blob: c40b4380951cb45518656a0e1030280d9253d852 [file] [log] [blame]
#ifndef _ASM_POWERPC_EXCEPTION_H
#define _ASM_POWERPC_EXCEPTION_H
/*
* Extracted from head_64.S
*
* PowerPC version
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
*
* Rewritten by Cort Dougan (cort@cs.nmt.edu) for PReP
* Copyright (C) 1996 Cort Dougan <cort@cs.nmt.edu>
* Adapted for Power Macintosh by Paul Mackerras.
* Low-level exception handlers and MMU support
* rewritten by Paul Mackerras.
* Copyright (C) 1996 Paul Mackerras.
*
* Adapted for 64bit PowerPC by Dave Engebretsen, Peter Bergner, and
* Mike Corrigan {engebret|bergner|mikejc}@us.ibm.com
*
* This file contains the low-level support and setup for the
* PowerPC-64 platform, including trap and interrupt dispatch.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
/*
* The following macros define the code that appears as
* the prologue to each of the exception handlers. They
* are split into two parts to allow a single kernel binary
* to be used for pSeries and iSeries.
*
* We make as much of the exception code common between native
* exception handlers (including pSeries LPAR) and iSeries LPAR
* implementations as possible.
*/
#include <asm/head-64.h>
/* PACA save area offsets (exgen, exmc, etc) */
#define EX_R9 0
#define EX_R10 8
#define EX_R11 16
#define EX_R12 24
#define EX_R13 32
#define EX_DAR 40
#define EX_DSISR 48
#define EX_CCR 52
#define EX_CFAR 56
#define EX_PPR 64
#if defined(CONFIG_RELOCATABLE)
#define EX_CTR 72
#define EX_SIZE 10 /* size in u64 units */
#else
#define EX_SIZE 9 /* size in u64 units */
#endif
/*
* maximum recursive depth of MCE exceptions
*/
#define MAX_MCE_DEPTH 4
/*
* EX_LR is only used in EXSLB and where it does not overlap with EX_DAR
* EX_CCR similarly with DSISR, but being 4 byte registers there is a hole
* in the save area so it's not necessary to overlap them. Could be used
* for future savings though if another 4 byte register was to be saved.
*/
#define EX_LR EX_DAR
/*
* EX_R3 is only used by the bad_stack handler. bad_stack reloads and
* saves DAR from SPRN_DAR, and EX_DAR is not used. So EX_R3 can overlap
* with EX_DAR.
*/
#define EX_R3 EX_DAR
#define STF_ENTRY_BARRIER_SLOT \
STF_ENTRY_BARRIER_FIXUP_SECTION; \
nop; \
nop; \
nop
#define STF_EXIT_BARRIER_SLOT \
STF_EXIT_BARRIER_FIXUP_SECTION; \
nop; \
nop; \
nop; \
nop; \
nop; \
nop
/*
* r10 must be free to use, r13 must be paca
*/
#define INTERRUPT_TO_KERNEL \
STF_ENTRY_BARRIER_SLOT
/*
* Macros for annotating the expected destination of (h)rfid
*
* The nop instructions allow us to insert one or more instructions to flush the
* L1-D cache when returning to userspace or a guest.
