blob: a8283c49fcd069b76ad037283849bc3f0491f986 [file] [log] [blame]
/*
* linux/mm/filemap.c
*
* Copyright (C) 1994-1999 Linus Torvalds
*/
/*
* This file handles the generic file mmap semantics used by
* most "normal" filesystems (but you don't /have/ to use this:
* the NFS filesystem used to do this differently, for example)
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/compiler.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/iobuf.h>
#include <linux/hash.h>
#include <linux/writeback.h>
/*
* This is needed for the following functions:
* - try_to_release_page
* - block_invalidatepage
* - page_has_buffers
* - generic_osync_inode
*
* FIXME: remove all knowledge of the buffer layer from this file
*/
#include <linux/buffer_head.h>
#include <asm/uaccess.h>
#include <asm/mman.h>
/*
* Shared mappings implemented 30.11.1994. It's not fully working yet,
* though.
*
* Shared mappings now work. 15.8.1995 Bruno.
*
* finished 'unifying' the page and buffer cache and SMP-threaded the
* page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
*
* SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
*/
/*
* Lock ordering:
*
* pagemap_lru_lock
* ->i_shared_lock (vmtruncate)
* ->private_lock (__free_pte->__set_page_dirty_buffers)
* ->swap_list_lock
* ->swap_device_lock (exclusive_swap_page, others)
* ->mapping->page_lock
* ->inode_lock (__mark_inode_dirty)
* ->sb_lock (fs/fs-writeback.c)
*/
spinlock_t pagemap_lru_lock __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED;
/*
* Remove a page from the page cache and free it. Caller has to make
* sure the page is locked and that nobody else uses it - or that usage
* is safe. The caller must hold a write_lock on the mapping's page_lock.
*/
void __remove_inode_page(struct page *page)
{
struct address_space *mapping = page->mapping;
if (unlikely(PageDirty(page)))
BUG();
radix_tree_delete(&page->mapping->page_tree, page->index);
list_del(&page->list);
page->mapping = NULL;
mapping->nrpages--;
dec_page_state(nr_pagecache);
}
void remove_inode_page(struct page *page)
{
struct address_space *mapping = page->mapping;
if (unlikely(!PageLocked(page)))
PAGE_BUG(page);
write_lock(&mapping->page_lock);
__remove_inode_page(page);
write_unlock(&mapping->page_lock);
}
static inline int sync_page(struct page *page)
{
struct address_space *mapping = page->mapping;
if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
return mapping->a_ops->sync_page(page);
return 0;
}
/**
* invalidate_inode_pages - Invalidate all the unlocked pages of one inode
* @inode: the inode which pages we want to invalidate
*
* This function only removes the unlocked pages, if you want to
* remove all the pages of one inode, you must call truncate_inode_pages.
*/
void invalidate_inode_pages(struct inode * inode)
{
struct list_head *head, *curr;
struct page * page;
struct address_space *mapping = inode->i_mapping;
head = &mapping->clean_pages;
spin_lock(&pagemap_lru_lock);
write_lock(&mapping->page_lock);
curr = head->next;
while (curr != head) {
page = list_entry(curr, struct page, list);
curr = curr->next;
/* We cannot invalidate something in dirty.. */
if (PageDirty(page))
continue;
/* ..or locked */
if (TestSetPageLocked(page))
continue;
if (PagePrivate(page) && !try_to_release_page(page, 0))
goto unlock;
if (page_count(page) != 1)
goto unlock;
__lru_cache_del(page);
__remove_inode_page(page);
unlock_page(page);
page_cache_release(page);
continue;
unlock:
unlock_page(page);
continue;
}
write_unlock(&mapping->page_lock);
spin_unlock(&pagemap_lru_lock);
}
static int do_invalidatepage(struct page *page, unsigned long offset)
{
int (*invalidatepage)(struct page *, unsigned long);
invalidatepage = page->mapping->a_ops->invalidatepage;
if (invalidatepage)
return (*invalidatepage)(page, offset);
return block_invalidatepage(page, offset);
}
static inline void truncate_partial_page(struct page *page, unsigned partial)
{
memclear_highpage_flush(page, partial, PAGE_CACHE_SIZE-partial);
if (PagePrivate(page))
do_invalidatepage(page, partial);
}
/*
* AKPM: the PagePrivate test here seems a bit bogus. It bypasses the
* mapping's ->invalidatepage, which may still want to be called.
*/
static void truncate_complete_page(struct page *page)
{
/* Leave it on the LRU if it gets converted into anonymous buffers */
if (!PagePrivate(page) || do_invalidatepage(page, 0))
lru_cache_del(page);
ClearPageDirty(page);
ClearPageUptodate(page);
remove_inode_page(page);
page_cache_release(page);
}
/*
* Writeback walks the page list in ->prev order, which is low-to-high file
* offsets in the common case where he file was written linearly. So truncate
* walks the page list in the opposite (->next) direction, to avoid getting
* into lockstep with writeback's cursor. To prune as many pages as possible
* before the truncate cursor collides with the writeback cursor.
*/
static int truncate_list_pages(struct address_space *mapping,
struct list_head *head, unsigned long start, unsigned *partial)
{
struct list_head *curr;
struct page * page;
int unlocked = 0;
restart:
curr = head->next;
while (curr != head) {
unsigned long offset;
page = list_entry(curr, struct page, list);
offset = page->index;
/* Is one of the pages to truncate? */
if ((offset >= start) || (*partial && (offset + 1) == start)) {
int failed;
page_cache_get(page);
failed = TestSetPageLocked(page);
if (!failed && PageWriteback(page)) {
unlock_page(page);
list_del(head);
list_add_tail(head, curr);
write_unlock(&mapping->page_lock);
wait_on_page_writeback(page);
page_cache_release(page);
unlocked = 1;
write_lock(&mapping->page_lock);
goto restart;
}
list_del(head);
if (!failed)
/* Restart after this page */
list_add(head, curr);
else
/* Restart on this page */
list_add_tail(head, curr);
write_unlock(&mapping->page_lock);
unlocked = 1;
if (!failed) {
if (*partial && (offset + 1) == start) {
truncate_partial_page(page, *partial);
*partial = 0;
} else
truncate_complete_page(page);
unlock_page(page);
} else
wait_on_page_locked(page);
page_cache_release(page);
if (need_resched()) {
__set_current_state(TASK_RUNNING);
schedule();
}
write_lock(&mapping->page_lock);
goto restart;
}
curr = curr->next;
}
return unlocked;
}
/*
* Unconditionally clean all pages outside `start'. The mapping lock
* must be held.
*/
static void clean_list_pages(struct address_space *mapping,
struct list_head *head, unsigned long start)
{
struct page *page;
struct list_head *curr;
for (curr = head->next; curr != head; curr = curr->next) {
page = list_entry(curr, struct page, list);
if (page->index > start)
ClearPageDirty(page);
}
}
/**
* truncate_inode_pages - truncate *all* the pages from an offset
* @mapping: mapping to truncate
* @lstart: offset from with to truncate
*
* Truncate the page cache at a set offset, removing the pages
* that are beyond that offset (and zeroing out partial pages).
* If any page is locked we wait for it to become unlocked.
