blob: 7bbe3ff02602f93f87ffd8a04ac0577ce3aea038 [file] [log] [blame]
/*
* Copyright (C) 2012,2013 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*
* Derived from arch/arm/kvm/coproc.c:
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
* Authors: Rusty Russell <rusty@rustcorp.com.au>
* Christoffer Dall <c.dall@virtualopensystems.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/bsearch.h>
#include <linux/kvm_host.h>
#include <linux/mm.h>
#include <linux/uaccess.h>
#include <asm/cacheflush.h>
#include <asm/cputype.h>
#include <asm/debug-monitors.h>
#include <asm/esr.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_coproc.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_host.h>
#include <asm/kvm_mmu.h>
#include <asm/perf_event.h>
#include <trace/events/kvm.h>
#include "sys_regs.h"
#include "trace.h"
/*
* All of this file is extremly similar to the ARM coproc.c, but the
* types are different. My gut feeling is that it should be pretty
* easy to merge, but that would be an ABI breakage -- again. VFP
* would also need to be abstracted.
*
* For AArch32, we only take care of what is being trapped. Anything
* that has to do with init and userspace access has to go via the
* 64bit interface.
*/
/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
static u32 cache_levels;
/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
#define CSSELR_MAX 12
/* Which cache CCSIDR represents depends on CSSELR value. */
static u32 get_ccsidr(u32 csselr)
{
u32 ccsidr;
/* Make sure noone else changes CSSELR during this! */
local_irq_disable();
/* Put value into CSSELR */
asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
isb();
/* Read result out of CCSIDR */
asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
local_irq_enable();
return ccsidr;
}
/*
* See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
*/
static bool access_dcsw(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (!p->is_write)
return read_from_write_only(vcpu, p);
kvm_set_way_flush(vcpu);
return true;
}
/*
* Generic accessor for VM registers. Only called as long as HCR_TVM
* is set. If the guest enables the MMU, we stop trapping the VM
* sys_regs and leave it in complete control of the caches.
*/
static bool access_vm_reg(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
bool was_enabled = vcpu_has_cache_enabled(vcpu);
BUG_ON(!p->is_write);
if (!p->is_aarch32) {
vcpu_sys_reg(vcpu, r->reg) = p->regval;
} else {
if (!p->is_32bit)
vcpu_cp15_64_high(vcpu, r->reg) = upper_32_bits(p->regval);
vcpu_cp15_64_low(vcpu, r->reg) = lower_32_bits(p->regval);
}
kvm_toggle_cache(vcpu, was_enabled);
return true;
}
/*
* Trap handler for the GICv3 SGI generation system register.
* Forward the request to the VGIC emulation.
* The cp15_64 code makes sure this automatically works
* for both AArch64 and AArch32 accesses.
*/
static bool access_gic_sgi(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (!p->is_write)
return read_from_write_only(vcpu, p);
vgic_v3_dispatch_sgi(vcpu, p->regval);
return true;
}
static bool trap_raz_wi(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (p->is_write)
return ignore_write(vcpu, p);
else
return read_zero(vcpu, p);
}
static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (p->is_write) {
return ignore_write(vcpu, p);
} else {
p->regval = (1 << 3);
return true;
}
}
static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (p->is_write) {
return ignore_write(vcpu, p);
} else {
u32 val;
asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
p->regval = val;
return true;
}
}
/*
* We want to avoid world-switching all the DBG registers all the
* time:
*
* - If we've touched any debug register, it is likely that we're
* going to touch more of them. It then makes sense to disable the
* traps and start doing the save/restore dance
* - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
* then mandatory to save/restore the registers, as the guest
* depends on them.
*
* For this, we use a DIRTY bit, indicating the guest has modified the
* debug registers, used as follow:
*
* On guest entry:
* - If the dirty bit is set (because we're coming back from trapping),
* disable the traps, save host registers, restore guest registers.
* - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
* set the dirty bit, disable the traps, save host registers,
* restore guest registers.
* - Otherwise, enable the traps
*
* On guest exit:
* - If the dirty bit is set, save guest registers, restore host
* registers and clear the dirty bit. This ensure that the host can
* now use the debug registers.
*/
static bool trap_debug_regs(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (p->is_write) {
vcpu_sys_reg(vcpu, r->reg) = p->regval;
vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
} else {
p->regval = vcpu_sys_reg(vcpu, r->reg);
}
trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
return true;
}
/*
* reg_to_dbg/dbg_to_reg
*
* A 32 bit write to a debug register leave top bits alone
* A 32 bit read from a debug register only returns the bottom bits
*
* All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
* hyp.S code switches between host and guest values in future.
*/
static void reg_to_dbg(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
u64 *dbg_reg)
{
u64 val = p->regval;
if (p->is_32bit) {
val &= 0xffffffffUL;
val |= ((*dbg_reg >> 32) << 32);
}
*dbg_reg = val;
vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
}
static void dbg_to_reg(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
u64 *dbg_reg)
{
p->regval = *dbg_reg;
if (p->is_32bit)
p->regval &= 0xffffffffUL;
}
static bool trap_bvr(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *rd)
{
u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
if (p->is_write)
reg_to_dbg(vcpu, p, dbg_reg);
else
dbg_to_reg(vcpu, p, dbg_reg);
trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
return true;
}
static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
return -EFAULT;
return 0;
}
static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
return -EFAULT;
return 0;
}
static void reset_bvr(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *rd)
{
vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
}
static bool trap_bcr(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *rd)
{
u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
if (p->is_write)
reg_to_dbg(vcpu, p, dbg_reg);
else
dbg_to_reg(vcpu, p, dbg_reg);
trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
return true;
}
static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
return -EFAULT;
return 0;
}
static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
return -EFAULT;
return 0;
}
static void reset_bcr(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *rd)
{
vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
}
static bool trap_wvr(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *rd)
{
u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
if (p->is_write)
reg_to_dbg(vcpu, p, dbg_reg);
else
dbg_to_reg(vcpu, p, dbg_reg);
trace_trap_reg(__func__, rd->reg, p->is_write,
vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
return true;
}
static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
return -EFAULT;
return 0;
}
static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
return -EFAULT;
return 0;
}
static void reset_wvr(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *rd)
{
vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
}
static bool trap_wcr(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *rd)
{
u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
if (p->is_write)
reg_to_dbg(vcpu, p, dbg_reg);
else
dbg_to_reg(vcpu, p, dbg_reg);
trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
return true;
}
static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
return -EFAULT;
return 0;
}
static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
return -EFAULT;
return 0;
}
static void reset_wcr(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *rd)
{
vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
}
static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
u64 amair;
asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
}
static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
u64 mpidr;
/*
* Map the vcpu_id into the first three affinity level fields of
* the MPIDR. We limit the number of VCPUs in level 0 due to a
* limitation to 16 CPUs in that level in the ICC_SGIxR registers
* of the GICv3 to be able to address each CPU directly when
* sending IPIs.