*/
#define RFI_FLUSH_SLOT \
RFI_FLUSH_FIXUP_SECTION; \
nop; \
nop; \
nop
#define RFI_TO_KERNEL \
rfid
#define RFI_TO_USER \
STF_EXIT_BARRIER_SLOT; \
RFI_FLUSH_SLOT; \
rfid; \
b rfi_flush_fallback
#define RFI_TO_USER_OR_KERNEL \
STF_EXIT_BARRIER_SLOT; \
RFI_FLUSH_SLOT; \
rfid; \
b rfi_flush_fallback
#define RFI_TO_GUEST \
STF_EXIT_BARRIER_SLOT; \
RFI_FLUSH_SLOT; \
rfid; \
b rfi_flush_fallback
#define HRFI_TO_KERNEL \
hrfid
#define HRFI_TO_USER \
STF_EXIT_BARRIER_SLOT; \
RFI_FLUSH_SLOT; \
hrfid; \
b hrfi_flush_fallback
#define HRFI_TO_USER_OR_KERNEL \
STF_EXIT_BARRIER_SLOT; \
RFI_FLUSH_SLOT; \
hrfid; \
b hrfi_flush_fallback
#define HRFI_TO_GUEST \
STF_EXIT_BARRIER_SLOT; \
RFI_FLUSH_SLOT; \
hrfid; \
b hrfi_flush_fallback
#define HRFI_TO_UNKNOWN \
STF_EXIT_BARRIER_SLOT; \
RFI_FLUSH_SLOT; \
hrfid; \
b hrfi_flush_fallback
#ifdef CONFIG_RELOCATABLE
#define __EXCEPTION_RELON_PROLOG_PSERIES_1(label, h) \
mfspr r11,SPRN_##h##SRR0; /* save SRR0 */ \
LOAD_HANDLER(r12,label); \
mtctr r12; \
mfspr r12,SPRN_##h##SRR1; /* and SRR1 */ \
li r10,MSR_RI; \
mtmsrd r10,1; /* Set RI (EE=0) */ \
bctr;
#else
/* If not relocatable, we can jump directly -- and save messing with LR */
#define __EXCEPTION_RELON_PROLOG_PSERIES_1(label, h) \
mfspr r11,SPRN_##h##SRR0; /* save SRR0 */ \
mfspr r12,SPRN_##h##SRR1; /* and SRR1 */ \
li r10,MSR_RI; \
mtmsrd r10,1; /* Set RI (EE=0) */ \
b label;
#endif
#define EXCEPTION_RELON_PROLOG_PSERIES_1(label, h) \
__EXCEPTION_RELON_PROLOG_PSERIES_1(label, h) \
/*
* As EXCEPTION_PROLOG_PSERIES(), except we've already got relocation on
* so no need to rfid. Save lr in case we're CONFIG_RELOCATABLE, in which
* case EXCEPTION_RELON_PROLOG_PSERIES_1 will be using lr.
*/
#define EXCEPTION_RELON_PROLOG_PSERIES(area, label, h, extra, vec) \
EXCEPTION_PROLOG_0(area); \
EXCEPTION_PROLOG_1(area, extra, vec); \
EXCEPTION_RELON_PROLOG_PSERIES_1(label, h)
/*
* We're short on space and time in the exception prolog, so we can't
* use the normal LOAD_REG_IMMEDIATE macro to load the address of label.
* Instead we get the base of the kernel from paca->kernelbase and or in the low
* part of label. This requires that the label be within 64KB of kernelbase, and
* that kernelbase be 64K aligned.
*/
#define LOAD_HANDLER(reg, label) \
ld reg,PACAKBASE(r13); /* get high part of &label */ \
ori reg,reg,FIXED_SYMBOL_ABS_ADDR(label);
#define __LOAD_HANDLER(reg, label) \
ld reg,PACAKBASE(r13); \
ori reg,reg,(ABS_ADDR(label))@l;
/*
* Branches from unrelocated code (e.g., interrupts) to labels outside
* head-y require >64K offsets.
*/
#define __LOAD_FAR_HANDLER(reg, label) \
ld reg,PACAKBASE(r13); \
ori reg,reg,(ABS_ADDR(label))@l; \
addis reg,reg,(ABS_ADDR(label))@h;
/* Exception register prefixes */
#define EXC_HV H
#define EXC_STD
#if defined(CONFIG_RELOCATABLE)
/*
* If we support interrupts with relocation on AND we're a relocatable kernel,
* we need to use CTR to get to the 2nd level handler. So, save/restore it
* when required.