*/
void truncate_inode_pages(struct address_space * mapping, loff_t lstart)
{
unsigned long start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
int unlocked;
write_lock(&mapping->page_lock);
clean_list_pages(mapping, &mapping->io_pages, start);
clean_list_pages(mapping, &mapping->dirty_pages, start);
do {
unlocked = truncate_list_pages(mapping,
&mapping->io_pages, start, &partial);
unlocked |= truncate_list_pages(mapping,
&mapping->dirty_pages, start, &partial);
unlocked |= truncate_list_pages(mapping,
&mapping->clean_pages, start, &partial);
unlocked |= truncate_list_pages(mapping,
&mapping->locked_pages, start, &partial);
} while (unlocked);
/* Traversed all three lists without dropping the lock */
write_unlock(&mapping->page_lock);
}
static inline int invalidate_this_page2(struct address_space * mapping,
struct page * page,
struct list_head * curr,
struct list_head * head)
{
int unlocked = 1;
/*
* The page is locked and we hold the mapping lock as well
* so both page_count(page) and page_buffers stays constant here.
* AKPM: fixme: No global lock any more. Is this still OK?
*/
if (page_count(page) == 1 + !!page_has_buffers(page)) {
/* Restart after this page */
list_del(head);
list_add_tail(head, curr);
page_cache_get(page);
write_unlock(&mapping->page_lock);
truncate_complete_page(page);
} else {
if (page_has_buffers(page)) {
/* Restart after this page */
list_del(head);
list_add_tail(head, curr);
page_cache_get(page);
write_unlock(&mapping->page_lock);
do_invalidatepage(page, 0);
} else
unlocked = 0;
ClearPageDirty(page);
ClearPageUptodate(page);
}
return unlocked;
}
static int invalidate_list_pages2(struct address_space * mapping,
struct list_head * head)
{
struct list_head *curr;
struct page * page;
int unlocked = 0;
restart:
curr = head->prev;
while (curr != head) {
page = list_entry(curr, struct page, list);
if (PageWriteback(page)) {
write_unlock(&mapping->page_lock);
wait_on_page_writeback(page);
unlocked = 1;
write_lock(&mapping->page_lock);
goto restart;
}
if (!TestSetPageLocked(page)) {
int __unlocked;
__unlocked = invalidate_this_page2(mapping, page, curr, head);
unlock_page(page);
unlocked |= __unlocked;
if (!__unlocked) {
curr = curr->prev;
continue;
}
} else {
/* Restart on this page */
list_del(head);
list_add(head, curr);
page_cache_get(page);
write_unlock(&mapping->page_lock);
unlocked = 1;
wait_on_page_locked(page);
}
page_cache_release(page);
if (need_resched()) {
__set_current_state(TASK_RUNNING);
schedule();
}
write_lock(&mapping->page_lock);
goto restart;
}
return unlocked;
}
/**
* invalidate_inode_pages2 - Clear all the dirty bits around if it can't
* free the pages because they're mapped.
* @mapping: the address_space which pages we want to invalidate
*/
void invalidate_inode_pages2(struct address_space * mapping)
{
int unlocked;
write_lock(&mapping->page_lock);
do {
unlocked = invalidate_list_pages2(mapping,
&mapping->clean_pages);
unlocked |= invalidate_list_pages2(mapping,
&mapping->dirty_pages);
unlocked |= invalidate_list_pages2(mapping,
&mapping->io_pages);
unlocked |= invalidate_list_pages2(mapping,
&mapping->locked_pages);
} while (unlocked);
write_unlock(&mapping->page_lock);
}
/*
* In-memory filesystems have to fail their
* writepage function - and this has to be
* worked around in the VM layer..
*
* We
* - mark the page dirty again (but do NOT
* add it back to the inode dirty list, as
* that would livelock in fdatasync)
* - activate the page so that the page stealer
* doesn't try to write it out over and over
* again.
*
* NOTE! The livelock in fdatasync went away, due to io_pages.
* So this function can now call set_page_dirty().
*/
int fail_writepage(struct page *page)
{
/* Only activate on memory-pressure, not fsync.. */
if (current->flags & PF_MEMALLOC) {
activate_page(page);
SetPageReferenced(page);
}
/* Set the page dirty again, unlock */
set_page_dirty(page);
unlock_page(page);
return 0;
}
EXPORT_SYMBOL(fail_writepage);
/**
* filemap_fdatawrite - walk the list of dirty pages of the given address space
* and writepage() all of them.
*
* @mapping: address space structure to write
*
*/
int filemap_fdatawrite(struct address_space *mapping)
{
return do_writepages(mapping, NULL);
}
/**
* filemap_fdatawait - walk the list of locked pages of the given address space
* and wait for all of them.
*
* @mapping: address space structure to wait for
*
*/
int filemap_fdatawait(struct address_space * mapping)
{
int ret = 0;
write_lock(&mapping->page_lock);
while (!list_empty(&mapping->locked_pages)) {
struct page *page = list_entry(mapping->locked_pages.next, struct page, list);
list_del(&page->list);
if (PageDirty(page))
list_add(&page->list, &mapping->dirty_pages);
else
list_add(&page->list, &mapping->clean_pages);
if (!PageWriteback(page))
continue;
page_cache_get(page);
write_unlock(&mapping->page_lock);
wait_on_page_writeback(page);
if (PageError(page))
ret = -EIO;
page_cache_release(page);
write_lock(&mapping->page_lock);
}
write_unlock(&mapping->page_lock);
return ret;
}
/*
* This adds a page to the page cache, starting out as locked,
* owned by us, but unreferenced, not uptodate and with no errors.
* The caller must hold a write_lock on the mapping->page_lock.
*/
static int __add_to_page_cache(struct page *page,
struct address_space *mapping, unsigned long offset)
{
page_cache_get(page);
if (radix_tree_insert(&mapping->page_tree, offset, page) < 0)
goto nomem;
page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
1 << PG_referenced | 1 << PG_arch_1 | 1 << PG_checked);
SetPageLocked(page);
ClearPageDirty(page);
___add_to_page_cache(page, mapping, offset);
return 0;
nomem:
page_cache_release(page);
return -ENOMEM;
}
int add_to_page_cache(struct page *page,
struct address_space *mapping, unsigned long offset)
{
write_lock(&mapping->page_lock);
if (__add_to_page_cache(page, mapping, offset) < 0)
goto nomem;
write_unlock(&mapping->page_lock);
lru_cache_add(page);
return 0;
nomem:
write_unlock(&mapping->page_lock);
return -ENOMEM;
}
int add_to_page_cache_unique(struct page *page,
struct address_space *mapping, unsigned long offset)
{
struct page *alias;
int error = -EEXIST;
write_lock(&mapping->page_lock);
if (!(alias = radix_tree_lookup(&mapping->page_tree, offset)))
error = __add_to_page_cache(page, mapping, offset);
write_unlock(&mapping->page_lock);
if (!error)
lru_cache_add(page);
return error;
}
/*
* This adds the requested page to the page cache if it isn't already there,
* and schedules an I/O to read in its contents from disk.
*/
static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
static int page_cache_read(struct file * file, unsigned long offset)
{
struct address_space *mapping = file->f_dentry->d_inode->i_mapping;
struct page *page;
int error;
read_lock(&mapping->page_lock);
page = radix_tree_lookup(&mapping->page_tree, offset);
read_unlock(&mapping->page_lock);
if (page)
return 0;
page = page_cache_alloc(mapping);
if (!page)
return -ENOMEM;
error = add_to_page_cache_unique(page, mapping, offset);
if (!error) {
error = mapping->a_ops->readpage(file, page);
page_cache_release(page);
return error;
}
/*
* We arrive here in the unlikely event that someone
* raced with us and added our page to the cache first
* or we are out of memory for radix-tree nodes.