*/
mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
}
static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
u64 pmcr, val;
asm volatile("mrs %0, pmcr_el0\n" : "=r" (pmcr));
/* Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) is reset to UNKNOWN
* except PMCR.E resetting to zero.
*/
val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
| (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
vcpu_sys_reg(vcpu, PMCR_EL0) = val;
}
static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
{
u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
return !((reg & ARMV8_PMU_USERENR_EN) || vcpu_mode_priv(vcpu));
}
static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
{
u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
return !((reg & (ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN))
|| vcpu_mode_priv(vcpu));
}
static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
{
u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
return !((reg & (ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN))
|| vcpu_mode_priv(vcpu));
}
static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
{
u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
return !((reg & (ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN))
|| vcpu_mode_priv(vcpu));
}
static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 val;
if (!kvm_arm_pmu_v3_ready(vcpu))
return trap_raz_wi(vcpu, p, r);
if (pmu_access_el0_disabled(vcpu))
return false;
if (p->is_write) {
/* Only update writeable bits of PMCR */
val = vcpu_sys_reg(vcpu, PMCR_EL0);
val &= ~ARMV8_PMU_PMCR_MASK;
val |= p->regval & ARMV8_PMU_PMCR_MASK;
vcpu_sys_reg(vcpu, PMCR_EL0) = val;
kvm_pmu_handle_pmcr(vcpu, val);
} else {
/* PMCR.P & PMCR.C are RAZ */
val = vcpu_sys_reg(vcpu, PMCR_EL0)
& ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
p->regval = val;
}
return true;
}
static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (!kvm_arm_pmu_v3_ready(vcpu))
return trap_raz_wi(vcpu, p, r);
if (pmu_access_event_counter_el0_disabled(vcpu))
return false;
if (p->is_write)
vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
else
/* return PMSELR.SEL field */
p->regval = vcpu_sys_reg(vcpu, PMSELR_EL0)
& ARMV8_PMU_COUNTER_MASK;
return true;
}
static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 pmceid;
if (!kvm_arm_pmu_v3_ready(vcpu))
return trap_raz_wi(vcpu, p, r);
BUG_ON(p->is_write);
if (pmu_access_el0_disabled(vcpu))
return false;
if (!(p->Op2 & 1))
asm volatile("mrs %0, pmceid0_el0\n" : "=r" (pmceid));
else
asm volatile("mrs %0, pmceid1_el0\n" : "=r" (pmceid));
p->regval = pmceid;
return true;
}
static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
{
u64 pmcr, val;
pmcr = vcpu_sys_reg(vcpu, PMCR_EL0);
val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX)
return false;
return true;
}
static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 idx;
if (!kvm_arm_pmu_v3_ready(vcpu))
return trap_raz_wi(vcpu, p, r);
if (r->CRn == 9 && r->CRm == 13) {
if (r->Op2 == 2) {
/* PMXEVCNTR_EL0 */
if (pmu_access_event_counter_el0_disabled(vcpu))
return false;
idx = vcpu_sys_reg(vcpu, PMSELR_EL0)
& ARMV8_PMU_COUNTER_MASK;
} else if (r->Op2 == 0) {
/* PMCCNTR_EL0 */
if (pmu_access_cycle_counter_el0_disabled(vcpu))
return false;
idx = ARMV8_PMU_CYCLE_IDX;
} else {
BUG();
}
} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
/* PMEVCNTRn_EL0 */
if (pmu_access_event_counter_el0_disabled(vcpu))
return false;
idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
} else {
BUG();
}
if (!pmu_counter_idx_valid(vcpu, idx))
return false;
if (p->is_write) {
if (pmu_access_el0_disabled(vcpu))
return false;
kvm_pmu_set_counter_value(vcpu, idx, p->regval);
} else {
p->regval = kvm_pmu_get_counter_value(vcpu, idx);
}
return true;
}
static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 idx, reg;
if (!kvm_arm_pmu_v3_ready(vcpu))
return trap_raz_wi(vcpu, p, r);
if (pmu_access_el0_disabled(vcpu))
return false;
if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
/* PMXEVTYPER_EL0 */
idx = vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
reg = PMEVTYPER0_EL0 + idx;
} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
if (idx == ARMV8_PMU_CYCLE_IDX)
reg = PMCCFILTR_EL0;
else
/* PMEVTYPERn_EL0 */
reg = PMEVTYPER0_EL0 + idx;
} else {
BUG();
}
if (!pmu_counter_idx_valid(vcpu, idx))
return false;
if (p->is_write) {
kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
} else {
p->regval = vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
}
return true;
}
static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 val, mask;
if (!kvm_arm_pmu_v3_ready(vcpu))
return trap_raz_wi(vcpu, p, r);
if (pmu_access_el0_disabled(vcpu))
return false;
mask = kvm_pmu_valid_counter_mask(vcpu);
if (p->is_write) {
val = p->regval & mask;
if (r->Op2 & 0x1) {
/* accessing PMCNTENSET_EL0 */
vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
kvm_pmu_enable_counter(vcpu, val);
} else {
/* accessing PMCNTENCLR_EL0 */
vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
kvm_pmu_disable_counter(vcpu, val);
}
} else {
p->regval = vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
}
return true;
}
static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 mask = kvm_pmu_valid_counter_mask(vcpu);
if (!kvm_arm_pmu_v3_ready(vcpu))
return trap_raz_wi(vcpu, p, r);
if (!vcpu_mode_priv(vcpu))
return false;
if (p->is_write) {
u64 val = p->regval & mask;
if (r->Op2 & 0x1)
/* accessing PMINTENSET_EL1 */
vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
else
/* accessing PMINTENCLR_EL1 */
vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
} else {
p->regval = vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
}
return true;
}
static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 mask = kvm_pmu_valid_counter_mask(vcpu);
if (!kvm_arm_pmu_v3_ready(vcpu))
return trap_raz_wi(vcpu, p, r);
if (pmu_access_el0_disabled(vcpu))
return false;
if (p->is_write) {
if (r->CRm & 0x2)
/* accessing PMOVSSET_EL0 */
kvm_pmu_overflow_set(vcpu, p->regval & mask);
else
/* accessing PMOVSCLR_EL0 */
vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
} else {
p->regval = vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
}
return true;
}
static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 mask;
if (!kvm_arm_pmu_v3_ready(vcpu))
return trap_raz_wi(vcpu, p, r);
if (pmu_write_swinc_el0_disabled(vcpu))
return false;
if (p->is_write) {
mask = kvm_pmu_valid_counter_mask(vcpu);
kvm_pmu_software_increment(vcpu, p->regval & mask);
return true;
}
return false;
}
static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (!kvm_arm_pmu_v3_ready(vcpu))
return trap_raz_wi(vcpu, p, r);
if (p->is_write) {
if (!vcpu_mode_priv(vcpu))
return false;
vcpu_sys_reg(vcpu, PMUSERENR_EL0) = p->regval
& ARMV8_PMU_USERENR_MASK;
} else {
p->regval = vcpu_sys_reg(vcpu, PMUSERENR_EL0)
& ARMV8_PMU_USERENR_MASK;
}
return true;
}
/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
#define DBG_BCR_BVR_WCR_WVR_EL1(n) \
/* DBGBVRn_EL1 */ \
{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100), \
trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr }, \
/* DBGBCRn_EL1 */ \
{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101), \
trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr }, \
/* DBGWVRn_EL1 */ \
{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110), \
trap_wvr, reset_wvr, n, 0, get_wvr, set_wvr }, \
/* DBGWCRn_EL1 */ \
{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111), \
trap_wcr, reset_wcr, n, 0, get_wcr, set_wcr }
/* Macro to expand the PMEVCNTRn_EL0 register */
#define PMU_PMEVCNTR_EL0(n) \
/* PMEVCNTRn_EL0 */ \
{ Op0(0b11), Op1(0b011), CRn(0b1110), \
CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
/* Macro to expand the PMEVTYPERn_EL0 register */
#define PMU_PMEVTYPER_EL0(n) \
/* PMEVTYPERn_EL0 */ \
{ Op0(0b11), Op1(0b011), CRn(0b1110), \
CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
/*
* Architected system registers.
* Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
*
* We could trap ID_DFR0 and tell the guest we don't support performance
* monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
* NAKed, so it will read the PMCR anyway.
*
* Therefore we tell the guest we have 0 counters. Unfortunately, we
* must always support PMCCNTR (the cycle counter): we just RAZ/WI for
* all PM registers, which doesn't crash the guest kernel at least.
*
* Debug handling: We do trap most, if not all debug related system
* registers. The implementation is good enough to ensure that a guest
* can use these with minimal performance degradation. The drawback is
* that we don't implement any of the external debug, none of the
* OSlock protocol. This should be revisited if we ever encounter a
* more demanding guest...
*/
static const struct sys_reg_desc sys_reg_descs[] = {
/* DC ISW */
{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
access_dcsw },
/* DC CSW */
{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
access_dcsw },
/* DC CISW */
{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
access_dcsw },
DBG_BCR_BVR_WCR_WVR_EL1(0),
DBG_BCR_BVR_WCR_WVR_EL1(1),
/* MDCCINT_EL1 */
{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
/* MDSCR_EL1 */
{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
trap_debug_regs, reset_val, MDSCR_EL1, 0 },
DBG_BCR_BVR_WCR_WVR_EL1(2),
DBG_BCR_BVR_WCR_WVR_EL1(3),
DBG_BCR_BVR_WCR_WVR_EL1(4),
DBG_BCR_BVR_WCR_WVR_EL1(5),
DBG_BCR_BVR_WCR_WVR_EL1(6),
DBG_BCR_BVR_WCR_WVR_EL1(7),
DBG_BCR_BVR_WCR_WVR_EL1(8),
DBG_BCR_BVR_WCR_WVR_EL1(9),
DBG_BCR_BVR_WCR_WVR_EL1(10),
DBG_BCR_BVR_WCR_WVR_EL1(11),
DBG_BCR_BVR_WCR_WVR_EL1(12),
DBG_BCR_BVR_WCR_WVR_EL1(13),
DBG_BCR_BVR_WCR_WVR_EL1(14),
DBG_BCR_BVR_WCR_WVR_EL1(15),
/* MDRAR_EL1 */
{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
trap_raz_wi },
/* OSLAR_EL1 */
{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
trap_raz_wi },
/* OSLSR_EL1 */
{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
trap_oslsr_el1 },
/* OSDLR_EL1 */
{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
trap_raz_wi },
/* DBGPRCR_EL1 */
{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
trap_raz_wi },
/* DBGCLAIMSET_EL1 */
{ Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
trap_raz_wi },
/* DBGCLAIMCLR_EL1 */
{ Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
trap_raz_wi },
/* DBGAUTHSTATUS_EL1 */
{ Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
trap_dbgauthstatus_el1 },
/* MDCCSR_EL1 */
{ Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
trap_raz_wi },
/* DBGDTR_EL0 */
{ Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
trap_raz_wi },
/* DBGDTR[TR]X_EL0 */
{ Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
trap_raz_wi },
/* DBGVCR32_EL2 */
{ Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
NULL, reset_val, DBGVCR32_EL2, 0 },
/* MPIDR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
NULL, reset_mpidr, MPIDR_EL1 },
/* SCTLR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
/* CPACR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
NULL, reset_val, CPACR_EL1, 0 },
/* TTBR0_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
access_vm_reg, reset_unknown, TTBR0_EL1 },
/* TTBR1_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
access_vm_reg, reset_unknown, TTBR1_EL1 },
/* TCR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
access_vm_reg, reset_val, TCR_EL1, 0 },
/* AFSR0_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
access_vm_reg, reset_unknown, AFSR0_EL1 },
/* AFSR1_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
access_vm_reg, reset_unknown, AFSR1_EL1 },
/* ESR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
access_vm_reg, reset_unknown, ESR_EL1 },
/* FAR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
access_vm_reg, reset_unknown, FAR_EL1 },
/* PAR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
NULL, reset_unknown, PAR_EL1 },
/* PMINTENSET_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
access_pminten, reset_unknown, PMINTENSET_EL1 },
/* PMINTENCLR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
access_pminten, NULL, PMINTENSET_EL1 },
/* MAIR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
access_vm_reg, reset_unknown, MAIR_EL1 },
/* AMAIR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
access_vm_reg, reset_amair_el1, AMAIR_EL1 },
/* VBAR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
NULL, reset_val, VBAR_EL1, 0 },
/* ICC_SGI1R_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
access_gic_sgi },
/* ICC_SRE_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
trap_raz_wi },
/* CONTEXTIDR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
/* TPIDR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
NULL, reset_unknown, TPIDR_EL1 },
/* CNTKCTL_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
NULL, reset_val, CNTKCTL_EL1, 0},
/* CSSELR_EL1 */
{ Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
NULL, reset_unknown, CSSELR_EL1 },
/* PMCR_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
access_pmcr, reset_pmcr, },
/* PMCNTENSET_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
/* PMCNTENCLR_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
access_pmcnten, NULL, PMCNTENSET_EL0 },
/* PMOVSCLR_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
access_pmovs, NULL, PMOVSSET_EL0 },
/* PMSWINC_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
access_pmswinc, reset_unknown, PMSWINC_EL0 },
/* PMSELR_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
access_pmselr, reset_unknown, PMSELR_EL0 },
/* PMCEID0_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
access_pmceid },
/* PMCEID1_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
access_pmceid },
/* PMCCNTR_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
/* PMXEVTYPER_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
access_pmu_evtyper },
/* PMXEVCNTR_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
access_pmu_evcntr },
/* PMUSERENR_EL0
* This register resets as unknown in 64bit mode while it resets as zero
* in 32bit mode. Here we choose to reset it as zero for consistency.
