy read */
/* start the receiving DMA channel so we can receive packets from now on */
*R_DMA_CH1_FIRST = virt_to_phys(myNextRxDesc);
*R_DMA_CH1_CMD = IO_STATE(R_DMA_CH1_CMD, cmd, start);
restore_flags(flags);
/* We are now ready to accept transmit requeusts from
* the queueing layer of the networking.
*/
netif_start_queue(dev);
return 0;
grace_exit4:
free_dma(NETWORK_TX_DMA_NBR);
grace_exit3:
free_irq(NETWORK_STATUS_IRQ_NBR, (void *)dev);
grace_exit2:
free_irq(NETWORK_DMA_TX_IRQ_NBR, (void *)dev);
grace_exit1:
free_irq(NETWORK_DMA_RX_IRQ_NBR, (void *)dev);
grace_exit0:
return -EAGAIN;
}
static void
e100_check_speed(unsigned long dummy)
{
unsigned long data;
int old_speed = current_speed;
data = e100_get_mdio_reg(MDIO_BASE_STATUS_REG);
if (!(data & MDIO_LINK_UP_MASK)) {
current_speed = 0;
} else {
data = e100_get_mdio_reg(MDIO_AUX_CTRL_STATUS_REG);
current_speed = (data & MDIO_SPEED ? 100 : 10);
}
if (old_speed != current_speed)
e100_set_network_leds(NO_NETWORK_ACTIVITY);
/* Reinitialize the timer. */
speed_timer.expires = jiffies + NET_LINK_UP_CHECK_INTERVAL;
add_timer(&speed_timer);
}
static void
e100_negotiate(void)
{
unsigned short cmd;
unsigned short data = e100_get_mdio_reg(MDIO_ADVERTISMENT_REG);
int bitCounter;
/* Discard old speed and duplex settings */
data &= ~(MDIO_ADVERT_100_HD | MDIO_ADVERT_100_FD |
MDIO_ADVERT_10_FD | MDIO_ADVERT_10_HD);
switch (current_speed_selection) {
case 10 :
if (current_duplex == full)
data |= MDIO_ADVERT_10_FD;
else if (current_duplex == half)
data |= MDIO_ADVERT_10_HD;
else
data |= MDIO_ADVERT_10_HD | MDIO_ADVERT_10_FD;
break;
case 100 :
if (current_duplex == full)
data |= MDIO_ADVERT_100_FD;
else if (current_duplex == half)
data |= MDIO_ADVERT_100_HD;
else
data |= MDIO_ADVERT_100_HD | MDIO_ADVERT_100_FD;
break;
case 0 : /* Auto */
if (current_duplex == full)
data |= MDIO_ADVERT_100_FD | MDIO_ADVERT_10_FD;
else if (current_duplex == half)
data |= MDIO_ADVERT_100_HD | MDIO_ADVERT_10_HD;
else
data |= MDIO_ADVERT_100_HD | MDIO_ADVERT_100_FD | MDIO_ADVERT_10_FD | MDIO_ADVERT_10_HD;
break;
default : /* assume autoneg speed and duplex */
data |= MDIO_ADVERT_100_HD | MDIO_ADVERT_100_FD |
MDIO_ADVERT_10_FD | MDIO_ADVERT_10_HD;
}
cmd = (MDIO_START << 14) | (MDIO_WRITE << 12) | (MDIO_PHYS_ADDR << 7) |
(MDIO_ADVERTISMENT_REG<< 2);
e100_send_mdio_cmd(cmd, 1);
/* Data... */
for (bitCounter=15; bitCounter>=0 ; bitCounter--) {
e100_send_mdio_bit(GET_BIT(bitCounter, data));
}
/* Renegotiate with link partner */
data = e100_get_mdio_reg(MDIO_BASE_CONTROL_REG);
data |= MDIO_BC_NEGOTIATE;
cmd = (MDIO_START << 14) | (MDIO_WRITE << 12) | (MDIO_PHYS_ADDR << 7) |
(MDIO_BASE_CONTROL_REG<< 2);
e100_send_mdio_cmd(cmd, 1);
/* Data... */
for (bitCounter=15; bitCounter>=0 ; bitCounter--) {
e100_send_mdio_bit(GET_BIT(bitCounter, data));
}
}
static void
e100_set_speed(unsigned long speed)
{
current_speed_selection = speed;
e100_negotiate();
}
static void
e100_check_duplex(unsigned long dummy)
{
unsigned long data;
data = e100_get_mdio_reg(MDIO_AUX_CTRL_STATUS_REG);
if (data & MDIO_FULL_DUPLEX_IND) {
if (!full_duplex) { /* Duplex changed to full? */
full_duplex = 1;
SETF(network_rec_config_shadow, R_NETWORK_REC_CONFIG, duplex, full_duplex);
*R_NETWORK_REC_CONFIG = network_rec_config_shadow;