*/
page_cache_release(page);
return error == -EEXIST ? 0 : error;
}
/*
* In order to wait for pages to become available there must be
* waitqueues associated with pages. By using a hash table of
* waitqueues where the bucket discipline is to maintain all
* waiters on the same queue and wake all when any of the pages
* become available, and for the woken contexts to check to be
* sure the appropriate page became available, this saves space
* at a cost of "thundering herd" phenomena during rare hash
* collisions.
*/
static inline wait_queue_head_t *page_waitqueue(struct page *page)
{
const zone_t *zone = page_zone(page);
return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
}
void wait_on_page_bit(struct page *page, int bit_nr)
{
wait_queue_head_t *waitqueue = page_waitqueue(page);
struct task_struct *tsk = current;
DECLARE_WAITQUEUE(wait, tsk);
add_wait_queue(waitqueue, &wait);
do {
set_task_state(tsk, TASK_UNINTERRUPTIBLE);
if (!test_bit(bit_nr, &page->flags))
break;
sync_page(page);
schedule();
} while (test_bit(bit_nr, &page->flags));
__set_task_state(tsk, TASK_RUNNING);
remove_wait_queue(waitqueue, &wait);
}
EXPORT_SYMBOL(wait_on_page_bit);
/**
* unlock_page() - unlock a locked page
*
* @page: the page
*
* Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
* Also wakes sleepers in wait_on_page_writeback() because the wakeup
* mechananism between PageLocked pages and PageWriteback pages is shared.
* But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
*
* The first mb is necessary to safely close the critical section opened by the
* TryLockPage(), the second mb is necessary to enforce ordering between
* the clear_bit and the read of the waitqueue (to avoid SMP races with a
* parallel wait_on_page_locked()).
*/
void unlock_page(struct page *page)
{
wait_queue_head_t *waitqueue = page_waitqueue(page);
smp_mb__before_clear_bit();
if (!TestClearPageLocked(page))
BUG();
smp_mb__after_clear_bit();
if (waitqueue_active(waitqueue))
wake_up_all(waitqueue);
}
/*
* End writeback against a page.
*/
void end_page_writeback(struct page *page)
{
wait_queue_head_t *waitqueue = page_waitqueue(page);
smp_mb__before_clear_bit();
if (!TestClearPageWriteback(page))
BUG();
smp_mb__after_clear_bit();
if (waitqueue_active(waitqueue))
wake_up_all(waitqueue);
}
EXPORT_SYMBOL(end_page_writeback);
/*
* Get a lock on the page, assuming we need to sleep
* to get it..
*/
static void __lock_page(struct page *page)
{
wait_queue_head_t *waitqueue = page_waitqueue(page);
struct task_struct *tsk = current;
DECLARE_WAITQUEUE(wait, tsk);
add_wait_queue_exclusive(waitqueue, &wait);
for (;;) {
set_task_state(tsk, TASK_UNINTERRUPTIBLE);
if (PageLocked(page)) {
sync_page(page);
schedule();
}
if (!TestSetPageLocked(page))
break;
}
__set_task_state(tsk, TASK_RUNNING);
remove_wait_queue(waitqueue, &wait);
}
/*
* Get an exclusive lock on the page, optimistically
* assuming it's not locked..
*/
void lock_page(struct page *page)
{
if (TestSetPageLocked(page))
__lock_page(page);
}
/*
* a rather lightweight function, finding and getting a reference to a
* hashed page atomically.
*/
struct page * find_get_page(struct address_space *mapping, unsigned long offset)
{
struct page *page;
/*
* We scan the hash list read-only. Addition to and removal from
* the hash-list needs a held write-lock.
*/
read_lock(&mapping->page_lock);
page = radix_tree_lookup(&mapping->page_tree, offset);
if (page)
page_cache_get(page);
read_unlock(&mapping->page_lock);
return page;
}
/*
* Same as above, but trylock it instead of incrementing the count.
*/
struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
{
struct page *page;
read_lock(&mapping->page_lock);
page = radix_tree_lookup(&mapping->page_tree, offset);
if (page && TestSetPageLocked(page))
page = NULL;
read_unlock(&mapping->page_lock);
return page;
}
/*
* Must be called with the mapping lock held for writing.
* Will return with it held for writing, but it may be dropped
* while locking the page.
*/
static struct page *__find_lock_page(struct address_space *mapping,
unsigned long offset)
{
struct page *page;
/*
* We scan the hash list read-only. Addition to and removal from
* the hash-list needs a held write-lock.
*/
repeat:
page = radix_tree_lookup(&mapping->page_tree, offset);
if (page) {
page_cache_get(page);
if (TestSetPageLocked(page)) {
write_unlock(&mapping->page_lock);
lock_page(page);
write_lock(&mapping->page_lock);
/* Has the page been truncated while we slept? */
if (page->mapping != mapping || page->index != offset) {
unlock_page(page);
page_cache_release(page);
goto repeat;
}
}
}
return page;
}
/**
* find_lock_page - locate, pin and lock a pagecache page
*
* @mapping - the address_space to search
* @offset - the page index
*
* Locates the desired pagecache page, locks it, increments its reference
* count and returns its address.
*
* Returns zero if the page was not present. find_lock_page() may sleep.
*/
/*
* The write_lock is unfortunate, but __find_lock_page() requires that on
* behalf of find_or_create_page(). We could just clone __find_lock_page() -
* one for find_lock_page(), one for find_or_create_page()...
*/
struct page *find_lock_page(struct address_space *mapping,
unsigned long offset)
{
struct page *page;
write_lock(&mapping->page_lock);
page = __find_lock_page(mapping, offset);
write_unlock(&mapping->page_lock);
return page;
}
/**
* find_or_create_page - locate or add a pagecache page
*
* @mapping - the page's address_space
* @index - the page's index into the mapping
* @gfp_mask - page allocation mode
*
* Locates a page in the pagecache. If the page is not present, a new page
* is allocated using @gfp_mask and is added to the pagecache and to the VM's
* LRU list. The returned page is locked and has its reference count
* incremented.
*
* find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
* allocation!
*
* find_or_create_page() returns the desired page's address, or zero on
* memory exhaustion.
*/
struct page *find_or_create_page(struct address_space *mapping,
unsigned long index, unsigned int gfp_mask)
{
struct page *page;
page = find_lock_page(mapping, index);
if (!page) {
struct page *newpage = alloc_page(gfp_mask);
if (newpage) {
write_lock(&mapping->page_lock);
page = __find_lock_page(mapping, index);
if (likely(!page)) {
page = newpage;
if (__add_to_page_cache(page, mapping, index)) {
write_unlock(&mapping->page_lock);
page_cache_release(page);
page = NULL;
goto out;
}
newpage = NULL;
}
write_unlock(&mapping->page_lock);
if (newpage == NULL)
lru_cache_add(page);
else
page_cache_release(newpage);
}
}
out:
return page;
}
/*
* Returns locked page at given index in given cache, creating it if needed.
*/
struct page *grab_cache_page(struct address_space *mapping, unsigned long index)
{
return find_or_create_page(mapping, index, mapping->gfp_mask);
}
/*
* Same as grab_cache_page, but do not wait if the page is unavailable.