*/
#define SAVE_CTR(reg, area) mfctr reg ; std reg,area+EX_CTR(r13)
#define GET_CTR(reg, area) ld reg,area+EX_CTR(r13)
#define RESTORE_CTR(reg, area) ld reg,area+EX_CTR(r13) ; mtctr reg
#else
/* ...else CTR is unused and in register. */
#define SAVE_CTR(reg, area)
#define GET_CTR(reg, area) mfctr reg
#define RESTORE_CTR(reg, area)
#endif
/*
* PPR save/restore macros used in exceptions_64s.S
* Used for P7 or later processors
*/
#define SAVE_PPR(area, ra, rb) \
BEGIN_FTR_SECTION_NESTED(940) \
ld ra,PACACURRENT(r13); \
ld rb,area+EX_PPR(r13); /* Read PPR from paca */ \
std rb,TASKTHREADPPR(ra); \
END_FTR_SECTION_NESTED(CPU_FTR_HAS_PPR,CPU_FTR_HAS_PPR,940)
#define RESTORE_PPR_PACA(area, ra) \
BEGIN_FTR_SECTION_NESTED(941) \
ld ra,area+EX_PPR(r13); \
mtspr SPRN_PPR,ra; \
END_FTR_SECTION_NESTED(CPU_FTR_HAS_PPR,CPU_FTR_HAS_PPR,941)
/*
* Get an SPR into a register if the CPU has the given feature
*/
#define OPT_GET_SPR(ra, spr, ftr) \
BEGIN_FTR_SECTION_NESTED(943) \
mfspr ra,spr; \
END_FTR_SECTION_NESTED(ftr,ftr,943)
/*
* Set an SPR from a register if the CPU has the given feature
*/
#define OPT_SET_SPR(ra, spr, ftr) \
BEGIN_FTR_SECTION_NESTED(943) \
mtspr spr,ra; \
END_FTR_SECTION_NESTED(ftr,ftr,943)
/*
* Save a register to the PACA if the CPU has the given feature
*/
#define OPT_SAVE_REG_TO_PACA(offset, ra, ftr) \
BEGIN_FTR_SECTION_NESTED(943) \
std ra,offset(r13); \
END_FTR_SECTION_NESTED(ftr,ftr,943)
#define EXCEPTION_PROLOG_0(area) \
GET_PACA(r13); \
std r9,area+EX_R9(r13); /* save r9 */ \
OPT_GET_SPR(r9, SPRN_PPR, CPU_FTR_HAS_PPR); \
HMT_MEDIUM; \
std r10,area+EX_R10(r13); /* save r10 - r12 */ \
OPT_GET_SPR(r10, SPRN_CFAR, CPU_FTR_CFAR)
#define __EXCEPTION_PROLOG_1_PRE(area) \
OPT_SAVE_REG_TO_PACA(area+EX_PPR, r9, CPU_FTR_HAS_PPR); \
OPT_SAVE_REG_TO_PACA(area+EX_CFAR, r10, CPU_FTR_CFAR); \
INTERRUPT_TO_KERNEL; \
SAVE_CTR(r10, area); \
mfcr r9;
#define __EXCEPTION_PROLOG_1_POST(area) \
std r11,area+EX_R11(r13); \
std r12,area+EX_R12(r13); \
GET_SCRATCH0(r10); \
std r10,area+EX_R13(r13)
/*
* This version of the EXCEPTION_PROLOG_1 will carry
* addition parameter called "bitmask" to support
* checking of the interrupt maskable level in the SOFTEN_TEST.
* Intended to be used in MASKABLE_EXCPETION_* macros.
*/
#define MASKABLE_EXCEPTION_PROLOG_1(area, extra, vec, bitmask) \
__EXCEPTION_PROLOG_1_PRE(area); \
extra(vec, bitmask); \
__EXCEPTION_PROLOG_1_POST(area);
/*
* This version of the EXCEPTION_PROLOG_1 is intended
* to be used in STD_EXCEPTION* macros
*/
#define _EXCEPTION_PROLOG_1(area, extra, vec) \
__EXCEPTION_PROLOG_1_PRE(area); \
extra(vec); \
__EXCEPTION_PROLOG_1_POST(area);
#define EXCEPTION_PROLOG_1(area, extra, vec) \
_EXCEPTION_PROLOG_1(area, extra, vec)
#define __EXCEPTION_PROLOG_PSERIES_1(label, h) \
ld r10,PACAKMSR(r13); /* get MSR value for kernel */ \
mfspr r11,SPRN_##h##SRR0; /* save SRR0 */ \
LOAD_HANDLER(r12,label) \