*/
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
/* PMOVSSET_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
access_pmovs, reset_unknown, PMOVSSET_EL0 },
/* TPIDR_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
NULL, reset_unknown, TPIDR_EL0 },
/* TPIDRRO_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
NULL, reset_unknown, TPIDRRO_EL0 },
/* PMEVCNTRn_EL0 */
PMU_PMEVCNTR_EL0(0),
PMU_PMEVCNTR_EL0(1),
PMU_PMEVCNTR_EL0(2),
PMU_PMEVCNTR_EL0(3),
PMU_PMEVCNTR_EL0(4),
PMU_PMEVCNTR_EL0(5),
PMU_PMEVCNTR_EL0(6),
PMU_PMEVCNTR_EL0(7),
PMU_PMEVCNTR_EL0(8),
PMU_PMEVCNTR_EL0(9),
PMU_PMEVCNTR_EL0(10),
PMU_PMEVCNTR_EL0(11),
PMU_PMEVCNTR_EL0(12),
PMU_PMEVCNTR_EL0(13),
PMU_PMEVCNTR_EL0(14),
PMU_PMEVCNTR_EL0(15),
PMU_PMEVCNTR_EL0(16),
PMU_PMEVCNTR_EL0(17),
PMU_PMEVCNTR_EL0(18),
PMU_PMEVCNTR_EL0(19),
PMU_PMEVCNTR_EL0(20),
PMU_PMEVCNTR_EL0(21),
PMU_PMEVCNTR_EL0(22),
PMU_PMEVCNTR_EL0(23),
PMU_PMEVCNTR_EL0(24),
PMU_PMEVCNTR_EL0(25),
PMU_PMEVCNTR_EL0(26),
PMU_PMEVCNTR_EL0(27),
PMU_PMEVCNTR_EL0(28),
PMU_PMEVCNTR_EL0(29),
PMU_PMEVCNTR_EL0(30),
/* PMEVTYPERn_EL0 */
PMU_PMEVTYPER_EL0(0),
PMU_PMEVTYPER_EL0(1),
PMU_PMEVTYPER_EL0(2),
PMU_PMEVTYPER_EL0(3),
PMU_PMEVTYPER_EL0(4),
PMU_PMEVTYPER_EL0(5),
PMU_PMEVTYPER_EL0(6),
PMU_PMEVTYPER_EL0(7),
PMU_PMEVTYPER_EL0(8),
PMU_PMEVTYPER_EL0(9),
PMU_PMEVTYPER_EL0(10),
PMU_PMEVTYPER_EL0(11),
PMU_PMEVTYPER_EL0(12),
PMU_PMEVTYPER_EL0(13),
PMU_PMEVTYPER_EL0(14),
PMU_PMEVTYPER_EL0(15),
PMU_PMEVTYPER_EL0(16),
PMU_PMEVTYPER_EL0(17),
PMU_PMEVTYPER_EL0(18),
PMU_PMEVTYPER_EL0(19),
PMU_PMEVTYPER_EL0(20),
PMU_PMEVTYPER_EL0(21),
PMU_PMEVTYPER_EL0(22),
PMU_PMEVTYPER_EL0(23),
PMU_PMEVTYPER_EL0(24),
PMU_PMEVTYPER_EL0(25),
PMU_PMEVTYPER_EL0(26),
PMU_PMEVTYPER_EL0(27),
PMU_PMEVTYPER_EL0(28),
PMU_PMEVTYPER_EL0(29),
PMU_PMEVTYPER_EL0(30),
/* PMCCFILTR_EL0
* This register resets as unknown in 64bit mode while it resets as zero
* in 32bit mode. Here we choose to reset it as zero for consistency.
*/
{ Op0(0b11), Op1(0b011), CRn(0b1110), CRm(0b1111), Op2(0b111),
access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
/* DACR32_EL2 */
{ Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
NULL, reset_unknown, DACR32_EL2 },
/* IFSR32_EL2 */
{ Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
NULL, reset_unknown, IFSR32_EL2 },
/* FPEXC32_EL2 */
{ Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
NULL, reset_val, FPEXC32_EL2, 0x70 },
};
static bool trap_dbgidr(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (p->is_write) {
return ignore_write(vcpu, p);
} else {
u64 dfr = read_system_reg(SYS_ID_AA64DFR0_EL1);
u64 pfr = read_system_reg(SYS_ID_AA64PFR0_EL1);
u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
(((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
(((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
| (6 << 16) | (el3 << 14) | (el3 << 12));
return true;
}
}
static bool trap_debug32(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (p->is_write) {
vcpu_cp14(vcpu, r->reg) = p->regval;
vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
} else {
p->regval = vcpu_cp14(vcpu, r->reg);
}
return true;
}
/* AArch32 debug register mappings
*
* AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
* AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
*
* All control registers and watchpoint value registers are mapped to
* the lower 32 bits of their AArch64 equivalents. We share the trap
* handlers with the above AArch64 code which checks what mode the
* system is in.
