blob: c09fdafefc1db5e468865047bad5cbbc67e96c16 [file] [log] [blame]
#ifndef ASMARM_PCI_H
#define ASMARM_PCI_H
#ifdef __KERNEL__
#include <linux/config.h>
#include <linux/mm.h> /* bah! */
#include <asm/arch/hardware.h>
#include <asm/scatterlist.h>
#include <asm/page.h>
#include <asm/io.h>
struct pci_dev;
static inline void pcibios_set_master(struct pci_dev *dev)
{
/* No special bus mastering setup handling */
}
static inline void pcibios_penalize_isa_irq(int irq)
{
/* We don't do dynamic PCI IRQ allocation */
}
/* The PCI address space does equal the physical memory
* address space. The networking and block device layers use
* this boolean for bounce buffer decisions.
*/
#define PCI_DMA_BUS_IS_PHYS (0)
/* Allocate and map kernel buffer using consistent mode DMA for a device.
* hwdev should be valid struct pci_dev pointer for PCI devices,
* NULL for PCI-like buses (ISA, EISA).
* Returns non-NULL cpu-view pointer to the buffer if successful and
* sets *dma_addrp to the pci side dma address as well, else *dma_addrp
* is undefined.
*/
extern void *pci_alloc_consistent(struct pci_dev *hwdev, size_t size, dma_addr_t *handle);
/* Free and unmap a consistent DMA buffer.
* cpu_addr is what was returned from pci_alloc_consistent,
* size must be the same as what as passed into pci_alloc_consistent,
* and likewise dma_addr must be the same as what *dma_addrp was set to.
*
* References to the memory and mappings associated with cpu_addr/dma_addr
* past this call are illegal.
*/
static inline void
pci_free_consistent(struct pci_dev *hwdev, size_t size, void *vaddr,
dma_addr_t dma_handle)
{
consistent_free(vaddr, size, dma_handle);
}
/* Map a single buffer of the indicated size for DMA in streaming mode.
* The 32-bit bus address to use is returned.
*
* Once the device is given the dma address, the device owns this memory
* until either pci_unmap_single or pci_dma_sync_single is performed.
*/
static inline dma_addr_t
pci_map_single(struct pci_dev *hwdev, void *ptr, size_t size, int direction)
{
#ifdef CONFIG_SA1111
extern dma_addr_t sa1111_map_single(struct pci_dev *, void *, size_t, int);
/*
* for SA1111 these functions are "magic" and relocate buffers. We
* only need to do these if hwdev is non-null; otherwise we expect
* the buffer to already be suitable for DMA.
*/
if (hwdev != NULL)
return sa1111_map_single(hwdev, ptr, size, direction);
#endif
consistent_sync(ptr, size, direction);
return virt_to_bus(ptr);
}
/* Unmap a single streaming mode DMA translation. The dma_addr and size
* must match what was provided for in a previous pci_map_single call. All
* other usages are undefined.
*
* After this call, reads by the cpu to the buffer are guarenteed to see
* whatever the device wrote there.
*/
static inline void
pci_unmap_single(struct pci_dev *hwdev, dma_addr_t dma_addr, size_t size, int direction)
{
#ifdef CONFIG_SA1111
extern void sa1111_unmap_single(struct pci_dev *, dma_addr_t, size_t, int);
if (hwdev != NULL)
sa1111_unmap_single(hwdev, dma_addr, size, direction);
#endif
/* nothing to do */
}
/*
* Whether pci_unmap_{single,page} is a nop depends upon the
* configuration.
*/
#ifdef CONFIG_PCI
#define DECLARE_PCI_UNMAP_ADDR(ADDR_NAME) dma_addr_t ADDR_NAME;
#define DECLARE_PCI_UNMAP_LEN(LEN_NAME) __u32 LEN_NAME;
#define pci_unmap_addr(PTR, ADDR_NAME) ((PTR)->ADDR_NAME)
#define pci_unmap_addr_set(PTR, ADDR_NAME, VAL) (((PTR)->ADDR_NAME) = (VAL))
#define pci_unmap_len(PTR, LEN_NAME) ((PTR)->LEN_NAME)
#define pci_unmap_len_set(PTR, LEN_NAME, VAL) (((PTR)->LEN_NAME) = (VAL))
#else
#define DECLARE_PCI_UNMAP_ADDR(ADDR_NAME)
#define DECLARE_PCI_UNMAP_LEN(LEN_NAME)
#define pci_unmap_addr(PTR, ADDR_NAME) (0)
#define pci_unmap_addr_set(PTR, ADDR_NAME, VAL) do { } while (0)
#define pci_unmap_len(PTR, LEN_NAME) (0)
#define pci_unmap_len_set(PTR, LEN_NAME, VAL) do { } while (0)
#endif /* CONFIG_PCI */
/* Map a set of buffers described by scatterlist in streaming
* mode for DMA. This is the scather-gather version of the
* above pci_map_single interface. Here the scatter gather list
* elements are each tagged with the appropriate dma address
* and length. They are obtained via sg_dma_{address,length}(SG).
*
* NOTE: An implementation may be able to use a smaller number of
* DMA address/length pairs than there are SG table elements.
* (for example via virtual mapping capabilities)
* The routine returns the number of addr/length pairs actually
* used, at most nents.
*
* Device ownership issues as mentioned above for pci_map_single are
* the same here.
*/
static inline int
pci_map_sg(struct pci_dev *hwdev, struct scatterlist *sg, int nents, int direction)
{
int i;
for (i = 0; i < nents; i++, sg++) {
char *virt;
sg->dma_address = page_to_bus(sg->page) + sg->offset;
virt = page_address(sg->page) + sg->offset;
consistent_sync(virt, sg->length, direction);
}
return nents;
}
/* Unmap a set of streaming mode DMA translations.
* Again, cpu read rules concerning calls here are the same as for
* pci_unmap_single() above.
*/
static inline void
pci_unmap_sg(struct pci_dev *hwdev, struct scatterlist *sg, int nents, int direction)
{
/* nothing to do */
}
/* Make physical memory consistent for a single
* streaming mode DMA translation after a transfer.
*
* If you perform a pci_map_single() but wish to interrogate the
* buffer using the cpu, yet do not wish to teardown the PCI dma
* mapping, you must call this function before doing so. At the
* next point you give the PCI dma address back to the card, the
* device again owns the buffer.
*/
static inline void
pci_dma_sync_single(struct pci_dev *hwdev, dma_addr_t dma_handle, size_t size, int direction)
{
consistent_sync(bus_to_virt(dma_handle), size, direction);
}
/* Make physical memory consistent for a set of streaming
* mode DMA translations after a transfer.
*
* The same as pci_dma_sync_single but for a scatter-gather list,
* same rules and usage.
*/
static inline void
pci_dma_sync_sg(struct pci_dev *hwdev, struct scatterlist *sg, int nelems, int direction)
{
int i;
for (i = 0; i < nelems; i++, sg++) {
char *virt = page_address(sg->page) + sg->offset;
consistent_sync(virt, sg->length, direction);
}
}
/* Return whether the given PCI device DMA address mask can
* be supported properly. For example, if your device can
* only drive the low 24-bits during PCI bus mastering, then
* you would pass 0x00ffffff as the mask to this function.
*/
static inline int pci_dma_supported(struct pci_dev *hwdev, u64 mask)
{
return 1;
}
/* This isn't fine. */
#define pci_dac_dma_supported(pci_dev, mask) (0)
/* Return the index of the PCI controller for device PDEV. */
#define pci_controller_num(PDEV) (0)
#endif /* __KERNEL__ */
#endif