* This is intended for speculative data generators, where the data can
* be regenerated if the page couldn't be grabbed. This routine should
* be safe to call while holding the lock for another page.
*/
struct page *grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
{
struct page *page;
page = find_get_page(mapping, index);
if ( page ) {
if ( !TestSetPageLocked(page) ) {
/* Page found and locked */
/* This test is overly paranoid, but what the heck... */
if ( unlikely(page->mapping != mapping || page->index != index) ) {
/* Someone reallocated this page under us. */
unlock_page(page);
page_cache_release(page);
return NULL;
} else {
return page;
}
} else {
/* Page locked by someone else */
page_cache_release(page);
return NULL;
}
}
page = page_cache_alloc(mapping);
if (unlikely(!page))
return NULL; /* Failed to allocate a page */
if (unlikely(add_to_page_cache_unique(page, mapping, index))) {
/*
* Someone else grabbed the page already, or
* failed to allocate a radix-tree node
*/
page_cache_release(page);
return NULL;
}
return page;
}
/*
* Mark a page as having seen activity.
*
* If it was already so marked, move it
* to the active queue and drop the referenced
* bit. Otherwise, just mark it for future
* action..
*/
void mark_page_accessed(struct page *page)
{
if (!PageActive(page) && PageReferenced(page)) {
activate_page(page);
ClearPageReferenced(page);
return;
}
/* Mark the page referenced, AFTER checking for previous usage.. */
SetPageReferenced(page);
}
/*
* This is a generic file read routine, and uses the
* inode->i_op->readpage() function for the actual low-level
* stuff.
*
* This is really ugly. But the goto's actually try to clarify some
* of the logic when it comes to error handling etc.
*/
void do_generic_file_read(struct file * filp, loff_t *ppos, read_descriptor_t * desc, read_actor_t actor)
{
struct address_space *mapping = filp->f_dentry->d_inode->i_mapping;
struct inode *inode = mapping->host;
unsigned long index, offset;
struct page *cached_page;
int error;
cached_page = NULL;
index = *ppos >> PAGE_CACHE_SHIFT;
offset = *ppos & ~PAGE_CACHE_MASK;
for (;;) {
struct page *page;
unsigned long end_index, nr, ret;
end_index = inode->i_size >> PAGE_CACHE_SHIFT;
if (index > end_index)
break;
nr = PAGE_CACHE_SIZE;
if (index == end_index) {
nr = inode->i_size & ~PAGE_CACHE_MASK;
if (nr <= offset)
break;
}
page_cache_readahead(filp, index);
nr = nr - offset;
/*
* Try to find the data in the page cache..
*/
write_lock(&mapping->page_lock);
page = radix_tree_lookup(&mapping->page_tree, index);
if (!page) {
write_unlock(&mapping->page_lock);
handle_ra_thrashing(filp);
write_lock(&mapping->page_lock);
goto no_cached_page;
}
found_page:
page_cache_get(page);
write_unlock(&mapping->page_lock);
if (!PageUptodate(page))
goto page_not_up_to_date;
page_ok:
/* If users can be writing to this page using arbitrary
* virtual addresses, take care about potential aliasing
* before reading the page on the kernel side.
*/
if (!list_empty(&mapping->i_mmap_shared))
flush_dcache_page(page);
/*
* Mark the page accessed if we read the beginning.
*/
if (!offset)
mark_page_accessed(page);
/*
* Ok, we have the page, and it's up-to-date, so
* now we can copy it to user space...
*
* The actor routine returns how many bytes were actually used..
* NOTE! This may not be the same as how much of a user buffer
* we filled up (we may be padding etc), so we can only update
* "pos" here (the actor routine has to update the user buffer
* pointers and the remaining count).
*/
ret = actor(desc, page, offset, nr);
offset += ret;
index += offset >> PAGE_CACHE_SHIFT;
offset &= ~PAGE_CACHE_MASK;
page_cache_release(page);
if (ret == nr && desc->count)
continue;
break;
page_not_up_to_date:
if (PageUptodate(page))
goto page_ok;
/* Get exclusive access to the page ... */
lock_page(page);
/* Did it get unhashed before we got the lock? */
if (!page->mapping) {
unlock_page(page);
page_cache_release(page);
continue;
}
/* Did somebody else fill it already? */
if (PageUptodate(page)) {
unlock_page(page);
goto page_ok;
}
readpage:
/* ... and start the actual read. The read will unlock the page. */
error = mapping->a_ops->readpage(filp, page);
if (!error) {
if (PageUptodate(page))
goto page_ok;
wait_on_page_locked(page);
if (PageUptodate(page))
goto page_ok;
error = -EIO;
}
/* UHHUH! A synchronous read error occurred. Report it */
desc->error = error;
page_cache_release(page);
break;
no_cached_page:
/*
* Ok, it wasn't cached, so we need to create a new
* page..
*
* We get here with the page cache lock held.
*/
if (!cached_page) {
write_unlock(&mapping->page_lock);
cached_page = page_cache_alloc(mapping);
if (!cached_page) {
desc->error = -ENOMEM;
break;
}
/*
* Somebody may have added the page while we
* dropped the page cache lock. Check for that.
*/
write_lock(&mapping->page_lock);
page = radix_tree_lookup(&mapping->page_tree, index);
if (page)
goto found_page;
}
/*
* Ok, add the new page to the hash-queues...
*/
if (__add_to_page_cache(cached_page, mapping, index) < 0) {
write_unlock(&mapping->page_lock);
desc->error = -ENOMEM;
break;
}
page = cached_page;
write_unlock(&mapping->page_lock);
lru_cache_add(page);
cached_page = NULL;
goto readpage;
}
*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
if (cached_page)
page_cache_release(cached_page);
UPDATE_ATIME(inode);
}
static ssize_t generic_file_direct_IO(int rw, struct file * filp, char * buf, size_t count, loff_t offset)
{
ssize_t retval;
int new_iobuf, chunk_size, blocksize_mask, blocksize, blocksize_bits, iosize, progress;
struct kiobuf * iobuf;
struct address_space * mapping = filp->f_dentry->d_inode->i_mapping;
struct inode * inode = mapping->host;
new_iobuf = 0;
iobuf = filp->f_iobuf;
if (test_and_set_bit(0, &filp->f_iobuf_lock)) {
/*
* A parallel read/write is using the preallocated iobuf
* so just run slow and allocate a new one.
*/
retval = alloc_kiovec(1, &iobuf);
if (retval)
goto out;
new_iobuf = 1;
}
blocksize = 1 << inode->i_blkbits;
blocksize_bits = inode->i_blkbits;
blocksize_mask = blocksize - 1;
chunk_size = KIO_MAX_ATOMIC_IO << 10;
retval = -EINVAL;
if ((offset & blocksize_mask) || (count & blocksize_mask))
goto out_free;
if (!mapping->a_ops->direct_IO)
goto out_free;
/*
* Flush to disk exclusively the _data_, metadata must remain
* completly asynchronous or performance will go to /dev/null.
