blob: 810f2fa334446e774c8bde92620ccfacc25a41bf [file] [log] [blame]
/*
* BRIEF MODULE DESCRIPTION
* Defines for using and allocating dma channels on the Alchemy
* Au1000 mips processor.
*
* Copyright 2000 MontaVista Software Inc.
* Author: MontaVista Software, Inc.
* stevel@mvista.com or source@mvista.com
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*
*/
#ifndef __ASM_AU1000_DMA_H
#define __ASM_AU1000_DMA_H
#include <asm/io.h> /* need byte IO */
#include <linux/spinlock.h> /* And spinlocks */
#include <linux/delay.h>
#include <asm/system.h>
#define NUM_AU1000_DMA_CHANNELS 8
/* DMA Channel Base Addresses */
#define DMA_CHANNEL_BASE 0xB4002000
#define DMA_CHANNEL_LEN 0x00000100
/* DMA Channel Register Offsets */
#define DMA_MODE_SET 0x00000000
#define DMA_MODE_READ DMA_MODE_SET
#define DMA_MODE_CLEAR 0x00000004
/* DMA Mode register bits follow */
#define DMA_DAH_MASK (0x0f << 20)
#define DMA_DID_BIT 16
#define DMA_DID_MASK (0x0f << DMA_DID_BIT)
#define DMA_DS (1<<15)
#define DMA_BE (1<<13)
#define DMA_DR (1<<12)
#define DMA_TS8 (1<<11)
#define DMA_DW_BIT 9
#define DMA_DW_MASK (0x03 << DMA_DW_BIT)
#define DMA_DW8 (0 << DMA_DW_BIT)
#define DMA_DW16 (1 << DMA_DW_BIT)
#define DMA_DW32 (2 << DMA_DW_BIT)
#define DMA_NC (1<<8)
#define DMA_IE (1<<7)
#define DMA_HALT (1<<6)
#define DMA_GO (1<<5)
#define DMA_AB (1<<4)
#define DMA_D1 (1<<3)
#define DMA_BE1 (1<<2)
#define DMA_D0 (1<<1)
#define DMA_BE0 (1<<0)
#define DMA_PERIPHERAL_ADDR 0x00000008
#define DMA_BUFFER0_START 0x0000000C
#define DMA_BUFFER1_START 0x00000014
#define DMA_BUFFER0_COUNT 0x00000010
#define DMA_BUFFER1_COUNT 0x00000018
#define DMA_BAH_BIT 16
#define DMA_BAH_MASK (0x0f << DMA_BAH_BIT)
#define DMA_COUNT_BIT 0
#define DMA_COUNT_MASK (0xffff << DMA_COUNT_BIT)
/* DMA Device ID's follow */
enum {
DMA_ID_UART0_TX = 0,
DMA_ID_UART0_RX,
DMA_ID_GP04,
DMA_ID_GP05,
DMA_ID_AC97C_TX,
DMA_ID_AC97C_RX,
DMA_ID_UART3_TX,
DMA_ID_UART3_RX,
DMA_ID_USBDEV_EP0_RX,
DMA_ID_USBDEV_EP0_TX,
DMA_ID_USBDEV_EP2_TX,
DMA_ID_USBDEV_EP3_TX,
DMA_ID_USBDEV_EP4_RX,
DMA_ID_USBDEV_EP5_RX,
DMA_ID_I2S_TX,
DMA_ID_I2S_RX,
DMA_NUM_DEV
};
/* DMA Device ID's for 2nd bank (AU1100) follow */
enum {
DMA_ID_SD0_TX = 0,
DMA_ID_SD0_RX,
DMA_ID_SD1_TX,
DMA_ID_SD1_RX,
DMA_NUM_DEV_BANK2
};
struct dma_chan {
int dev_id; // this channel is allocated if >=0, free otherwise
unsigned int io;
const char *dev_str;
int irq;
void *irq_dev;
unsigned int fifo_addr;
unsigned int mode;
};
/* These are in arch/mips/au1000/common/dma.c */
extern struct dma_chan au1000_dma_table[];
extern int request_au1000_dma(int dev_id,
const char *dev_str,
irqreturn_t (*irqhandler)(int, void *,
struct pt_regs *),
unsigned long irqflags,
void *irq_dev_id);
extern void free_au1000_dma(unsigned int dmanr);
extern int au1000_dma_read_proc(char *buf, char **start, off_t fpos,
int length, int *eof, void *data);
extern void dump_au1000_dma_channel(unsigned int dmanr);
extern spinlock_t au1000_dma_spin_lock;
static __inline__ struct dma_chan *get_dma_chan(unsigned int dmanr)
{
if (dmanr >= NUM_AU1000_DMA_CHANNELS
|| au1000_dma_table[dmanr].dev_id < 0)
return NULL;
return &au1000_dma_table[dmanr];
}
static __inline__ unsigned long claim_dma_lock(void)
{
unsigned long flags;
spin_lock_irqsave(&au1000_dma_spin_lock, flags);
return flags;
}
static __inline__ void release_dma_lock(unsigned long flags)
{
spin_unlock_irqrestore(&au1000_dma_spin_lock, flags);
}
/*
* Set the DMA buffer enable bits in the mode register.