*/
static bool trap_xvr(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *rd)
{
u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
if (p->is_write) {
u64 val = *dbg_reg;
val &= 0xffffffffUL;
val |= p->regval << 32;
*dbg_reg = val;
vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
} else {
p->regval = *dbg_reg >> 32;
}
trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
return true;
}
#define DBG_BCR_BVR_WCR_WVR(n) \
/* DBGBVRn */ \
{ Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
/* DBGBCRn */ \
{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
/* DBGWVRn */ \
{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
/* DBGWCRn */ \
{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
#define DBGBXVR(n) \
{ Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
/*
* Trapped cp14 registers. We generally ignore most of the external
* debug, on the principle that they don't really make sense to a
* guest. Revisit this one day, would this principle change.
*/
static const struct sys_reg_desc cp14_regs[] = {
/* DBGIDR */
{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
/* DBGDTRRXext */
{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
DBG_BCR_BVR_WCR_WVR(0),
/* DBGDSCRint */
{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
DBG_BCR_BVR_WCR_WVR(1),
/* DBGDCCINT */
{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
/* DBGDSCRext */
{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
DBG_BCR_BVR_WCR_WVR(2),
/* DBGDTR[RT]Xint */
{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
/* DBGDTR[RT]Xext */
{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
DBG_BCR_BVR_WCR_WVR(3),
DBG_BCR_BVR_WCR_WVR(4),
DBG_BCR_BVR_WCR_WVR(5),
/* DBGWFAR */
{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
/* DBGOSECCR */
{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
DBG_BCR_BVR_WCR_WVR(6),
/* DBGVCR */
{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
DBG_BCR_BVR_WCR_WVR(7),
DBG_BCR_BVR_WCR_WVR(8),
DBG_BCR_BVR_WCR_WVR(9),
DBG_BCR_BVR_WCR_WVR(10),
DBG_BCR_BVR_WCR_WVR(11),
DBG_BCR_BVR_WCR_WVR(12),
DBG_BCR_BVR_WCR_WVR(13),
DBG_BCR_BVR_WCR_WVR(14),
DBG_BCR_BVR_WCR_WVR(15),
/* DBGDRAR (32bit) */
{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
DBGBXVR(0),
/* DBGOSLAR */
{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
DBGBXVR(1),
/* DBGOSLSR */
{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
DBGBXVR(2),
DBGBXVR(3),
/* DBGOSDLR */
{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
DBGBXVR(4),
/* DBGPRCR */
{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
DBGBXVR(5),
DBGBXVR(6),
DBGBXVR(7),
DBGBXVR(8),
DBGBXVR(9),
DBGBXVR(10),
DBGBXVR(11),
DBGBXVR(12),
DBGBXVR(13),
DBGBXVR(14),
DBGBXVR(15),
/* DBGDSAR (32bit) */
{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
/* DBGDEVID2 */
{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
/* DBGDEVID1 */
{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
/* DBGDEVID */
{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
/* DBGCLAIMSET */
{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
/* DBGCLAIMCLR */
{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
/* DBGAUTHSTATUS */
{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
};
/* Trapped cp14 64bit registers */
static const struct sys_reg_desc cp14_64_regs[] = {
/* DBGDRAR (64bit) */
{ Op1( 0), CRm( 1), .access = trap_raz_wi },
/* DBGDSAR (64bit) */
{ Op1( 0), CRm( 2), .access = trap_raz_wi },
};
/* Macro to expand the PMEVCNTRn register */
#define PMU_PMEVCNTR(n) \
/* PMEVCNTRn */ \
{ Op1(0), CRn(0b1110), \
CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
access_pmu_evcntr }
/* Macro to expand the PMEVTYPERn register */
#define PMU_PMEVTYPER(n) \
/* PMEVTYPERn */ \
{ Op1(0), CRn(0b1110), \
CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
access_pmu_evtyper }
/*
* Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
* depending on the way they are accessed (as a 32bit or a 64bit
* register).
*/
static const struct sys_reg_desc cp15_regs[] = {
{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
{ Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
{ Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
{ Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
/*
* DC{C,I,CI}SW operations:
*/
{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
/* PMU */
{ Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
{ Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
{ Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
{ Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
{ Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
{ Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
{ Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
{ Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
{ Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
{ Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
{ Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
{ Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
{ Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
{ Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
{ Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
{ Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
{ Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
{ Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
{ Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
/* ICC_SRE */
{ Op1( 0), CRn(12), CRm(12), Op2( 5), trap_raz_wi },
{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
/* PMEVCNTRn */
PMU_PMEVCNTR(0),
PMU_PMEVCNTR(1),
PMU_PMEVCNTR(2),
PMU_PMEVCNTR(3),
PMU_PMEVCNTR(4),
PMU_PMEVCNTR(5),
PMU_PMEVCNTR(6),
PMU_PMEVCNTR(7),
PMU_PMEVCNTR(8),
PMU_PMEVCNTR(9),
PMU_PMEVCNTR(10),
PMU_PMEVCNTR(11),
PMU_PMEVCNTR(12),
PMU_PMEVCNTR(13),
PMU_PMEVCNTR(14),
PMU_PMEVCNTR(15),
PMU_PMEVCNTR(16),
PMU_PMEVCNTR(17),
PMU_PMEVCNTR(18),
PMU_PMEVCNTR(19),
PMU_PMEVCNTR(20),
PMU_PMEVCNTR(21),
PMU_PMEVCNTR(22),
PMU_PMEVCNTR(23),
PMU_PMEVCNTR(24),
PMU_PMEVCNTR(25),
PMU_PMEVCNTR(26),
PMU_PMEVCNTR(27),
PMU_PMEVCNTR(28),
PMU_PMEVCNTR(29),
PMU_PMEVCNTR(30),
/* PMEVTYPERn */
PMU_PMEVTYPER(0),
PMU_PMEVTYPER(1),
PMU_PMEVTYPER(2),
PMU_PMEVTYPER(3),
PMU_PMEVTYPER(4),
PMU_PMEVTYPER(5),
PMU_PMEVTYPER(6),
PMU_PMEVTYPER(7),
PMU_PMEVTYPER(8),
PMU_PMEVTYPER(9),
PMU_PMEVTYPER(10),
PMU_PMEVTYPER(11),
PMU_PMEVTYPER(12),
PMU_PMEVTYPER(13),
PMU_PMEVTYPER(14),
PMU_PMEVTYPER(15),
PMU_PMEVTYPER(16),
PMU_PMEVTYPER(17),
PMU_PMEVTYPER(18),
PMU_PMEVTYPER(19),
PMU_PMEVTYPER(20),
PMU_PMEVTYPER(21),
PMU_PMEVTYPER(22),
PMU_PMEVTYPER(23),
PMU_PMEVTYPER(24),
PMU_PMEVTYPER(25),
PMU_PMEVTYPER(26),
PMU_PMEVTYPER(27),
PMU_PMEVTYPER(28),
PMU_PMEVTYPER(29),
PMU_PMEVTYPER(30),
/* PMCCFILTR */
{ Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
};
static const struct sys_reg_desc cp15_64_regs[] = {
{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
{ Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
};
/* Target specific emulation tables */
static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
void kvm_register_target_sys_reg_table(unsigned int target,
struct kvm_sys_reg_target_table *table)
{
target_tables[target] = table;
}
/* Get specific register table for this target. */
static const struct sys_reg_desc *get_target_table(unsigned target,
bool mode_is_64,
size_t *num)
{
struct kvm_sys_reg_target_table *table;
table = target_tables[target];
if (mode_is_64) {
*num = table->table64.num;
return table->table64.table;
} else {
*num = table->table32.num;
return table->table32.table;
}
}
#define reg_to_match_value(x) \
({ \
unsigned long val; \
val = (x)->Op0 << 14; \
val |= (x)->Op1 << 11; \
val |= (x)->CRn << 7; \
val |= (x)->CRm << 3; \
val |= (x)->Op2; \
val; \
})
static int match_sys_reg(const void *key, const void *elt)
{
const unsigned long pval = (unsigned long)key;
const struct sys_reg_desc *r = elt;
return pval - reg_to_match_value(r);
}
static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
const struct sys_reg_desc table[],
unsigned int num)
{
unsigned long pval = reg_to_match_value(params);
return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
}
int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
kvm_inject_undefined(vcpu);
return 1;
}
/*
* emulate_cp -- tries to match a sys_reg access in a handling table, and
* call the corresponding trap handler.