*/
retval = filemap_fdatawait(mapping);
if (retval == 0)
retval = filemap_fdatawrite(mapping);
if (retval == 0)
retval = filemap_fdatawait(mapping);
if (retval < 0)
goto out_free;
progress = retval = 0;
while (count > 0) {
iosize = count;
if (iosize > chunk_size)
iosize = chunk_size;
retval = map_user_kiobuf(rw, iobuf, (unsigned long) buf, iosize);
if (retval)
break;
retval = mapping->a_ops->direct_IO(rw, inode, iobuf, (offset+progress) >> blocksize_bits, blocksize);
if (rw == READ && retval > 0)
mark_dirty_kiobuf(iobuf, retval);
if (retval >= 0) {
count -= retval;
buf += retval;
progress += retval;
}
unmap_kiobuf(iobuf);
if (retval != iosize)
break;
}
if (progress)
retval = progress;
out_free:
if (!new_iobuf)
clear_bit(0, &filp->f_iobuf_lock);
else
free_kiovec(1, &iobuf);
out:
return retval;
}
int file_read_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
{
char *kaddr;
unsigned long left, count = desc->count;
if (size > count)
size = count;
kaddr = kmap(page);
left = __copy_to_user(desc->buf, kaddr + offset, size);
kunmap(page);
if (left) {
size -= left;
desc->error = -EFAULT;
}
desc->count = count - size;
desc->written += size;
desc->buf += size;
return size;
}
/*
* This is the "read()" routine for all filesystems
* that can use the page cache directly.
*/
ssize_t generic_file_read(struct file * filp, char * buf, size_t count, loff_t *ppos)
{
ssize_t retval;
if ((ssize_t) count < 0)
return -EINVAL;
if (filp->f_flags & O_DIRECT)
goto o_direct;
retval = -EFAULT;
if (access_ok(VERIFY_WRITE, buf, count)) {
retval = 0;
if (count) {
read_descriptor_t desc;
desc.written = 0;
desc.count = count;
desc.buf = buf;
desc.error = 0;
do_generic_file_read(filp, ppos, &desc, file_read_actor);
retval = desc.written;
if (!retval)
retval = desc.error;
}
}
out:
return retval;
o_direct:
{
loff_t pos = *ppos, size;
struct address_space *mapping = filp->f_dentry->d_inode->i_mapping;
struct inode *inode = mapping->host;
retval = 0;
if (!count)
goto out; /* skip atime */
size = inode->i_size;
if (pos < size) {
if (pos + count > size)
count = size - pos;
retval = generic_file_direct_IO(READ, filp, buf, count, pos);
if (retval > 0)
*ppos = pos + retval;
}
UPDATE_ATIME(filp->f_dentry->d_inode);
goto out;
}
}
static int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset , unsigned long size)
{
ssize_t written;
unsigned long count = desc->count;
struct file *file = (struct file *) desc->buf;
if (size > count)
size = count;
if (file->f_op->sendpage) {
written = file->f_op->sendpage(file, page, offset,
size, &file->f_pos, size<count);
} else {
char *kaddr;
mm_segment_t old_fs;
old_fs = get_fs();
set_fs(KERNEL_DS);
kaddr = kmap(page);
written = file->f_op->write(file, kaddr + offset, size, &file->f_pos);
kunmap(page);
set_fs(old_fs);
}
if (written < 0) {
desc->error = written;
written = 0;
}
desc->count = count - written;
desc->written += written;
return written;
}
static ssize_t common_sendfile(int out_fd, int in_fd, loff_t *offset, size_t count, loff_t max)
{
ssize_t retval;
struct file * in_file, * out_file;
struct inode * in_inode, * out_inode;
/*
* Get input file, and verify that it is ok..
*/
retval = -EBADF;
in_file = fget(in_fd);
if (!in_file)
goto out;
if (!(in_file->f_mode & FMODE_READ))
goto fput_in;
retval = -EINVAL;
in_inode = in_file->f_dentry->d_inode;
if (!in_inode)
goto fput_in;
if (!in_inode->i_mapping->a_ops->readpage)
goto fput_in;
retval = locks_verify_area(FLOCK_VERIFY_READ, in_inode, in_file, in_file->f_pos, count);
if (retval)
goto fput_in;
/*
* Get output file, and verify that it is ok..
*/
retval = -EBADF;
out_file = fget(out_fd);
if (!out_file)
goto fput_in;
if (!(out_file->f_mode & FMODE_WRITE))
goto fput_out;
retval = -EINVAL;
if (!out_file->f_op || !out_file->f_op->write)
goto fput_out;
out_inode = out_file->f_dentry->d_inode;
retval = locks_verify_area(FLOCK_VERIFY_WRITE, out_inode, out_file, out_file->f_pos, count);
if (retval)
goto fput_out;
retval = 0;
if (count) {
read_descriptor_t desc;
loff_t pos;
if (!offset)
offset = &in_file->f_pos;
pos = *offset;
retval = -EINVAL;
if (unlikely(pos < 0))
goto fput_out;
if (unlikely(pos + count > max)) {
retval = -EOVERFLOW;
if (pos >= max)
goto fput_out;
count = max - pos;
}
desc.written = 0;
desc.count = count;
desc.buf = (char *) out_file;
desc.error = 0;
do_generic_file_read(in_file, offset, &desc, file_send_actor);
retval = desc.written;
if (!retval)
retval = desc.error;
pos = *offset;
if (pos > max)
retval = -EOVERFLOW;
}
fput_out:
fput(out_file);
fput_in:
fput(in_file);
out:
return retval;
}
asmlinkage ssize_t sys_sendfile(int out_fd, int in_fd, off_t *offset, size_t count)
{
loff_t pos, *ppos = NULL;
ssize_t ret;
if (offset) {
off_t off;
if (unlikely(get_user(off, offset)))
return -EFAULT;
pos = off;
ppos = &pos;
}
ret = common_sendfile(out_fd, in_fd, ppos, count, MAX_NON_LFS);
if (offset && put_user(pos, offset))
ret = -EFAULT;
return ret;
}
asmlinkage ssize_t sys_sendfile64(int out_fd, int in_fd, loff_t *offset, size_t count)
{
loff_t pos, *ppos = NULL;
ssize_t ret;
if (offset) {
if (unlikely(copy_from_user(&pos, offset, sizeof(loff_t))))
return -EFAULT;
ppos = &pos;
}
ret = common_sendfile(out_fd, in_fd, ppos, count, MAX_LFS_FILESIZE);
if (offset && put_user(pos, offset))
ret = -EFAULT;
return ret;
}
static ssize_t
do_readahead(struct file *file, unsigned long index, unsigned long nr)
{
struct address_space *mapping = file->f_dentry->d_inode->i_mapping;
unsigned long max;
struct page_state ps;
if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
return -EINVAL;
/* Limit it to a sane percentage of the inactive list.. */
get_page_state(&ps);
max = ps.nr_inactive / 2;
if (nr > max)
nr = max;
do_page_cache_readahead(file, index, nr);
return 0;
}
asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
{
ssize_t ret;
struct file *file;
ret = -EBADF;
file = fget(fd);
if (file) {
if (file->f_mode & FMODE_READ) {
unsigned long start = offset >> PAGE_CACHE_SHIFT;
unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
unsigned long len = end - start + 1;
ret = do_readahead(file, start, len);
}
fput(file);
}
return ret;
}
/*
* filemap_nopage() is invoked via the vma operations vector for a
* mapped memory region to read in file data during a page fault.
*
* The goto's are kind of ugly, but this streamlines the normal case of having
* it in the page cache, and handles the special cases reasonably without
* having a lot of duplicated code.