}
} else { /* half */
if (full_duplex) { /* Duplex changed to half? */
full_duplex = 0;
SETF(network_rec_config_shadow, R_NETWORK_REC_CONFIG, duplex, full_duplex);
*R_NETWORK_REC_CONFIG = network_rec_config_shadow;
}
}
/* Reinitialize the timer. */
duplex_timer.expires = jiffies + NET_DUPLEX_CHECK_INTERVAL;
add_timer(&duplex_timer);
}
static void
e100_set_duplex(enum duplex new_duplex)
{
current_duplex = new_duplex;
e100_negotiate();
}
static unsigned short
e100_get_mdio_reg(unsigned char reg_num)
{
unsigned short cmd; /* Data to be sent on MDIO port */
unsigned short data; /* Data read from MDIO */
int bitCounter;
/* Start of frame, OP Code, Physical Address, Register Address */
cmd = (MDIO_START << 14) | (MDIO_READ << 12) | (MDIO_PHYS_ADDR << 7) |
(reg_num << 2);
e100_send_mdio_cmd(cmd, 0);
data = 0;
/* Data... */
for (bitCounter=15; bitCounter>=0 ; bitCounter--) {
data |= (e100_receive_mdio_bit() << bitCounter);
}
return data;
}
static void
e100_send_mdio_cmd(unsigned short cmd, int write_cmd)
{
int bitCounter;
unsigned char data = 0x2;
/* Preamble */
for (bitCounter = 31; bitCounter>= 0; bitCounter--)
e100_send_mdio_bit(GET_BIT(bitCounter, MDIO_PREAMBLE));
for (bitCounter = 15; bitCounter >= 2; bitCounter--)
e100_send_mdio_bit(GET_BIT(bitCounter, cmd));
/* Turnaround */
for (bitCounter = 1; bitCounter >= 0 ; bitCounter--)
if (write_cmd)
e100_send_mdio_bit(GET_BIT(bitCounter, data));
else
e100_receive_mdio_bit();
}
static void
e100_send_mdio_bit(unsigned char bit)
{
*R_NETWORK_MGM_CTRL =
IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable) |
IO_FIELD(R_NETWORK_MGM_CTRL, mdio, bit);
udelay(1);
*R_NETWORK_MGM_CTRL =
IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable) |
IO_MASK(R_NETWORK_MGM_CTRL, mdck) |
IO_FIELD(R_NETWORK_MGM_CTRL, mdio, bit);
udelay(1);
}
static unsigned char
e100_receive_mdio_bit()
{
unsigned char bit;
*R_NETWORK_MGM_CTRL = 0;
bit = IO_EXTRACT(R_NETWORK_STAT, mdio, *R_NETWORK_STAT);
udelay(1);
*R_NETWORK_MGM_CTRL = IO_MASK(R_NETWORK_MGM_CTRL, mdck);
udelay(1);
return bit;
}
static void
e100_reset_tranceiver(void)
{
unsigned short cmd;
unsigned short data;
int bitCounter;
data = e100_get_mdio_reg(MDIO_BASE_CONTROL_REG);
cmd = (MDIO_START << 14) | (MDIO_WRITE << 12) | (MDIO_PHYS_ADDR << 7) | (MDIO_BASE_CONTROL_REG << 2);
e100_send_mdio_cmd(cmd, 1);
data |= 0x8000;
for (bitCounter = 15; bitCounter >= 0 ; bitCounter--) {
e100_send_mdio_bit(GET_BIT(bitCounter, data));
}
}
/* Called by upper layers if they decide it took too long to complete
* sending a packet - we need to reset and stuff.
*/
static void
e100_tx_timeout(struct net_device *dev)
{
struct net_local *np = (struct net_local *)dev->priv;
printk(KERN_WARNING "%s: transmit timed out, %s?\n", dev->name,
tx_done(dev) ? "IRQ problem" : "network cable problem");
/* remember we got an error */
np->stats.tx_errors++;
/* reset the TX DMA in case it has hung on something */
RESET_DMA(NETWORK_TX_DMA_NBR);
WAIT_DMA(NETWORK_TX_DMA_NBR);
/* Reset the tranceiver. */
e100_reset_tranceiver();
/* and get rid of the packet that never got an interrupt */
dev_kfree_skb(tx_skb);
tx_skb = 0;
/* tell the upper layers we're ok again */
netif_wake_queue(dev);
}
/* This will only be invoked if the driver is _not_ in XOFF state.