*
* @params: pointer to the descriptor of the access
* @table: array of trap descriptors
* @num: size of the trap descriptor array
*
* Return 0 if the access has been handled, and -1 if not.
*/
static int emulate_cp(struct kvm_vcpu *vcpu,
struct sys_reg_params *params,
const struct sys_reg_desc *table,
size_t num)
{
const struct sys_reg_desc *r;
if (!table)
return -1; /* Not handled */
r = find_reg(params, table, num);
if (r) {
/*
* Not having an accessor means that we have
* configured a trap that we don't know how to
* handle. This certainly qualifies as a gross bug
* that should be fixed right away.
*/
BUG_ON(!r->access);
if (likely(r->access(vcpu, params, r))) {
/* Skip instruction, since it was emulated */
kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
/* Handled */
return 0;
}
}
/* Not handled */
return -1;
}
static void unhandled_cp_access(struct kvm_vcpu *vcpu,
struct sys_reg_params *params)
{
u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
int cp;
switch(hsr_ec) {
case ESR_ELx_EC_CP15_32:
case ESR_ELx_EC_CP15_64:
cp = 15;
break;
case ESR_ELx_EC_CP14_MR:
case ESR_ELx_EC_CP14_64:
cp = 14;
break;
default:
WARN_ON((cp = -1));
}
kvm_err("Unsupported guest CP%d access at: %08lx\n",
cp, *vcpu_pc(vcpu));
print_sys_reg_instr(params);
kvm_inject_undefined(vcpu);
}
/**
* kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
* @vcpu: The VCPU pointer
* @run: The kvm_run struct
*/
static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *global,
size_t nr_global,
const struct sys_reg_desc *target_specific,
size_t nr_specific)
{
struct sys_reg_params params;
u32 hsr = kvm_vcpu_get_hsr(vcpu);
int Rt = (hsr >> 5) & 0xf;
int Rt2 = (hsr >> 10) & 0xf;
params.is_aarch32 = true;
params.is_32bit = false;
params.CRm = (hsr >> 1) & 0xf;
params.is_write = ((hsr & 1) == 0);
params.Op0 = 0;
params.Op1 = (hsr >> 16) & 0xf;
params.Op2 = 0;
params.CRn = 0;
/*
* Make a 64-bit value out of Rt and Rt2. As we use the same trap
* backends between AArch32 and AArch64, we get away with it.
*/
if (params.is_write) {
params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
}
if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
goto out;
if (!emulate_cp(vcpu, &params, global, nr_global))
goto out;
unhandled_cp_access(vcpu, &params);
out:
/* Split up the value between registers for the read side */
if (!params.is_write) {
vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
}
return 1;
}
/**
* kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
* @vcpu: The VCPU pointer
* @run: The kvm_run struct
*/
static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *global,
size_t nr_global,
const struct sys_reg_desc *target_specific,
size_t nr_specific)
{
struct sys_reg_params params;
u32 hsr = kvm_vcpu_get_hsr(vcpu);
int Rt = (hsr >> 5) & 0xf;
params.is_aarch32 = true;
params.is_32bit = true;
params.CRm = (hsr >> 1) & 0xf;
params.regval = vcpu_get_reg(vcpu, Rt);
params.is_write = ((hsr & 1) == 0);
params.CRn = (hsr >> 10) & 0xf;
params.Op0 = 0;
params.Op1 = (hsr >> 14) & 0x7;
params.Op2 = (hsr >> 17) & 0x7;
if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
!emulate_cp(vcpu, &params, global, nr_global)) {
if (!params.is_write)
vcpu_set_reg(vcpu, Rt, params.regval);
return 1;
}
unhandled_cp_access(vcpu, &params);
return 1;
}
int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
const struct sys_reg_desc *target_specific;
size_t num;
target_specific = get_target_table(vcpu->arch.target, false, &num);
return kvm_handle_cp_64(vcpu,
cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
target_specific, num);
}
int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
const struct sys_reg_desc *target_specific;
size_t num;
target_specific = get_target_table(vcpu->arch.target, false, &num);
return kvm_handle_cp_32(vcpu,
cp15_regs, ARRAY_SIZE(cp15_regs),
target_specific, num);
}
int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
return kvm_handle_cp_64(vcpu,
cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
NULL, 0);
}
int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
return kvm_handle_cp_32(vcpu,
cp14_regs, ARRAY_SIZE(cp14_regs),
NULL, 0);
}
static int emulate_sys_reg(struct kvm_vcpu *vcpu,
struct sys_reg_params *params)
{
size_t num;
const struct sys_reg_desc *table, *r;
table = get_target_table(vcpu->arch.target, true, &num);
/* Search target-specific then generic table. */
r = find_reg(params, table, num);
if (!r)
r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
if (likely(r)) {
/*
* Not having an accessor means that we have
* configured a trap that we don't know how to
* handle. This certainly qualifies as a gross bug
* that should be fixed right away.