*/
struct page * filemap_nopage(struct vm_area_struct * area, unsigned long address, int unused)
{
int error;
struct file *file = area->vm_file;
struct address_space *mapping = file->f_dentry->d_inode->i_mapping;
struct inode *inode = mapping->host;
struct page *page;
unsigned long size, pgoff, endoff;
pgoff = ((address - area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
endoff = ((area->vm_end - area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
retry_all:
/*
* An external ptracer can access pages that normally aren't
* accessible..
*/
size = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
if ((pgoff >= size) && (area->vm_mm == current->mm))
return NULL;
/* The "size" of the file, as far as mmap is concerned, isn't bigger than the mapping */
if (size > endoff)
size = endoff;
/*
* The readahead code wants to be told about each and every page
* so it can build and shrink its windows appropriately
*/
if (VM_SequentialReadHint(area))
page_cache_readahead(area->vm_file, pgoff);
/*
* If the offset is outside the mapping size we're off the end
* of a privately mapped file, so we need to map a zero page.
*/
if ((pgoff < size) && !VM_RandomReadHint(area))
page_cache_readaround(file, pgoff);
/*
* Do we have something in the page cache already?
*/
retry_find:
page = find_get_page(mapping, pgoff);
if (!page)
goto no_cached_page;
/*
* Ok, found a page in the page cache, now we need to check
* that it's up-to-date.
*/
if (!PageUptodate(page))
goto page_not_uptodate;
success:
/*
* Found the page and have a reference on it, need to check sharing
* and possibly copy it over to another page..
*/
mark_page_accessed(page);
flush_page_to_ram(page);
return page;
no_cached_page:
/*
* We're only likely to ever get here if MADV_RANDOM is in
* effect.
*/
error = page_cache_read(file, pgoff);
/*
* The page we want has now been added to the page cache.
* In the unlikely event that someone removed it in the
* meantime, we'll just come back here and read it again.
*/
if (error >= 0)
goto retry_find;
/*
* An error return from page_cache_read can result if the
* system is low on memory, or a problem occurs while trying
* to schedule I/O.
*/
if (error == -ENOMEM)
return NOPAGE_OOM;
return NULL;
page_not_uptodate:
lock_page(page);
/* Did it get unhashed while we waited for it? */
if (!page->mapping) {
unlock_page(page);
page_cache_release(page);
goto retry_all;
}
/* Did somebody else get it up-to-date? */
if (PageUptodate(page)) {
unlock_page(page);
goto success;
}
if (!mapping->a_ops->readpage(file, page)) {
wait_on_page_locked(page);
if (PageUptodate(page))
goto success;
}
/*
* Umm, take care of errors if the page isn't up-to-date.
* Try to re-read it _once_. We do this synchronously,
* because there really aren't any performance issues here
* and we need to check for errors.
*/
lock_page(page);
/* Somebody truncated the page on us? */
if (!page->mapping) {
unlock_page(page);
page_cache_release(page);
goto retry_all;
}
/* Somebody else successfully read it in? */
if (PageUptodate(page)) {
unlock_page(page);
goto success;
}
ClearPageError(page);
if (!mapping->a_ops->readpage(file, page)) {
wait_on_page_locked(page);
if (PageUptodate(page))
goto success;
}
/*
* Things didn't work out. Return zero to tell the
* mm layer so, possibly freeing the page cache page first.
*/
page_cache_release(page);
return NULL;
}
static struct vm_operations_struct generic_file_vm_ops = {
nopage: filemap_nopage,
};
/* This is used for a general mmap of a disk file */
int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
struct address_space *mapping = file->f_dentry->d_inode->i_mapping;
struct inode *inode = mapping->host;
if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) {
if (!mapping->a_ops->writepage)
return -EINVAL;
}
if (!mapping->a_ops->readpage)
return -ENOEXEC;
UPDATE_ATIME(inode);
vma->vm_ops = &generic_file_vm_ops;
return 0;
}
static inline void setup_read_behavior(struct vm_area_struct * vma,
int behavior)
{
VM_ClearReadHint(vma);
switch(behavior) {
case MADV_SEQUENTIAL:
vma->vm_flags |= VM_SEQ_READ;
break;
case MADV_RANDOM:
vma->vm_flags |= VM_RAND_READ;
break;
default:
break;
}
return;
}
static long madvise_fixup_start(struct vm_area_struct * vma,
unsigned long end, int behavior)
{
struct vm_area_struct * n;
struct mm_struct * mm = vma->vm_mm;
n = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
if (!n)
return -EAGAIN;
*n = *vma;
n->vm_end = end;
setup_read_behavior(n, behavior);
n->vm_raend = 0;
if (n->vm_file)
get_file(n->vm_file);
if (n->vm_ops && n->vm_ops->open)
n->vm_ops->open(n);
vma->vm_pgoff += (end - vma->vm_start) >> PAGE_SHIFT;
lock_vma_mappings(vma);
spin_lock(&mm->page_table_lock);
vma->vm_start = end;
__insert_vm_struct(mm, n);
spin_unlock(&mm->page_table_lock);
unlock_vma_mappings(vma);
return 0;
}
static long madvise_fixup_end(struct vm_area_struct * vma,
unsigned long start, int behavior)
{
struct vm_area_struct * n;
struct mm_struct * mm = vma->vm_mm;
n = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
if (!n)
return -EAGAIN;
*n = *vma;
n->vm_start = start;
n->vm_pgoff += (n->vm_start - vma->vm_start) >> PAGE_SHIFT;
setup_read_behavior(n, behavior);
n->vm_raend = 0;
if (n->vm_file)
get_file(n->vm_file);
if (n->vm_ops && n->vm_ops->open)
n->vm_ops->open(n);
lock_vma_mappings(vma);
spin_lock(&mm->page_table_lock);
vma->vm_end = start;
__insert_vm_struct(mm, n);
spin_unlock(&mm->page_table_lock);
unlock_vma_mappings(vma);
return 0;
}
static long madvise_fixup_middle(struct vm_area_struct * vma,
unsigned long start, unsigned long end, int behavior)
{
struct vm_area_struct * left, * right;
struct mm_struct * mm = vma->vm_mm;
left = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
if (!left)
return -EAGAIN;
right = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
if (!right) {
kmem_cache_free(vm_area_cachep, left);
return -EAGAIN;
}
*left = *vma;
*right = *vma;
left->vm_end = start;
right->vm_start = end;
right->vm_pgoff += (right->vm_start - left->vm_start) >> PAGE_SHIFT;
left->vm_raend = 0;
right->vm_raend = 0;
if (vma->vm_file)
atomic_add(2, &vma->vm_file->f_count);
if (vma->vm_ops && vma->vm_ops->open) {
vma->vm_ops->open(left);
vma->vm_ops->open(right);
}
vma->vm_pgoff += (start - vma->vm_start) >> PAGE_SHIFT;
vma->vm_raend = 0;
lock_vma_mappings(vma);
spin_lock(&mm->page_table_lock);
vma->vm_start = start;
vma->vm_end = end;
setup_read_behavior(vma, behavior);
__insert_vm_struct(mm, left);
__insert_vm_struct(mm, right);
spin_unlock(&mm->page_table_lock);
unlock_vma_mappings(vma);
return 0;
}
/*
* We can potentially split a vm area into separate
* areas, each area with its own behavior.