* What this means is that we need not check it, and that this
* invariant will hold if we make sure that the netif_*_queue()
* calls are done at the proper times.
*/
static int
e100_send_packet(struct sk_buff *skb, struct net_device *dev)
{
struct net_local *np = (struct net_local *)dev->priv;
int length = ETH_ZLEN < skb->len ? skb->len : ETH_ZLEN;
unsigned char *buf = skb->data;
#ifdef ETHDEBUG
printk("send packet len %d\n", length);
#endif
spin_lock_irq(&np->lock); /* protect from tx_interrupt */
tx_skb = skb; /* remember it so we can free it in the tx irq handler later */
dev->trans_start = jiffies;
e100_hardware_send_packet(buf, length);
/* this simple TX driver has only one send-descriptor so we're full
* directly. If this had a send-ring instead, we would only do this if
* the ring got full.
*/
netif_stop_queue(dev);
spin_unlock_irq(&np->lock);
return 0;
}
/*
* The typical workload of the driver:
* Handle the network interface interrupts.
*/
static void
e100rx_interrupt(int irq, void *dev_id, struct pt_regs * regs)
{
struct net_device *dev = (struct net_device *)dev_id;
unsigned long irqbits = *R_IRQ_MASK2_RD;
if (irqbits & IO_STATE(R_IRQ_MASK2_RD, dma1_eop, active)) {
/* acknowledge the eop interrupt */
*R_DMA_CH1_CLR_INTR = IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do);
/* check if one or more complete packets were indeed received */
while (*R_DMA_CH1_FIRST != virt_to_phys(myNextRxDesc)) {
/* Take out the buffer and give it to the OS, then
* allocate a new buffer to put a packet in.
*/
e100_rx(dev);
((struct net_local *)dev->priv)->stats.rx_packets++;
/* restart/continue on the channel, for safety */
*R_DMA_CH1_CMD = IO_STATE(R_DMA_CH1_CMD, cmd, restart);
/* clear dma channel 1 eop/descr irq bits */
*R_DMA_CH1_CLR_INTR =
IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do) |
IO_STATE(R_DMA_CH1_CLR_INTR, clr_descr, do);
/* now, we might have gotten another packet
so we have to loop back and check if so */
}
}
}
/* the transmit dma channel interrupt
*
* this is supposed to free the skbuff which was pending during transmission,
* and inform the kernel that we can send one more buffer
*/
static void
e100tx_interrupt(int irq, void *dev_id, struct pt_regs * regs)
{
struct net_device *dev = (struct net_device *)dev_id;
unsigned long irqbits = *R_IRQ_MASK2_RD;
struct net_local *np = (struct net_local *)dev->priv;
/* check for a dma0_eop interrupt */
if (irqbits & IO_STATE(R_IRQ_MASK2_RD, dma0_eop, active)) {
/* This protects us from concurrent execution of
* our dev->hard_start_xmit function above.