mtspr SPRN_##h##SRR0,r12; \
mfspr r12,SPRN_##h##SRR1; /* and SRR1 */ \
mtspr SPRN_##h##SRR1,r10; \
h##RFI_TO_KERNEL; \
b . /* prevent speculative execution */
#define EXCEPTION_PROLOG_PSERIES_1(label, h) \
__EXCEPTION_PROLOG_PSERIES_1(label, h)
/* _NORI variant keeps MSR_RI clear */
#define __EXCEPTION_PROLOG_PSERIES_1_NORI(label, h) \
ld r10,PACAKMSR(r13); /* get MSR value for kernel */ \
xori r10,r10,MSR_RI; /* Clear MSR_RI */ \
mfspr r11,SPRN_##h##SRR0; /* save SRR0 */ \
LOAD_HANDLER(r12,label) \
mtspr SPRN_##h##SRR0,r12; \
mfspr r12,SPRN_##h##SRR1; /* and SRR1 */ \
mtspr SPRN_##h##SRR1,r10; \
h##RFI_TO_KERNEL; \
b . /* prevent speculative execution */
#define EXCEPTION_PROLOG_PSERIES_1_NORI(label, h) \
__EXCEPTION_PROLOG_PSERIES_1_NORI(label, h)
#define EXCEPTION_PROLOG_PSERIES(area, label, h, extra, vec) \
EXCEPTION_PROLOG_0(area); \
EXCEPTION_PROLOG_1(area, extra, vec); \
EXCEPTION_PROLOG_PSERIES_1(label, h);
#define __KVMTEST(h, n) \
lbz r10,HSTATE_IN_GUEST(r13); \
cmpwi r10,0; \
bne do_kvm_##h##n
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
/*
* If hv is possible, interrupts come into to the hv version
* of the kvmppc_interrupt code, which then jumps to the PR handler,
* kvmppc_interrupt_pr, if the guest is a PR guest.
*/
#define kvmppc_interrupt kvmppc_interrupt_hv
#else
#define kvmppc_interrupt kvmppc_interrupt_pr
#endif
/*
* Branch to label using its 0xC000 address. This results in instruction
* address suitable for MSR[IR]=0 or 1, which allows relocation to be turned
* on using mtmsr rather than rfid.
*
* This could set the 0xc bits for !RELOCATABLE as an immediate, rather than
* load KBASE for a slight optimisation.
*/
#define BRANCH_TO_C000(reg, label) \
__LOAD_HANDLER(reg, label); \
mtctr reg; \
bctr
#ifdef CONFIG_RELOCATABLE
#define BRANCH_TO_COMMON(reg, label) \
__LOAD_HANDLER(reg, label); \
mtctr reg; \
bctr
#define BRANCH_LINK_TO_FAR(label) \
__LOAD_FAR_HANDLER(r12, label); \
mtctr r12; \
bctrl
/*
* KVM requires __LOAD_FAR_HANDLER.
*
* __BRANCH_TO_KVM_EXIT branches are also a special case because they
* explicitly use r9 then reload it from PACA before branching. Hence
* the double-underscore.
*/
#define __BRANCH_TO_KVM_EXIT(area, label) \
mfctr r9; \
std r9,HSTATE_SCRATCH1(r13); \
__LOAD_FAR_HANDLER(r9, label); \
mtctr r9; \
ld r9,area+EX_R9(r13); \
bctr
#else
#define BRANCH_TO_COMMON(reg, label) \
b label
#define BRANCH_LINK_TO_FAR(label) \
bl label
#define __BRANCH_TO_KVM_EXIT(area, label) \
ld r9,area+EX_R9(r13); \
b label
#endif
/* Do not enable RI */
#define EXCEPTION_PROLOG_PSERIES_NORI(area, label, h, extra, vec) \
EXCEPTION_PROLOG_0(area); \
EXCEPTION_PROLOG_1(area, extra, vec); \
EXCEPTION_PROLOG_PSERIES_1_NORI(label, h);
#define __KVM_HANDLER(area, h, n) \
BEGIN_FTR_SECTION_NESTED(947) \
ld r10,area+EX_CFAR(r13); \
std r10,HSTATE_CFAR(r13); \
END_FTR_SECTION_NESTED(CPU_FTR_CFAR,CPU_FTR_CFAR,947); \