*/
static __inline__ void enable_dma_buffer0(unsigned int dmanr)
{
struct dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return;
au_writel(DMA_BE0, chan->io + DMA_MODE_SET);
}
static __inline__ void enable_dma_buffer1(unsigned int dmanr)
{
struct dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return;
au_writel(DMA_BE1, chan->io + DMA_MODE_SET);
}
static __inline__ void enable_dma_buffers(unsigned int dmanr)
{
struct dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return;
au_writel(DMA_BE0 | DMA_BE1, chan->io + DMA_MODE_SET);
}
static __inline__ void start_dma(unsigned int dmanr)
{
struct dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return;
au_writel(DMA_GO, chan->io + DMA_MODE_SET);
}
#define DMA_HALT_POLL 0x5000
static __inline__ void halt_dma(unsigned int dmanr)
{
struct dma_chan *chan = get_dma_chan(dmanr);
int i;
if (!chan)
return;
au_writel(DMA_GO, chan->io + DMA_MODE_CLEAR);
// poll the halt bit
for (i = 0; i < DMA_HALT_POLL; i++)
if (au_readl(chan->io + DMA_MODE_READ) & DMA_HALT)
break;
if (i == DMA_HALT_POLL)
printk(KERN_INFO "halt_dma: HALT poll expired!\n");
}
static __inline__ void disable_dma(unsigned int dmanr)
{
struct dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return;
halt_dma(dmanr);
// now we can disable the buffers
au_writel(~DMA_GO, chan->io + DMA_MODE_CLEAR);
}
static __inline__ int dma_halted(unsigned int dmanr)
{
struct dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return 1;
return (au_readl(chan->io + DMA_MODE_READ) & DMA_HALT) ? 1 : 0;
}
/* initialize a DMA channel */
static __inline__ void init_dma(unsigned int dmanr)
{
struct dma_chan *chan = get_dma_chan(dmanr);
u32 mode;
if (!chan)
return;
disable_dma(dmanr);
// set device FIFO address
au_writel(CPHYSADDR(chan->fifo_addr),
chan->io + DMA_PERIPHERAL_ADDR);
mode = chan->mode | (chan->dev_id << DMA_DID_BIT);
if (chan->irq)
mode |= DMA_IE;
au_writel(~mode, chan->io + DMA_MODE_CLEAR);
au_writel(mode, chan->io + DMA_MODE_SET);
}
/*
* set mode for a specific DMA channel
*/
static __inline__ void set_dma_mode(unsigned int dmanr, unsigned int mode)
{
struct dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return;
/*
* set_dma_mode is only allowed to change endianess, direction,
* transfer size, device FIFO width, and coherency settings.
* Make sure anything else is masked off.
*/
mode &= (DMA_BE | DMA_DR | DMA_TS8 | DMA_DW_MASK | DMA_NC);
chan->mode &= ~(DMA_BE | DMA_DR | DMA_TS8 | DMA_DW_MASK | DMA_NC);
chan->mode |= mode;
}
static __inline__ unsigned int get_dma_mode(unsigned int dmanr)
{
struct dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return 0;
return chan->mode;
}
static __inline__ int get_dma_active_buffer(unsigned int dmanr)
{
struct dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return -1;
return (au_readl(chan->io + DMA_MODE_READ) & DMA_AB) ? 1 : 0;
}
/*
* set the device FIFO address for a specific DMA channel - only
* applicable to GPO4 and GPO5. All the other devices have fixed
* FIFO addresses.