*/
spin_lock(&np->lock);
/* acknowledge the eop interrupt */
*R_DMA_CH0_CLR_INTR = IO_STATE(R_DMA_CH0_CLR_INTR, clr_eop, do);
if (*R_DMA_CH0_FIRST == 0 && tx_skb) {
np->stats.tx_bytes += tx_skb->len;
np->stats.tx_packets++;
/* dma is ready with the transmission of the data in tx_skb, so now
we can release the skb memory */
dev_kfree_skb_irq(tx_skb);
tx_skb = 0;
netif_wake_queue(dev);
} else {
printk(KERN_WARNING "%s: tx weird interrupt\n",
cardname);
}
spin_unlock(&np->lock);
}
}
static void
e100nw_interrupt(int irq, void *dev_id, struct pt_regs * regs)
{
struct net_device *dev = (struct net_device *)dev_id;
struct net_local *np = (struct net_local *)dev->priv;
unsigned long irqbits = *R_IRQ_MASK0_RD;
/* check for underrun irq */
if (irqbits & IO_STATE(R_IRQ_MASK0_RD, underrun, active)) {
*R_NETWORK_TR_CTRL = IO_STATE(R_NETWORK_TR_CTRL, clr_error, clr);
np->stats.tx_errors++;
D(printk("ethernet receiver underrun!\n"));
}
/* check for overrun irq */
if (irqbits & IO_STATE(R_IRQ_MASK0_RD, overrun, active)) {
update_rx_stats(&np->stats); /* this will ack the irq */
D(printk("ethernet receiver overrun!\n"));
}
/* check for excessive collision irq */
if (irqbits & IO_STATE(R_IRQ_MASK0_RD, excessive_col, active)) {
*R_NETWORK_TR_CTRL = IO_STATE(R_NETWORK_TR_CTRL, clr_error, clr);
np->stats.tx_errors++;
D(printk("ethernet excessive collisions!\n"));
}
}
/* We have a good packet(s), get it/them out of the buffers. */
static void
e100_rx(struct net_device *dev)
{
struct sk_buff *skb;
int length = 0;
struct net_local *np = (struct net_local *)dev->priv;
struct etrax_dma_descr *mySaveRxDesc = myNextRxDesc;
unsigned char *skb_data_ptr;
#ifdef ETHDEBUG
int i;
#endif
if (!led_active && jiffies > led_next_time) {
/* light the network leds depending on the current speed. */
e100_set_network_leds(NETWORK_ACTIVITY);
/* Set the earliest time we may clear the LED */
led_next_time = jiffies + NET_FLASH_TIME;
led_active = 1;
mod_timer(&clear_led_timer, jiffies + HZ/10);
}
/* If the packet is broken down in many small packages then merge
* count how much space we will need to alloc with skb_alloc() for
* it to fit.
*/
while (!(myNextRxDesc->status & d_eop)) {
length += myNextRxDesc->sw_len; /* use sw_len for the first descs */
myNextRxDesc->status = 0;
myNextRxDesc = phys_to_virt(myNextRxDesc->next);
}
length += myNextRxDesc->hw_len; /* use hw_len for the last descr */
((struct net_local *)dev->priv)->stats.rx_bytes += length;
#ifdef ETHDEBUG
printk("Got a packet of length %d:\n", length);
/* dump the first bytes in the packet */
skb_data_ptr = (unsigned char *)phys_to_virt(mySaveRxDesc->buf);
for (i = 0; i < 8; i++) {
printk("%d: %.2x %.2x %.2x %.2x %.2x %.2x %.2x %.2x\n", i * 8,
skb_data_ptr[0],skb_data_ptr[1],skb_data_ptr[2],skb_data_ptr[3],
skb_data_ptr[4],skb_data_ptr[5],skb_data_ptr[6],skb_data_ptr[7]);
skb_data_ptr += 8;
}
#endif
skb = dev_alloc_skb(length - ETHER_HEAD_LEN);
if (!skb) {
np->stats.rx_errors++;
printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n",
dev->name);
return;
}
skb_put(skb, length - ETHER_HEAD_LEN); /* allocate room for the packet body */
skb_data_ptr = skb_push(skb, ETHER_HEAD_LEN); /* allocate room for the header */
#ifdef ETHDEBUG
printk("head = 0x%x, data = 0x%x, tail = 0x%x, end = 0x%x\n",
skb->head, skb->data, skb->tail, skb->end);
printk("copying packet to 0x%x.\n", skb_data_ptr);
#endif
/* this loop can be made using max two memcpy's if optimized */
while (mySaveRxDesc != myNextRxDesc) {
memcpy(skb_data_ptr, phys_to_virt(mySaveRxDesc->buf),
mySaveRxDesc->sw_len);