BEGIN_FTR_SECTION_NESTED(948) \
ld r10,area+EX_PPR(r13); \
std r10,HSTATE_PPR(r13); \
END_FTR_SECTION_NESTED(CPU_FTR_HAS_PPR,CPU_FTR_HAS_PPR,948); \
ld r10,area+EX_R10(r13); \
std r12,HSTATE_SCRATCH0(r13); \
sldi r12,r9,32; \
ori r12,r12,(n); \
/* This reloads r9 before branching to kvmppc_interrupt */ \
__BRANCH_TO_KVM_EXIT(area, kvmppc_interrupt)
#define __KVM_HANDLER_SKIP(area, h, n) \
cmpwi r10,KVM_GUEST_MODE_SKIP; \
beq 89f; \
BEGIN_FTR_SECTION_NESTED(948) \
ld r10,area+EX_PPR(r13); \
std r10,HSTATE_PPR(r13); \
END_FTR_SECTION_NESTED(CPU_FTR_HAS_PPR,CPU_FTR_HAS_PPR,948); \
ld r10,area+EX_R10(r13); \
std r12,HSTATE_SCRATCH0(r13); \
sldi r12,r9,32; \
ori r12,r12,(n); \
/* This reloads r9 before branching to kvmppc_interrupt */ \
__BRANCH_TO_KVM_EXIT(area, kvmppc_interrupt); \
89: mtocrf 0x80,r9; \
ld r9,area+EX_R9(r13); \
ld r10,area+EX_R10(r13); \
b kvmppc_skip_##h##interrupt
#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
#define KVMTEST(h, n) __KVMTEST(h, n)
#define KVM_HANDLER(area, h, n) __KVM_HANDLER(area, h, n)
#define KVM_HANDLER_SKIP(area, h, n) __KVM_HANDLER_SKIP(area, h, n)
#else
#define KVMTEST(h, n)
#define KVM_HANDLER(area, h, n)
#define KVM_HANDLER_SKIP(area, h, n)
#endif
#define NOTEST(n)
#define EXCEPTION_PROLOG_COMMON_1() \
std r9,_CCR(r1); /* save CR in stackframe */ \
std r11,_NIP(r1); /* save SRR0 in stackframe */ \
std r12,_MSR(r1); /* save SRR1 in stackframe */ \
std r10,0(r1); /* make stack chain pointer */ \
std r0,GPR0(r1); /* save r0 in stackframe */ \
std r10,GPR1(r1); /* save r1 in stackframe */ \
/*
* The common exception prolog is used for all except a few exceptions
* such as a segment miss on a kernel address. We have to be prepared
* to take another exception from the point where we first touch the
* kernel stack onwards.
*
* On entry r13 points to the paca, r9-r13 are saved in the paca,
* r9 contains the saved CR, r11 and r12 contain the saved SRR0 and
* SRR1, and relocation is on.
*/
#define EXCEPTION_PROLOG_COMMON(n, area) \
andi. r10,r12,MSR_PR; /* See if coming from user */ \
mr r10,r1; /* Save r1 */ \
subi r1,r1,INT_FRAME_SIZE; /* alloc frame on kernel stack */ \
beq- 1f; \
ld r1,PACAKSAVE(r13); /* kernel stack to use */ \
1: cmpdi cr1,r1,-INT_FRAME_SIZE; /* check if r1 is in userspace */ \
blt+ cr1,3f; /* abort if it is */ \
li r1,(n); /* will be reloaded later */ \
sth r1,PACA_TRAP_SAVE(r13); \
std r3,area+EX_R3(r13); \
addi r3,r13,area; /* r3 -> where regs are saved*/ \
RESTORE_CTR(r1, area); \
b bad_stack; \
3: EXCEPTION_PROLOG_COMMON_1(); \
beq 4f; /* if from kernel mode */ \
ACCOUNT_CPU_USER_ENTRY(r13, r9, r10); \
SAVE_PPR(area, r9, r10); \
4: EXCEPTION_PROLOG_COMMON_2(area) \
EXCEPTION_PROLOG_COMMON_3(n) \
ACCOUNT_STOLEN_TIME
/* Save original regs values from save area to stack frame. */
#define EXCEPTION_PROLOG_COMMON_2(area) \
ld r9,area+EX_R9(r13); /* move r9, r10 to stackframe */ \