*/
static __inline__ void set_dma_fifo_addr(unsigned int dmanr,
unsigned int a)
{
struct dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return;
if (chan->mode & DMA_DS) /* second bank of device ids */
return;
if (chan->dev_id != DMA_ID_GP04 && chan->dev_id != DMA_ID_GP05)
return;
au_writel(CPHYSADDR(a), chan->io + DMA_PERIPHERAL_ADDR);
}
/*
* Clear the DMA buffer done bits in the mode register.
*/
static __inline__ void clear_dma_done0(unsigned int dmanr)
{
struct dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return;
au_writel(DMA_D0, chan->io + DMA_MODE_CLEAR);
}
static __inline__ void clear_dma_done1(unsigned int dmanr)
{
struct dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return;
au_writel(DMA_D1, chan->io + DMA_MODE_CLEAR);
}
/*
* This does nothing - not applicable to Au1000 DMA.
*/
static __inline__ void set_dma_page(unsigned int dmanr, char pagenr)
{
}
/*
* Set Buffer 0 transfer address for specific DMA channel.
*/
static __inline__ void set_dma_addr0(unsigned int dmanr, unsigned int a)
{
struct dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return;
au_writel(a, chan->io + DMA_BUFFER0_START);
}
/*
* Set Buffer 1 transfer address for specific DMA channel.
*/
static __inline__ void set_dma_addr1(unsigned int dmanr, unsigned int a)
{
struct dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return;
au_writel(a, chan->io + DMA_BUFFER1_START);
}
/*
* Set Buffer 0 transfer size (max 64k) for a specific DMA channel.
*/
static __inline__ void set_dma_count0(unsigned int dmanr,
unsigned int count)
{
struct dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return;
count &= DMA_COUNT_MASK;
au_writel(count, chan->io + DMA_BUFFER0_COUNT);
}
/*
* Set Buffer 1 transfer size (max 64k) for a specific DMA channel.
*/
static __inline__ void set_dma_count1(unsigned int dmanr,
unsigned int count)
{
struct dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return;
count &= DMA_COUNT_MASK;
au_writel(count, chan->io + DMA_BUFFER1_COUNT);
}
/*
* Set both buffer transfer sizes (max 64k) for a specific DMA channel.
*/
static __inline__ void set_dma_count(unsigned int dmanr,
unsigned int count)
{
struct dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return;
count &= DMA_COUNT_MASK;
au_writel(count, chan->io + DMA_BUFFER0_COUNT);
au_writel(count, chan->io + DMA_BUFFER1_COUNT);
}
/*
* Returns which buffer has its done bit set in the mode register.
* Returns -1 if neither or both done bits set.
*/
static __inline__ unsigned int get_dma_buffer_done(unsigned int dmanr)
{
struct dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return 0;
return au_readl(chan->io + DMA_MODE_READ) & (DMA_D0 | DMA_D1);
}
/*
* Returns the DMA channel's Buffer Done IRQ number.
*/
static __inline__ int get_dma_done_irq(unsigned int dmanr)
{
struct dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return -1;
return chan->irq;
}
/*
* Get DMA residue count. Returns the number of _bytes_ left to transfer.
*/
static __inline__ int get_dma_residue(unsigned int dmanr)
{
int curBufCntReg, count;
struct dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return 0;
curBufCntReg = (au_readl(chan->io + DMA_MODE_READ) & DMA_AB) ?
DMA_BUFFER1_COUNT : DMA_BUFFER0_COUNT;
count = au_readl(chan->io + curBufCntReg) & DMA_COUNT_MASK;
if ((chan->mode & DMA_DW_MASK) == DMA_DW16)
count <<= 1;
else if ((chan->mode & DMA_DW_MASK) == DMA_DW32)
count <<= 2;
return count;
}
#endif /* __ASM_AU1000_DMA_H */