skb_data_ptr += mySaveRxDesc->sw_len;
mySaveRxDesc = phys_to_virt(mySaveRxDesc->next);
}
memcpy(skb_data_ptr, phys_to_virt(mySaveRxDesc->buf),
mySaveRxDesc->hw_len);
skb->dev = dev;
skb->protocol = eth_type_trans(skb, dev);
/* Send the packet to the upper layers */
netif_rx(skb);
/* Prepare for next packet */
myNextRxDesc->status = 0;
myPrevRxDesc = myNextRxDesc;
myNextRxDesc = phys_to_virt(myNextRxDesc->next);
myPrevRxDesc->ctrl |= d_eol;
myLastRxDesc->ctrl &= ~d_eol;
myLastRxDesc = myPrevRxDesc;
return;
}
/* The inverse routine to net_open(). */
static int
e100_close(struct net_device *dev)
{
struct net_local *np = (struct net_local *)dev->priv;
printk("Closing %s.\n", dev->name);
netif_stop_queue(dev);
*R_NETWORK_GEN_CONFIG =
IO_STATE(R_NETWORK_GEN_CONFIG, phy, mii_clk) |
IO_STATE(R_NETWORK_GEN_CONFIG, enable, off);
*R_IRQ_MASK0_CLR =
IO_STATE(R_IRQ_MASK0_CLR, overrun, clr) |
IO_STATE(R_IRQ_MASK0_CLR, underrun, clr) |
IO_STATE(R_IRQ_MASK0_CLR, excessive_col, clr);
*R_IRQ_MASK2_CLR =
IO_STATE(R_IRQ_MASK2_CLR, dma0_descr, clr) |
IO_STATE(R_IRQ_MASK2_CLR, dma0_eop, clr) |
IO_STATE(R_IRQ_MASK2_CLR, dma1_descr, clr) |
IO_STATE(R_IRQ_MASK2_CLR, dma1_eop, clr);
/* Stop the receiver and the transmitter */
RESET_DMA(NETWORK_TX_DMA_NBR);
RESET_DMA(NETWORK_RX_DMA_NBR);
/* Flush the Tx and disable Rx here. */
free_irq(NETWORK_DMA_RX_IRQ_NBR, (void *)dev);
free_irq(NETWORK_DMA_TX_IRQ_NBR, (void *)dev);
free_irq(NETWORK_STATUS_IRQ_NBR, (void *)dev);
free_dma(NETWORK_TX_DMA_NBR);
free_dma(NETWORK_RX_DMA_NBR);
/* Update the statistics here. */
update_rx_stats(&np->stats);
update_tx_stats(&np->stats);
return 0;
}
static int
e100_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
/* Maybe default should return -EINVAL instead? */
switch (cmd) {
case SET_ETH_SPEED_10: /* 10 Mbps */
e100_set_speed(10);
break;
case SET_ETH_SPEED_100: /* 100 Mbps */
e100_set_speed(100);
break;
case SET_ETH_SPEED_AUTO: /* Auto negotiate speed */
e100_set_speed(0);
break;
case SET_ETH_DUPLEX_HALF: /* Hhalf duplex. */
e100_set_duplex(half);
break;
case SET_ETH_DUPLEX_FULL: /* Full duplex. */
e100_set_duplex(full);
break;
case SET_ETH_DUPLEX_AUTO: /* Autonegotiate duplex*/
e100_set_duplex(autoneg);
break;
default: /* Auto neg */
e100_set_speed(0);
e100_set_duplex(autoneg);
break;
}
return 0;
}
static void
update_rx_stats(struct net_device_stats *es)
{
unsigned long r = *R_REC_COUNTERS;
/* update stats relevant to reception errors */
es->rx_fifo_errors += IO_EXTRACT(R_REC_COUNTERS, congestion, r);
es->rx_crc_errors += IO_EXTRACT(R_REC_COUNTERS, crc_error, r);
es->rx_frame_errors += IO_EXTRACT(R_REC_COUNTERS, alignment_error, r);
es->rx_length_errors += IO_EXTRACT(R_REC_COUNTERS, oversize, r);
}
static void
update_tx_stats(struct net_device_stats *es)
{
unsigned long r = *R_TR_COUNTERS;
/* update stats relevant to transmission errors */
es->collisions +=
IO_EXTRACT(R_TR_COUNTERS, single_col, r) +
IO_EXTRACT(R_TR_COUNTERS, multiple_col, r);
es->tx_errors += IO_EXTRACT(R_TR_COUNTERS, deferred, r);
}
/*
* Get the current statistics.
* This may be called with the card open or closed.
*/
static struct net_device_stats *
e100_get_stats(struct net_device *dev)
{
struct net_local *lp = (struct net_local *)dev->priv;
update_rx_stats(&lp->stats);
update_tx_stats(&lp->stats);
return &lp->stats;
}
/*
* Set or clear the multicast filter for this adaptor.
* num_addrs == -1 Promiscuous mode, receive all packets
* num_addrs == 0 Normal mode, clear multicast list
* num_addrs > 0 Multicast mode, receive normal and MC packets,
* and do best-effort filtering.