*/
BUG_ON(!r->access);
if (likely(r->access(vcpu, params, r))) {
/* Skip instruction, since it was emulated */
kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
return 1;
}
/* If access function fails, it should complain. */
} else {
kvm_err("Unsupported guest sys_reg access at: %lx\n",
*vcpu_pc(vcpu));
print_sys_reg_instr(params);
}
kvm_inject_undefined(vcpu);
return 1;
}
static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *table, size_t num)
{
unsigned long i;
for (i = 0; i < num; i++)
if (table[i].reset)
table[i].reset(vcpu, &table[i]);
}
/**
* kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
* @vcpu: The VCPU pointer
* @run: The kvm_run struct
*/
int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
struct sys_reg_params params;
unsigned long esr = kvm_vcpu_get_hsr(vcpu);
int Rt = (esr >> 5) & 0x1f;
int ret;
trace_kvm_handle_sys_reg(esr);
params.is_aarch32 = false;
params.is_32bit = false;
params.Op0 = (esr >> 20) & 3;
params.Op1 = (esr >> 14) & 0x7;
params.CRn = (esr >> 10) & 0xf;
params.CRm = (esr >> 1) & 0xf;
params.Op2 = (esr >> 17) & 0x7;
params.regval = vcpu_get_reg(vcpu, Rt);
params.is_write = !(esr & 1);
ret = emulate_sys_reg(vcpu, &params);
if (!params.is_write)
vcpu_set_reg(vcpu, Rt, params.regval);
return ret;
}
/******************************************************************************
* Userspace API
*****************************************************************************/
static bool index_to_params(u64 id, struct sys_reg_params *params)
{
switch (id & KVM_REG_SIZE_MASK) {
case KVM_REG_SIZE_U64:
/* Any unused index bits means it's not valid. */
if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
| KVM_REG_ARM_COPROC_MASK
| KVM_REG_ARM64_SYSREG_OP0_MASK
| KVM_REG_ARM64_SYSREG_OP1_MASK
| KVM_REG_ARM64_SYSREG_CRN_MASK
| KVM_REG_ARM64_SYSREG_CRM_MASK
| KVM_REG_ARM64_SYSREG_OP2_MASK))
return false;
params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
>> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
>> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
>> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
>> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
>> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
return true;
default:
return false;
}
}
/* Decode an index value, and find the sys_reg_desc entry. */
static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
u64 id)
{
size_t num;
const struct sys_reg_desc *table, *r;
struct sys_reg_params params;
/* We only do sys_reg for now. */
if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
return NULL;
if (!index_to_params(id, &params))
return NULL;
table = get_target_table(vcpu->arch.target, true, &num);
r = find_reg(&params, table, num);
if (!r)
r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
/* Not saved in the sys_reg array? */
if (r && !r->reg)
r = NULL;
return r;
}
/*
* These are the invariant sys_reg registers: we let the guest see the
* host versions of these, so they're part of the guest state.
*
* A future CPU may provide a mechanism to present different values to
* the guest, or a future kvm may trap them.
*/
#define FUNCTION_INVARIANT(reg) \
static void get_##reg(struct kvm_vcpu *v, \
const struct sys_reg_desc *r) \
{ \
u64 val; \
\
asm volatile("mrs %0, " __stringify(reg) "\n" \
: "=r" (val)); \
((struct sys_reg_desc *)r)->val = val; \
}
FUNCTION_INVARIANT(midr_el1)
FUNCTION_INVARIANT(ctr_el0)
FUNCTION_INVARIANT(revidr_el1)
FUNCTION_INVARIANT(id_pfr0_el1)
FUNCTION_INVARIANT(id_pfr1_el1)
FUNCTION_INVARIANT(id_dfr0_el1)
FUNCTION_INVARIANT(id_afr0_el1)
FUNCTION_INVARIANT(id_mmfr0_el1)
FUNCTION_INVARIANT(id_mmfr1_el1)
FUNCTION_INVARIANT(id_mmfr2_el1)
FUNCTION_INVARIANT(id_mmfr3_el1)
FUNCTION_INVARIANT(id_isar0_el1)
FUNCTION_INVARIANT(id_isar1_el1)
FUNCTION_INVARIANT(id_isar2_el1)
FUNCTION_INVARIANT(id_isar3_el1)
FUNCTION_INVARIANT(id_isar4_el1)
FUNCTION_INVARIANT(id_isar5_el1)
FUNCTION_INVARIANT(clidr_el1)
FUNCTION_INVARIANT(aidr_el1)
/* ->val is filled in by kvm_sys_reg_table_init() */
static struct sys_reg_desc invariant_sys_regs[] = {
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
NULL, get_midr_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
NULL, get_revidr_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
NULL, get_id_pfr0_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
NULL, get_id_pfr1_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
NULL, get_id_dfr0_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
NULL, get_id_afr0_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
NULL, get_id_mmfr0_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
NULL, get_id_mmfr1_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
NULL, get_id_mmfr2_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
NULL, get_id_mmfr3_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
NULL, get_id_isar0_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
NULL, get_id_isar1_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
NULL, get_id_isar2_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
NULL, get_id_isar3_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
NULL, get_id_isar4_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
NULL, get_id_isar5_el1 },
{ Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
NULL, get_clidr_el1 },
{ Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
NULL, get_aidr_el1 },
{ Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
NULL, get_ctr_el0 },
};
static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
{
if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
return -EFAULT;
return 0;
}
static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
{
if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
return -EFAULT;
return 0;
}
static int get_invariant_sys_reg(u64 id, void __user *uaddr)
{
struct sys_reg_params params;
const struct sys_reg_desc *r;
if (!index_to_params(id, &params))
return -ENOENT;
r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
if (!r)
return -ENOENT;
return reg_to_user(uaddr, &r->val, id);
}
static int set_invariant_sys_reg(u64 id, void __user *uaddr)
{
struct sys_reg_params params;
const struct sys_reg_desc *r;
int err;
u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
if (!index_to_params(id, &params))
return -ENOENT;
r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
if (!r)
return -ENOENT;
err = reg_from_user(&val, uaddr, id);
if (err)
return err;
/* This is what we mean by invariant: you can't change it. */
if (r->val != val)
return -EINVAL;
return 0;
}
static bool is_valid_cache(u32 val)
{
u32 level, ctype;
if (val >= CSSELR_MAX)
return false;
/* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
level = (val >> 1);
ctype = (cache_levels >> (level * 3)) & 7;
switch (ctype) {
case 0: /* No cache */
return false;