*/
static long madvise_behavior(struct vm_area_struct * vma,
unsigned long start, unsigned long end, int behavior)
{
int error = 0;
/* This caps the number of vma's this process can own */
if (vma->vm_mm->map_count > MAX_MAP_COUNT)
return -ENOMEM;
if (start == vma->vm_start) {
if (end == vma->vm_end) {
setup_read_behavior(vma, behavior);
vma->vm_raend = 0;
} else
error = madvise_fixup_start(vma, end, behavior);
} else {
if (end == vma->vm_end)
error = madvise_fixup_end(vma, start, behavior);
else
error = madvise_fixup_middle(vma, start, end, behavior);
}
return error;
}
/*
* Schedule all required I/O operations, then run the disk queue
* to make sure they are started. Do not wait for completion.
*/
static long madvise_willneed(struct vm_area_struct * vma,
unsigned long start, unsigned long end)
{
long error = -EBADF;
struct file * file;
unsigned long size, rlim_rss;
/* Doesn't work if there's no mapped file. */
if (!vma->vm_file)
return error;
file = vma->vm_file;
size = (file->f_dentry->d_inode->i_size + PAGE_CACHE_SIZE - 1) >>
PAGE_CACHE_SHIFT;
start = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
if (end > vma->vm_end)
end = vma->vm_end;
end = ((end - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
/* Make sure this doesn't exceed the process's max rss. */
error = -EIO;
rlim_rss = current->rlim ? current->rlim[RLIMIT_RSS].rlim_cur :
LONG_MAX; /* default: see resource.h */
if ((vma->vm_mm->rss + (end - start)) > rlim_rss)
return error;
do_page_cache_readahead(file, start, end - start);
return 0;
}
/*
* Application no longer needs these pages. If the pages are dirty,
* it's OK to just throw them away. The app will be more careful about
* data it wants to keep. Be sure to free swap resources too. The
* zap_page_range call sets things up for refill_inactive to actually free
* these pages later if no one else has touched them in the meantime,
* although we could add these pages to a global reuse list for
* refill_inactive to pick up before reclaiming other pages.
*
* NB: This interface discards data rather than pushes it out to swap,
* as some implementations do. This has performance implications for
* applications like large transactional databases which want to discard
* pages in anonymous maps after committing to backing store the data
* that was kept in them. There is no reason to write this data out to
* the swap area if the application is discarding it.
*
* An interface that causes the system to free clean pages and flush
* dirty pages is already available as msync(MS_INVALIDATE).
*/
static long madvise_dontneed(struct vm_area_struct * vma,
unsigned long start, unsigned long end)
{
if (vma->vm_flags & VM_LOCKED)
return -EINVAL;
zap_page_range(vma, start, end - start);
return 0;
}
static long madvise_vma(struct vm_area_struct * vma, unsigned long start,
unsigned long end, int behavior)
{
long error = -EBADF;
switch (behavior) {
case MADV_NORMAL:
case MADV_SEQUENTIAL:
case MADV_RANDOM:
error = madvise_behavior(vma, start, end, behavior);
break;
case MADV_WILLNEED:
error = madvise_willneed(vma, start, end);
break;
case MADV_DONTNEED:
error = madvise_dontneed(vma, start, end);
break;
default:
error = -EINVAL;
break;
}
return error;
}
/*
* The madvise(2) system call.
*
* Applications can use madvise() to advise the kernel how it should
* handle paging I/O in this VM area. The idea is to help the kernel
* use appropriate read-ahead and caching techniques. The information
* provided is advisory only, and can be safely disregarded by the
* kernel without affecting the correct operation of the application.
*
* behavior values:
* MADV_NORMAL - the default behavior is to read clusters. This
* results in some read-ahead and read-behind.
* MADV_RANDOM - the system should read the minimum amount of data
* on any access, since it is unlikely that the appli-
* cation will need more than what it asks for.
* MADV_SEQUENTIAL - pages in the given range will probably be accessed
* once, so they can be aggressively read ahead, and
* can be freed soon after they are accessed.
* MADV_WILLNEED - the application is notifying the system to read
* some pages ahead.
* MADV_DONTNEED - the application is finished with the given range,
* so the kernel can free resources associated with it.
*
* return values:
* zero - success
* -EINVAL - start + len < 0, start is not page-aligned,
* "behavior" is not a valid value, or application
* is attempting to release locked or shared pages.
* -ENOMEM - addresses in the specified range are not currently
* mapped, or are outside the AS of the process.
* -EIO - an I/O error occurred while paging in data.
* -EBADF - map exists, but area maps something that isn't a file.
* -EAGAIN - a kernel resource was temporarily unavailable.
*/
asmlinkage long sys_madvise(unsigned long start, size_t len, int behavior)
{
unsigned long end;
struct vm_area_struct * vma;
int unmapped_error = 0;
int error = -EINVAL;
down_write(&current->mm->mmap_sem);
if (start & ~PAGE_MASK)
goto out;
len = (len + ~PAGE_MASK) & PAGE_MASK;
end = start + len;
if (end < start)
goto out;
error = 0;
if (end == start)
goto out;
/*
* If the interval [start,end) covers some unmapped address
* ranges, just ignore them, but return -ENOMEM at the end.
*/
vma = find_vma(current->mm, start);
for (;;) {
/* Still start < end. */
error = -ENOMEM;
if (!vma)
goto out;
/* Here start < vma->vm_end. */
if (start < vma->vm_start) {
unmapped_error = -ENOMEM;
start = vma->vm_start;
}
/* Here vma->vm_start <= start < vma->vm_end. */
if (end <= vma->vm_end) {
if (start < end) {
error = madvise_vma(vma, start, end,
behavior);
if (error)
goto out;
}
error = unmapped_error;
goto out;
}
/* Here vma->vm_start <= start < vma->vm_end < end. */
error = madvise_vma(vma, start, vma->vm_end, behavior);
if (error)
goto out;
start = vma->vm_end;
vma = vma->vm_next;
}
out:
up_write(&current->mm->mmap_sem);
return error;
}
static inline
struct page *__read_cache_page(struct address_space *mapping,
unsigned long index,
int (*filler)(void *,struct page*),
void *data)
{
struct page *page, *cached_page = NULL;
int err;
repeat:
page = find_get_page(mapping, index);
if (!page) {
if (!cached_page) {
cached_page = page_cache_alloc(mapping);
if (!cached_page)
return ERR_PTR(-ENOMEM);
}
err = add_to_page_cache_unique(cached_page, mapping, index);
if (err == -EEXIST)
goto repeat;
if (err < 0) {
/* Presumably ENOMEM for radix tree node */
page_cache_release(cached_page);
return ERR_PTR(err);
}
page = cached_page;
cached_page = NULL;
err = filler(data, page);
if (err < 0) {
page_cache_release(page);
page = ERR_PTR(err);
}
}
if (cached_page)
page_cache_release(cached_page);
return page;
}
/*
* Read into the page cache. If a page already exists,
* and PageUptodate() is not set, try to fill the page.