*/
static void
set_multicast_list(struct net_device *dev)
{
int num_addr = dev->mc_count;
unsigned long int lo_bits;
unsigned long int hi_bits;
if (dev->flags & IFF_PROMISC)
{
/* promiscuous mode */
lo_bits = 0xfffffffful;
hi_bits = 0xfffffffful;
/* Enable individual receive */
SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, receive);
*R_NETWORK_REC_CONFIG = network_rec_config_shadow;
} else if (dev->flags & IFF_ALLMULTI) {
/* enable all multicasts */
lo_bits = 0xfffffffful;
hi_bits = 0xfffffffful;
/* Disable individual receive */
SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
*R_NETWORK_REC_CONFIG = network_rec_config_shadow;
} else if (num_addr == 0) {
/* Normal, clear the mc list */
lo_bits = 0x00000000ul;
hi_bits = 0x00000000ul;
/* Disable individual receive */
SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
*R_NETWORK_REC_CONFIG = network_rec_config_shadow;
} else {
/* MC mode, receive normal and MC packets */
char hash_ix;
struct dev_mc_list *dmi = dev->mc_list;
int i;
char *baddr;
lo_bits = 0x00000000ul;
hi_bits = 0x00000000ul;
for (i=0; i<num_addr; i++) {
/* Calculate the hash index for the GA registers */
hash_ix = 0;
baddr = dmi->dmi_addr;
hash_ix ^= (*baddr) & 0x3f;
hash_ix ^= ((*baddr) >> 6) & 0x03;
++baddr;
hash_ix ^= ((*baddr) << 2) & 0x03c;
hash_ix ^= ((*baddr) >> 4) & 0xf;
++baddr;
hash_ix ^= ((*baddr) << 4) & 0x30;
hash_ix ^= ((*baddr) >> 2) & 0x3f;
++baddr;
hash_ix ^= (*baddr) & 0x3f;
hash_ix ^= ((*baddr) >> 6) & 0x03;
++baddr;
hash_ix ^= ((*baddr) << 2) & 0x03c;
hash_ix ^= ((*baddr) >> 4) & 0xf;
++baddr;
hash_ix ^= ((*baddr) << 4) & 0x30;
hash_ix ^= ((*baddr) >> 2) & 0x3f;
hash_ix &= 0x3f;
if (hash_ix > 32) {
hi_bits |= (1 << (hash_ix-32));
}
else {
lo_bits |= (1 << hash_ix);
}
dmi = dmi->next;
}
/* Disable individual receive */
SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
*R_NETWORK_REC_CONFIG = network_rec_config_shadow;
}
*R_NETWORK_GA_0 = lo_bits;
*R_NETWORK_GA_1 = hi_bits;
}
void
e100_hardware_send_packet(char *buf, int length)
{
D(printk("e100 send pack, buf 0x%x len %d\n", buf, length));
if (!led_active && jiffies > led_next_time) {
/* light the network leds depending on the current speed. */
e100_set_network_leds(NETWORK_ACTIVITY);
/* Set the earliest time we may clear the LED */
led_next_time = jiffies + NET_FLASH_TIME;
led_active = 1;
mod_timer(&clear_led_timer, jiffies + HZ/10);
}
/* configure the tx dma descriptor */
TxDesc.sw_len = length;
TxDesc.ctrl = d_eop | d_eol | d_wait;
TxDesc.buf = virt_to_phys(buf);
/* setup the dma channel and start it */
*R_DMA_CH0_FIRST = virt_to_phys(&TxDesc);
*R_DMA_CH0_CMD = IO_STATE(R_DMA_CH0_CMD, cmd, start);
}
static void
e100_clear_network_leds(unsigned long dummy)
{
if (led_active && jiffies > led_next_time) {
e100_set_network_leds(NO_NETWORK_ACTIVITY);
/* Set the earliest time we may set the LED */
led_next_time = jiffies + NET_FLASH_PAUSE;
led_active = 0;
}
}
static void
e100_set_network_leds(int active)
{
#if defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK)
int light_leds = (active == NO_NETWORK_ACTIVITY);
#elif defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY)
int light_leds = (active == NETWORK_ACTIVITY);
#else
#error "Define either CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK or CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY"
#endif
if (!current_speed) {
/* Make LED red, link is down */
LED_NETWORK_SET(LED_RED);
}
else if (light_leds) {
if (current_speed == 10) {
LED_NETWORK_SET(LED_ORANGE);
} else {
LED_NETWORK_SET(LED_GREEN);
}
}
else {
LED_NETWORK_SET(LED_OFF);
}
}
static struct net_device dev_etrax_ethernet; /* only got one */
static int
etrax_init_module(void)
{
struct net_device *d = &dev_etrax_ethernet;
d->init = etrax_ethernet_init;
if (register_netdev(d) == 0)
return 0;
else
return -ENODEV;
}
module_init(etrax_init_module);