ld r10,area+EX_R10(r13); \
std r9,GPR9(r1); \
std r10,GPR10(r1); \
ld r9,area+EX_R11(r13); /* move r11 - r13 to stackframe */ \
ld r10,area+EX_R12(r13); \
ld r11,area+EX_R13(r13); \
std r9,GPR11(r1); \
std r10,GPR12(r1); \
std r11,GPR13(r1); \
BEGIN_FTR_SECTION_NESTED(66); \
ld r10,area+EX_CFAR(r13); \
std r10,ORIG_GPR3(r1); \
END_FTR_SECTION_NESTED(CPU_FTR_CFAR, CPU_FTR_CFAR, 66); \
GET_CTR(r10, area); \
std r10,_CTR(r1);
#define EXCEPTION_PROLOG_COMMON_3(n) \
std r2,GPR2(r1); /* save r2 in stackframe */ \
SAVE_4GPRS(3, r1); /* save r3 - r6 in stackframe */ \
SAVE_2GPRS(7, r1); /* save r7, r8 in stackframe */ \
mflr r9; /* Get LR, later save to stack */ \
ld r2,PACATOC(r13); /* get kernel TOC into r2 */ \
std r9,_LINK(r1); \
lbz r10,PACAIRQSOFTMASK(r13); \
mfspr r11,SPRN_XER; /* save XER in stackframe */ \
std r10,SOFTE(r1); \
std r11,_XER(r1); \
li r9,(n)+1; \
std r9,_TRAP(r1); /* set trap number */ \
li r10,0; \
ld r11,exception_marker@toc(r2); \
std r10,RESULT(r1); /* clear regs->result */ \
std r11,STACK_FRAME_OVERHEAD-16(r1); /* mark the frame */
/*
* Exception vectors.
*/
#define STD_EXCEPTION_PSERIES(vec, label) \
SET_SCRATCH0(r13); /* save r13 */ \
EXCEPTION_PROLOG_PSERIES(PACA_EXGEN, label, \
EXC_STD, KVMTEST_PR, vec); \
/* Version of above for when we have to branch out-of-line */
#define __OOL_EXCEPTION(vec, label, hdlr) \
SET_SCRATCH0(r13) \
EXCEPTION_PROLOG_0(PACA_EXGEN) \
b hdlr;
#define STD_EXCEPTION_PSERIES_OOL(vec, label) \
EXCEPTION_PROLOG_1(PACA_EXGEN, KVMTEST_PR, vec); \
EXCEPTION_PROLOG_PSERIES_1(label, EXC_STD)
#define STD_EXCEPTION_HV(loc, vec, label) \
SET_SCRATCH0(r13); /* save r13 */ \
EXCEPTION_PROLOG_PSERIES(PACA_EXGEN, label, \
EXC_HV, KVMTEST_HV, vec);
#define STD_EXCEPTION_HV_OOL(vec, label) \
EXCEPTION_PROLOG_1(PACA_EXGEN, KVMTEST_HV, vec); \
EXCEPTION_PROLOG_PSERIES_1(label, EXC_HV)
#define STD_RELON_EXCEPTION_PSERIES(loc, vec, label) \
/* No guest interrupts come through here */ \
SET_SCRATCH0(r13); /* save r13 */ \
EXCEPTION_RELON_PROLOG_PSERIES(PACA_EXGEN, label, EXC_STD, NOTEST, vec);
#define STD_RELON_EXCEPTION_PSERIES_OOL(vec, label) \
EXCEPTION_PROLOG_1(PACA_EXGEN, NOTEST, vec); \
EXCEPTION_RELON_PROLOG_PSERIES_1(label, EXC_STD)
#define STD_RELON_EXCEPTION_HV(loc, vec, label) \
SET_SCRATCH0(r13); /* save r13 */ \
EXCEPTION_RELON_PROLOG_PSERIES(PACA_EXGEN, label, \
EXC_HV, KVMTEST_HV, vec);
#define STD_RELON_EXCEPTION_HV_OOL(vec, label) \
EXCEPTION_PROLOG_1(PACA_EXGEN, KVMTEST_HV, vec); \
EXCEPTION_RELON_PROLOG_PSERIES_1(label, EXC_HV)
/* This associate vector numbers with bits in paca->irq_happened */
#define SOFTEN_VALUE_0x500 PACA_IRQ_EE
#define SOFTEN_VALUE_0x900 PACA_IRQ_DEC
#define SOFTEN_VALUE_0x980 PACA_IRQ_DEC
#define SOFTEN_VALUE_0xa00 PACA_IRQ_DBELL
#define SOFTEN_VALUE_0xe80 PACA_IRQ_DBELL
#define SOFTEN_VALUE_0xe60 PACA_IRQ_HMI
#define SOFTEN_VALUE_0xea0 PACA_IRQ_EE