*/
struct page *read_cache_page(struct address_space *mapping,
unsigned long index,
int (*filler)(void *,struct page*),
void *data)
{
struct page *page;
int err;
retry:
page = __read_cache_page(mapping, index, filler, data);
if (IS_ERR(page))
goto out;
mark_page_accessed(page);
if (PageUptodate(page))
goto out;
lock_page(page);
if (!page->mapping) {
unlock_page(page);
page_cache_release(page);
goto retry;
}
if (PageUptodate(page)) {
unlock_page(page);
goto out;
}
err = filler(data, page);
if (err < 0) {
page_cache_release(page);
page = ERR_PTR(err);
}
out:
return page;
}
static inline struct page * __grab_cache_page(struct address_space *mapping,
unsigned long index, struct page **cached_page)
{
int err;
struct page *page;
repeat:
page = find_lock_page(mapping, index);
if (!page) {
if (!*cached_page) {
*cached_page = page_cache_alloc(mapping);
if (!*cached_page)
return NULL;
}
err = add_to_page_cache_unique(*cached_page, mapping, index);
if (err == -EEXIST)
goto repeat;
if (err == 0) {
page = *cached_page;
*cached_page = NULL;
}
}
return page;
}
inline void remove_suid(struct dentry *dentry)
{
struct iattr newattrs;
struct inode *inode = dentry->d_inode;
unsigned int mode = inode->i_mode & (S_ISUID|S_ISGID|S_IXGRP);
if (!(mode & S_IXGRP))
mode &= S_ISUID;
/* was any of the uid bits set? */
if (mode && !capable(CAP_FSETID)) {
newattrs.ia_valid = ATTR_KILL_SUID | ATTR_KILL_SGID;
notify_change(dentry, &newattrs);
}
}
/*
* Write to a file through the page cache.
*
* We put everything into the page cache prior to writing it. This is not a
* problem when writing full pages. With partial pages, however, we first have
* to read the data into the cache, then dirty the page, and finally schedule
* it for writing by marking it dirty.
* okir@monad.swb.de
*/
ssize_t
generic_file_write(struct file *file, const char *buf,
size_t count, loff_t *ppos)
{
struct address_space * mapping = file->f_dentry->d_inode->i_mapping;
struct address_space_operations *a_ops = mapping->a_ops;
struct inode *inode = mapping->host;
unsigned long limit = current->rlim[RLIMIT_FSIZE].rlim_cur;
long status = 0;
loff_t pos;
struct page *page;
struct page *cached_page = NULL;
ssize_t written;
int err;
unsigned bytes;
time_t time_now;
if (unlikely((ssize_t) count < 0))
return -EINVAL;
if (unlikely(!access_ok(VERIFY_READ, buf, count)))
return -EFAULT;
down(&inode->i_sem);
pos = *ppos;
if (unlikely(pos < 0)) {
err = -EINVAL;
goto out;
}
if (unlikely(file->f_error)) {
err = file->f_error;
file->f_error = 0;
goto out;
}
written = 0;
/* FIXME: this is for backwards compatibility with 2.4 */
if (!S_ISBLK(inode->i_mode) && file->f_flags & O_APPEND)
pos = inode->i_size;
/*
* Check whether we've reached the file size limit.
*/
if (unlikely(limit != RLIM_INFINITY)) {
if (pos >= limit) {
send_sig(SIGXFSZ, current, 0);
err = -EFBIG;
goto out;
}
if (pos > 0xFFFFFFFFULL || count > limit - (u32)pos) {
/* send_sig(SIGXFSZ, current, 0); */
count = limit - (u32)pos;
}
}
/*
* LFS rule
*/
if (unlikely(pos + count > MAX_NON_LFS &&
!(file->f_flags & O_LARGEFILE))) {
if (pos >= MAX_NON_LFS) {
send_sig(SIGXFSZ, current, 0);
err = -EFBIG;
goto out;
}
if (count > MAX_NON_LFS - (u32)pos) {
/* send_sig(SIGXFSZ, current, 0); */
count = MAX_NON_LFS - (u32)pos;
}
}
/*
* Are we about to exceed the fs block limit ?
*
* If we have written data it becomes a short write. If we have
* exceeded without writing data we send a signal and return EFBIG.
* Linus frestrict idea will clean these up nicely..
*/
if (likely(!S_ISBLK(inode->i_mode))) {
if (unlikely(pos >= inode->i_sb->s_maxbytes)) {
if (count || pos > inode->i_sb->s_maxbytes) {
send_sig(SIGXFSZ, current, 0);
err = -EFBIG;
goto out;
}
/* zero-length writes at ->s_maxbytes are OK */
}
if (unlikely(pos + count > inode->i_sb->s_maxbytes))
count = inode->i_sb->s_maxbytes - pos;
} else {
if (is_read_only(inode->i_rdev)) {
err = -EPERM;
goto out;
}
if (pos >= inode->i_size) {
if (count || pos > inode->i_size) {
err = -ENOSPC;
goto out;
}
}
if (pos + count > inode->i_size)
count = inode->i_size - pos;
}
err = 0;
if (count == 0)
goto out;
remove_suid(file->f_dentry);
time_now = CURRENT_TIME;
if (inode->i_ctime != time_now || inode->i_mtime != time_now) {
inode->i_ctime = time_now;
inode->i_mtime = time_now;
mark_inode_dirty_sync(inode);
}
if (unlikely(file->f_flags & O_DIRECT)) {
written = generic_file_direct_IO(WRITE, file,
(char *) buf, count, pos);
if (written > 0) {
loff_t end = pos + written;
if (end > inode->i_size && !S_ISBLK(inode->i_mode)) {
inode->i_size = end;
mark_inode_dirty(inode);
}
*ppos = end;
invalidate_inode_pages2(mapping);
}
/*
* Sync the fs metadata but not the minor inode changes and
* of course not the data as we did direct DMA for the IO.
*/
if (written >= 0 && file->f_flags & O_SYNC)
status = generic_osync_inode(inode, OSYNC_METADATA);
goto out_status;
}
do {
unsigned long index;
unsigned long offset;
long page_fault;
char *kaddr;
offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
index = pos >> PAGE_CACHE_SHIFT;
bytes = PAGE_CACHE_SIZE - offset;
if (bytes > count)
bytes = count;
/*
* Bring in the user page that we will copy from _first_.
* Otherwise there's a nasty deadlock on copying from the
* same page as we're writing to, without it being marked
* up-to-date.
*/
{ volatile unsigned char dummy;
__get_user(dummy, buf);
__get_user(dummy, buf+bytes-1);
}
page = __grab_cache_page(mapping, index, &cached_page);
if (!page) {
status = -ENOMEM;
break;
}
kaddr = kmap(page);
status = a_ops->prepare_write(file, page, offset, offset+bytes);
if (unlikely(status)) {
/*
* prepare_write() may have instantiated a few blocks
* outside i_size. Trim these off again.
*/
kunmap(page);
unlock_page(page);
page_cache_release(page);
if (pos + bytes > inode->i_size)
vmtruncate(inode, inode->i_size);
break;
}
page_fault = __copy_from_user(kaddr + offset, buf, bytes);
flush_dcache_page(page);
status = a_ops->commit_write(file, page, offset, offset+bytes);
if (unlikely(page_fault)) {
status = -EFAULT;
} else {
if (!status)
status = bytes;
if (status >= 0) {
written += status;
count -= status;
pos += status;
buf += status;
}
}
kunmap(page);
SetPageReferenced(page);
unlock_page(page);
page_cache_release(page);
if (status < 0)
break;
balance_dirty_pages_ratelimited(mapping);
} while (count);
*ppos = pos;
if (cached_page)
page_cache_release(cached_page);
/*
* For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
*/
if (status >= 0) {
if ((file->f_flags & O_SYNC) || IS_SYNC(inode))
status = generic_osync_inode(inode,
OSYNC_METADATA|OSYNC_DATA);
}
out_status:
err = written ? written : status;
out:
up(&inode->i_sem);
return err;
}