blob: f3f8e0e5be70f17790de29ce9ad982fd8c991623 [file] [log] [blame]
#ifndef _PARISC_BITOPS_H
#define _PARISC_BITOPS_H
#include <linux/spinlock.h>
#include <asm/system.h>
#include <asm/byteorder.h>
#include <asm/atomic.h>
#ifdef __LP64__
# define SHIFT_PER_LONG 6
#ifndef BITS_PER_LONG
# define BITS_PER_LONG 64
#endif
#else
# define SHIFT_PER_LONG 5
#ifndef BITS_PER_LONG
# define BITS_PER_LONG 32
#endif
#endif
#define CHOP_SHIFTCOUNT(x) ((x) & (BITS_PER_LONG - 1))
static __inline__ int test_and_set_bit(int nr, void * address)
{
unsigned long mask;
unsigned long *addr = (unsigned long *) address;
int oldbit;
unsigned long flags;
addr += (nr >> SHIFT_PER_LONG);
SPIN_LOCK_IRQSAVE(ATOMIC_HASH(addr), flags);
mask = 1L << CHOP_SHIFTCOUNT(nr);
oldbit = (*addr & mask) ? 1 : 0;
*addr |= mask;
SPIN_UNLOCK_IRQRESTORE(ATOMIC_HASH(addr), flags);
return oldbit;
}
static __inline__ int test_and_clear_bit(int nr, void * address)
{
unsigned long mask;
unsigned long *addr = (unsigned long *) address;
int oldbit;
unsigned long flags;
addr += (nr >> SHIFT_PER_LONG);
SPIN_LOCK_IRQSAVE(ATOMIC_HASH(addr), flags);
mask = 1L << CHOP_SHIFTCOUNT(nr);
oldbit = (*addr & mask) ? 1 : 0;
*addr &= ~mask;
SPIN_UNLOCK_IRQRESTORE(ATOMIC_HASH(addr), flags);
return oldbit;
}
static __inline__ int test_and_change_bit(int nr, void * address)
{
unsigned long mask;
unsigned long *addr = (unsigned long *) address;
int oldbit;
unsigned long flags;
addr += (nr >> SHIFT_PER_LONG);
SPIN_LOCK_IRQSAVE(ATOMIC_HASH(addr), flags);
mask = 1L << CHOP_SHIFTCOUNT(nr);
oldbit = (*addr & mask) ? 1 : 0;
*addr ^= mask;
SPIN_UNLOCK_IRQRESTORE(ATOMIC_HASH(addr), flags);
return oldbit;
}
/* again, the read-only case doesn't have to do any locking */
static __inline__ int test_bit(int nr, const volatile void *address)
{
unsigned long mask;
unsigned long *addr = (unsigned long *) address;
addr += (nr >> SHIFT_PER_LONG);
mask = 1L << CHOP_SHIFTCOUNT(nr);
return !!(*addr & mask);
}
/* sparc does this, other arch's don't -- what's the right answer? XXX */
#define smp_mb__before_clear_bit() do { } while(0)
#define smp_mb__after_clear_bit() do { } while(0)
#define set_bit(nr,addr) ((void)test_and_set_bit(nr,addr))
#define clear_bit(nr,addr) ((void)test_and_clear_bit(nr,addr))
#define change_bit(nr,addr) ((void)test_and_change_bit(nr,addr))
/* XXX We'd need some binary search here */
extern __inline__ unsigned long ffz(unsigned long word)
{
unsigned long result;
result = 0;
while(word & 1) {
result++;
word >>= 1;
}
return result;
}
#ifdef __KERNEL__
/*
* ffs: find first bit set. This is defined the same way as
* the libc and compiler builtin ffs routines, therefore
* differs in spirit from the above ffz (man ffs).
*/
#define ffs(x) generic_ffs(x)
/*
* hweightN: returns the hamming weight (i.e. the number
* of bits set) of a N-bit word
*/
#define hweight32(x) generic_hweight32(x)
#define hweight16(x) generic_hweight16(x)
#define hweight8(x) generic_hweight8(x)
#endif /* __KERNEL__ */
/*
* This implementation of find_{first,next}_zero_bit was stolen from
* Linus' asm-alpha/bitops.h.
*/
#define find_first_zero_bit(addr, size) \
find_next_zero_bit((addr), (size), 0)
static __inline__ unsigned long find_next_zero_bit(void * addr, unsigned long size, unsigned long offset)
{
unsigned long * p = ((unsigned long *) addr) + (offset >> SHIFT_PER_LONG);
unsigned long result = offset & ~(BITS_PER_LONG-1);
unsigned long tmp;
if (offset >= size)
return size;
size -= result;
offset &= (BITS_PER_LONG-1);
if (offset) {
tmp = *(p++);
tmp |= ~0UL >> (BITS_PER_LONG-offset);
if (size < BITS_PER_LONG)
goto found_first;
if (~tmp)
goto found_middle;
size -= BITS_PER_LONG;
result += BITS_PER_LONG;
}
while (size & ~(BITS_PER_LONG -1)) {
if (~(tmp = *(p++)))
goto found_middle;
result += BITS_PER_LONG;
size -= BITS_PER_LONG;
}
if (!size)
return result;
tmp = *p;
found_first:
tmp |= ~0UL << size;
found_middle:
return result + ffz(tmp);
}
#define _EXT2_HAVE_ASM_BITOPS_
#ifdef __KERNEL__
/*
* test_and_{set,clear}_bit guarantee atomicity without
* disabling interrupts.
*/
#define ext2_set_bit(nr, addr) test_and_set_bit((nr) ^ 0x18, addr)
#define ext2_clear_bit(nr, addr) test_and_clear_bit((nr) ^ 0x18, addr)
#endif /* __KERNEL__ */
static __inline__ int ext2_test_bit(int nr, __const__ void * addr)
{
__const__ unsigned char *ADDR = (__const__ unsigned char *) addr;
return (ADDR[nr >> 3] >> (nr & 7)) & 1;
}
/*
* This implementation of ext2_find_{first,next}_zero_bit was stolen from
* Linus' asm-alpha/bitops.h and modified for a big-endian machine.
*/
#define ext2_find_first_zero_bit(addr, size) \
ext2_find_next_zero_bit((addr), (size), 0)
extern __inline__ unsigned long ext2_find_next_zero_bit(void *addr,
unsigned long size, unsigned long offset)
{
unsigned int *p = ((unsigned int *) addr) + (offset >> 5);
unsigned int result = offset & ~31UL;
unsigned int tmp;
if (offset >= size)
return size;
size -= result;
offset &= 31UL;
if (offset) {
tmp = cpu_to_le32p(p++);
tmp |= ~0UL >> (32-offset);
if (size < 32)
goto found_first;
if (tmp != ~0U)
goto found_middle;
size -= 32;
result += 32;
}
while (size >= 32) {
if ((tmp = cpu_to_le32p(p++)) != ~0U)
goto found_middle;
result += 32;
size -= 32;
}
if (!size)
return result;
tmp = cpu_to_le32p(p);
found_first:
tmp |= ~0U << size;
found_middle:
return result + ffz(tmp);
}
/* Bitmap functions for the minix filesystem. */
#define minix_set_bit(nr,addr) ext2_set_bit(nr,addr)
#define minix_clear_bit(nr,addr) ext2_clear_bit(nr,addr)
#define minix_test_bit(nr,addr) ext2_test_bit(nr,addr)
#define minix_find_first_zero_bit(addr,size) ext2_find_first_zero_bit(addr,size)
#endif /* _PARISC_BITOPS_H */