#define SOFTEN_VALUE_0xf00 PACA_IRQ_PMI
#define __SOFTEN_TEST(h, vec, bitmask) \
lbz r10,PACAIRQSOFTMASK(r13); \
andi. r10,r10,bitmask; \
li r10,SOFTEN_VALUE_##vec; \
bne masked_##h##interrupt
#define _SOFTEN_TEST(h, vec, bitmask) __SOFTEN_TEST(h, vec, bitmask)
#define SOFTEN_TEST_PR(vec, bitmask) \
KVMTEST(EXC_STD, vec); \
_SOFTEN_TEST(EXC_STD, vec, bitmask)
#define SOFTEN_TEST_HV(vec, bitmask) \
KVMTEST(EXC_HV, vec); \
_SOFTEN_TEST(EXC_HV, vec, bitmask)
#define KVMTEST_PR(vec) \
KVMTEST(EXC_STD, vec)
#define KVMTEST_HV(vec) \
KVMTEST(EXC_HV, vec)
#define SOFTEN_NOTEST_PR(vec, bitmask) _SOFTEN_TEST(EXC_STD, vec, bitmask)
#define SOFTEN_NOTEST_HV(vec, bitmask) _SOFTEN_TEST(EXC_HV, vec, bitmask)
#define __MASKABLE_EXCEPTION_PSERIES(vec, label, h, extra, bitmask) \
SET_SCRATCH0(r13); /* save r13 */ \
EXCEPTION_PROLOG_0(PACA_EXGEN); \
MASKABLE_EXCEPTION_PROLOG_1(PACA_EXGEN, extra, vec, bitmask); \
EXCEPTION_PROLOG_PSERIES_1(label, h);
#define _MASKABLE_EXCEPTION_PSERIES(vec, label, h, extra, bitmask) \
__MASKABLE_EXCEPTION_PSERIES(vec, label, h, extra, bitmask)
#define MASKABLE_EXCEPTION_PSERIES(loc, vec, label, bitmask) \
_MASKABLE_EXCEPTION_PSERIES(vec, label, \
EXC_STD, SOFTEN_TEST_PR, bitmask)
#define MASKABLE_EXCEPTION_PSERIES_OOL(vec, label, bitmask) \
MASKABLE_EXCEPTION_PROLOG_1(PACA_EXGEN, SOFTEN_TEST_PR, vec, bitmask);\
EXCEPTION_PROLOG_PSERIES_1(label, EXC_STD)
#define MASKABLE_EXCEPTION_HV(loc, vec, label, bitmask) \
_MASKABLE_EXCEPTION_PSERIES(vec, label, \
EXC_HV, SOFTEN_TEST_HV, bitmask)
#define MASKABLE_EXCEPTION_HV_OOL(vec, label, bitmask) \
MASKABLE_EXCEPTION_PROLOG_1(PACA_EXGEN, SOFTEN_TEST_HV, vec, bitmask);\
EXCEPTION_PROLOG_PSERIES_1(label, EXC_HV)
#define __MASKABLE_RELON_EXCEPTION_PSERIES(vec, label, h, extra, bitmask) \
SET_SCRATCH0(r13); /* save r13 */ \
EXCEPTION_PROLOG_0(PACA_EXGEN); \
MASKABLE_EXCEPTION_PROLOG_1(PACA_EXGEN, extra, vec, bitmask); \
EXCEPTION_RELON_PROLOG_PSERIES_1(label, h)
#define _MASKABLE_RELON_EXCEPTION_PSERIES(vec, label, h, extra, bitmask)\
__MASKABLE_RELON_EXCEPTION_PSERIES(vec, label, h, extra, bitmask)
#define MASKABLE_RELON_EXCEPTION_PSERIES(loc, vec, label, bitmask) \
_MASKABLE_RELON_EXCEPTION_PSERIES(vec, label, \
EXC_STD, SOFTEN_NOTEST_PR, bitmask)
#define MASKABLE_RELON_EXCEPTION_PSERIES_OOL(vec, label, bitmask) \
MASKABLE_EXCEPTION_PROLOG_1(PACA_EXGEN, SOFTEN_NOTEST_PR, vec, bitmask);\
EXCEPTION_PROLOG_PSERIES_1(label, EXC_STD);
#define MASKABLE_RELON_EXCEPTION_HV(loc, vec, label, bitmask) \
_MASKABLE_RELON_EXCEPTION_PSERIES(vec, label, \
EXC_HV, SOFTEN_TEST_HV, bitmask)
#define MASKABLE_RELON_EXCEPTION_HV_OOL(vec, label, bitmask) \
MASKABLE_EXCEPTION_PROLOG_1(PACA_EXGEN, SOFTEN_TEST_HV, vec, bitmask);\
EXCEPTION_RELON_PROLOG_PSERIES_1(label, EXC_HV)
/*
* Our exception common code can be passed various "additions"
* to specify the behaviour of interrupts, whether to kick the
* runlatch, etc...