case 1: /* Instruction cache only */
return (val & 1);
case 2: /* Data cache only */
case 4: /* Unified cache */
return !(val & 1);
case 3: /* Separate instruction and data caches */
return true;
default: /* Reserved: we can't know instruction or data. */
return false;
}
}
static int demux_c15_get(u64 id, void __user *uaddr)
{
u32 val;
u32 __user *uval = uaddr;
/* Fail if we have unknown bits set. */
if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
| ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
return -ENOENT;
switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
case KVM_REG_ARM_DEMUX_ID_CCSIDR:
if (KVM_REG_SIZE(id) != 4)
return -ENOENT;
val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
if (!is_valid_cache(val))
return -ENOENT;
return put_user(get_ccsidr(val), uval);
default:
return -ENOENT;
}
}
static int demux_c15_set(u64 id, void __user *uaddr)
{
u32 val, newval;
u32 __user *uval = uaddr;
/* Fail if we have unknown bits set. */
if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
| ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
return -ENOENT;
switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
case KVM_REG_ARM_DEMUX_ID_CCSIDR:
if (KVM_REG_SIZE(id) != 4)
return -ENOENT;
val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
if (!is_valid_cache(val))
return -ENOENT;
if (get_user(newval, uval))
return -EFAULT;
/* This is also invariant: you can't change it. */
if (newval != get_ccsidr(val))
return -EINVAL;
return 0;
default:
return -ENOENT;
}
}
int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
const struct sys_reg_desc *r;
void __user *uaddr = (void __user *)(unsigned long)reg->addr;
if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
return demux_c15_get(reg->id, uaddr);
if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
return -ENOENT;
r = index_to_sys_reg_desc(vcpu, reg->id);
if (!r)
return get_invariant_sys_reg(reg->id, uaddr);
if (r->get_user)
return (r->get_user)(vcpu, r, reg, uaddr);
return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
}
int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
const struct sys_reg_desc *r;
void __user *uaddr = (void __user *)(unsigned long)reg->addr;
if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
return demux_c15_set(reg->id, uaddr);
if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
return -ENOENT;
r = index_to_sys_reg_desc(vcpu, reg->id);
if (!r)
return set_invariant_sys_reg(reg->id, uaddr);
if (r->set_user)
return (r->set_user)(vcpu, r, reg, uaddr);
return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
}
static unsigned int num_demux_regs(void)
{
unsigned int i, count = 0;
for (i = 0; i < CSSELR_MAX; i++)
if (is_valid_cache(i))
count++;
return count;
}
static int write_demux_regids(u64 __user *uindices)
{
u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
unsigned int i;
val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
for (i = 0; i < CSSELR_MAX; i++) {
if (!is_valid_cache(i))
continue;
if (put_user(val | i, uindices))
return -EFAULT;
uindices++;
}
return 0;
}
static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
{
return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
KVM_REG_ARM64_SYSREG |
(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
}
static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
{
if (!*uind)
return true;
if (put_user(sys_reg_to_index(reg), *uind))
return false;
(*uind)++;
return true;
}
/* Assumed ordered tables, see kvm_sys_reg_table_init. */
static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
{
const struct sys_reg_desc *i1, *i2, *end1, *end2;
unsigned int total = 0;
size_t num;
/* We check for duplicates here, to allow arch-specific overrides. */
i1 = get_target_table(vcpu->arch.target, true, &num);
end1 = i1 + num;
i2 = sys_reg_descs;
end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
BUG_ON(i1 == end1 || i2 == end2);
/* Walk carefully, as both tables may refer to the same register. */
while (i1 || i2) {
int cmp = cmp_sys_reg(i1, i2);
/* target-specific overrides generic entry. */
if (cmp <= 0) {
/* Ignore registers we trap but don't save. */
if (i1->reg) {
if (!copy_reg_to_user(i1, &uind))
return -EFAULT;
total++;
}
} else {
/* Ignore registers we trap but don't save. */
if (i2->reg) {
if (!copy_reg_to_user(i2, &uind))
return -EFAULT;
total++;
}
}
if (cmp <= 0 && ++i1 == end1)
i1 = NULL;
if (cmp >= 0 && ++i2 == end2)
i2 = NULL;
}
return total;
}
unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
{
return ARRAY_SIZE(invariant_sys_regs)
+ num_demux_regs()
+ walk_sys_regs(vcpu, (u64 __user *)NULL);
}
int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
{
unsigned int i;
int err;
/* Then give them all the invariant registers' indices. */
for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
return -EFAULT;
uindices++;
}
err = walk_sys_regs(vcpu, uindices);
if (err < 0)
return err;
uindices += err;
return write_demux_regids(uindices);
}
static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
{
unsigned int i;
for (i = 1; i < n; i++) {
if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
return 1;
}
}
return 0;
}
void kvm_sys_reg_table_init(void)
{
unsigned int i;
struct sys_reg_desc clidr;
/* Make sure tables are unique and in order. */
BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
/* We abuse the reset function to overwrite the table itself. */
for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
/*
* CLIDR format is awkward, so clean it up. See ARM B4.1.20:
*
* If software reads the Cache Type fields from Ctype1
* upwards, once it has seen a value of 0b000, no caches
* exist at further-out levels of the hierarchy. So, for
* example, if Ctype3 is the first Cache Type field with a
* value of 0b000, the values of Ctype4 to Ctype7 must be
* ignored.
*/
get_clidr_el1(NULL, &clidr); /* Ugly... */
cache_levels = clidr.val;
for (i = 0; i < 7; i++)
if (((cache_levels >> (i*3)) & 7) == 0)
break;
/* Clear all higher bits. */
cache_levels &= (1 << (i*3))-1;
}
/**
* kvm_reset_sys_regs - sets system registers to reset value
* @vcpu: The VCPU pointer
*
* This function finds the right table above and sets the registers on the
* virtual CPU struct to their architecturally defined reset values.
*/
void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
{
size_t num;
const struct sys_reg_desc *table;
/* Catch someone adding a register without putting in reset entry. */
memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
/* Generic chip reset first (so target could override). */
reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
table = get_target_table(vcpu->arch.target, true, &num);
reset_sys_reg_descs(vcpu, table, num);
for (num = 1; num < NR_SYS_REGS; num++)
if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
panic("Didn't reset vcpu_sys_reg(%zi)", num);
}