*/
/*
* This addition reconciles our actual IRQ state with the various software
* flags that track it. This may call C code.
*/
#define ADD_RECONCILE RECONCILE_IRQ_STATE(r10,r11)
#define ADD_NVGPRS \
bl save_nvgprs
#define RUNLATCH_ON \
BEGIN_FTR_SECTION \
CURRENT_THREAD_INFO(r3, r1); \
ld r4,TI_LOCAL_FLAGS(r3); \
andi. r0,r4,_TLF_RUNLATCH; \
beql ppc64_runlatch_on_trampoline; \
END_FTR_SECTION_IFSET(CPU_FTR_CTRL)
#define EXCEPTION_COMMON(area, trap, label, hdlr, ret, additions) \
EXCEPTION_PROLOG_COMMON(trap, area); \
/* Volatile regs are potentially clobbered here */ \
additions; \
addi r3,r1,STACK_FRAME_OVERHEAD; \
bl hdlr; \
b ret
/*
* Exception where stack is already set in r1, r1 is saved in r10, and it
* continues rather than returns.
*/
#define EXCEPTION_COMMON_NORET_STACK(area, trap, label, hdlr, additions) \
EXCEPTION_PROLOG_COMMON_1(); \
EXCEPTION_PROLOG_COMMON_2(area); \
EXCEPTION_PROLOG_COMMON_3(trap); \
/* Volatile regs are potentially clobbered here */ \
additions; \
addi r3,r1,STACK_FRAME_OVERHEAD; \
bl hdlr
#define STD_EXCEPTION_COMMON(trap, label, hdlr) \
EXCEPTION_COMMON(PACA_EXGEN, trap, label, hdlr, \
ret_from_except, ADD_NVGPRS;ADD_RECONCILE)
/*
* Like STD_EXCEPTION_COMMON, but for exceptions that can occur
* in the idle task and therefore need the special idle handling
* (finish nap and runlatch)
*/
#define STD_EXCEPTION_COMMON_ASYNC(trap, label, hdlr) \
EXCEPTION_COMMON(PACA_EXGEN, trap, label, hdlr, \
ret_from_except_lite, FINISH_NAP;ADD_RECONCILE;RUNLATCH_ON)
/*
* When the idle code in power4_idle puts the CPU into NAP mode,
* it has to do so in a loop, and relies on the external interrupt
* and decrementer interrupt entry code to get it out of the loop.
* It sets the _TLF_NAPPING bit in current_thread_info()->local_flags
* to signal that it is in the loop and needs help to get out.
*/
#ifdef CONFIG_PPC_970_NAP
#define FINISH_NAP \
BEGIN_FTR_SECTION \
CURRENT_THREAD_INFO(r11, r1); \
ld r9,TI_LOCAL_FLAGS(r11); \
andi. r10,r9,_TLF_NAPPING; \
bnel power4_fixup_nap; \
END_FTR_SECTION_IFSET(CPU_FTR_CAN_NAP)
#else
#define FINISH_NAP
#endif
#endif /* _ASM_POWERPC_EXCEPTION_H */