blob: 24c5765890fa7145cec84fe2fdd91cbfca528642 [file] [log] [blame]
/*
* Copyright 2018 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dccg.h"
#include "clk_mgr_internal.h"
#include "dcn20/dcn20_clk_mgr.h"
#include "rn_clk_mgr.h"
#include "dce100/dce_clk_mgr.h"
#include "rn_clk_mgr_vbios_smu.h"
#include "reg_helper.h"
#include "core_types.h"
#include "dm_helpers.h"
#include "atomfirmware.h"
#include "clk/clk_10_0_2_offset.h"
#include "clk/clk_10_0_2_sh_mask.h"
#include "renoir_ip_offset.h"
/* Constants */
#define LPDDR_MEM_RETRAIN_LATENCY 4.977 /* Number obtained from LPDDR4 Training Counter Requirement doc */
#define SMU_VER_55_51_0 0x373300 /* SMU Version that is able to set DISPCLK below 100MHz */
/* Macros */
#define REG(reg_name) \
(CLK_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
/* TODO: evaluate how to lower or disable all dcn clocks in screen off case */
int rn_get_active_display_cnt_wa(
struct dc *dc,
struct dc_state *context)
{
int i, display_count;
bool tmds_present = false;
display_count = 0;
for (i = 0; i < context->stream_count; i++) {
const struct dc_stream_state *stream = context->streams[i];
if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A ||
stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK ||
stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK)
tmds_present = true;
}
for (i = 0; i < dc->link_count; i++) {
const struct dc_link *link = dc->links[i];
/*
* Only notify active stream or virtual stream.
* Need to notify virtual stream to work around
* headless case. HPD does not fire when system is in
* S0i2.
*/
/* abusing the fact that the dig and phy are coupled to see if the phy is enabled */
if (link->connector_signal == SIGNAL_TYPE_VIRTUAL ||
link->link_enc->funcs->is_dig_enabled(link->link_enc))
display_count++;
}
/* WA for hang on HDMI after display off back back on*/
if (display_count == 0 && tmds_present)
display_count = 1;
return display_count;
}
void rn_update_clocks(struct clk_mgr *clk_mgr_base,
struct dc_state *context,
bool safe_to_lower)
{
struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
struct dc *dc = clk_mgr_base->ctx->dc;
int display_count;
bool update_dppclk = false;
bool update_dispclk = false;
bool dpp_clock_lowered = false;
struct dmcu *dmcu = clk_mgr_base->ctx->dc->res_pool->dmcu;
if (dc->work_arounds.skip_clock_update)
return;
/*
* if it is safe to lower, but we are already in the lower state, we don't have to do anything
* also if safe to lower is false, we just go in the higher state
*/
if (safe_to_lower) {
/* check that we're not already in lower */
if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
display_count = rn_get_active_display_cnt_wa(dc, context);
/* if we can go lower, go lower */
if (display_count == 0) {
rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_LOW_POWER);
/* update power state */
clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
}
}
} else {
/* check that we're not already in D0 */
if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) {
rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_MISSION_MODE);
/* update power state */
clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE;
}
}
if (should_set_clock(safe_to_lower, new_clocks->phyclk_khz, clk_mgr_base->clks.phyclk_khz)) {
clk_mgr_base->clks.phyclk_khz = new_clocks->phyclk_khz;
rn_vbios_smu_set_phyclk(clk_mgr, clk_mgr_base->clks.phyclk_khz);
}
if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) {
clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
rn_vbios_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz);
}
if (should_set_clock(safe_to_lower,
new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) {
clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
rn_vbios_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz);
}
// workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow.
if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
if (new_clocks->dppclk_khz < 100000)
new_clocks->dppclk_khz = 100000;
}
if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->base.clks.dppclk_khz)) {
if (clk_mgr->base.clks.dppclk_khz > new_clocks->dppclk_khz)
dpp_clock_lowered = true;
clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
update_dppclk = true;
}
if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
rn_vbios_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz);
update_dispclk = true;
}
if (dpp_clock_lowered) {
// increase per DPP DTO before lowering global dppclk
dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
} else {
// increase global DPPCLK before lowering per DPP DTO
if (update_dppclk || update_dispclk)
rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
// always update dtos unless clock is lowered and not safe to lower
if (new_clocks->dppclk_khz >= dc->current_state->bw_ctx.bw.dcn.clk.dppclk_khz)
dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
}
if (update_dispclk &&
dmcu && dmcu->funcs->is_dmcu_initialized(dmcu)) {
/*update dmcu for wait_loop count*/
dmcu->funcs->set_psr_wait_loop(dmcu,
clk_mgr_base->clks.dispclk_khz / 1000 / 7);
}
}
static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr)
{
/* get FbMult value */
struct fixed31_32 pll_req;
unsigned int fbmult_frac_val = 0;
unsigned int fbmult_int_val = 0;
/*
* Register value of fbmult is in 8.16 format, we are converting to 31.32
* to leverage the fix point operations available in driver
*/
REG_GET(CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/
REG_GET(CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */
pll_req = dc_fixpt_from_int(fbmult_int_val);
/*
* since fractional part is only 16 bit in register definition but is 32 bit
* in our fix point definiton, need to shift left by 16 to obtain correct value
*/
pll_req.value |= fbmult_frac_val << 16;
/* multiply by REFCLK period */
pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz);
/* integer part is now VCO frequency in kHz */
return dc_fixpt_floor(pll_req);
}
static void rn_dump_clk_registers_internal(struct rn_clk_internal *internal, struct clk_mgr *clk_mgr_base)
{
struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
internal->CLK1_CLK3_CURRENT_CNT = REG_READ(CLK1_CLK3_CURRENT_CNT);
internal->CLK1_CLK3_BYPASS_CNTL = REG_READ(CLK1_CLK3_BYPASS_CNTL);
internal->CLK1_CLK3_DS_CNTL = REG_READ(CLK1_CLK3_DS_CNTL); //dcf deep sleep divider
internal->CLK1_CLK3_ALLOW_DS = REG_READ(CLK1_CLK3_ALLOW_DS);
internal->CLK1_CLK1_CURRENT_CNT = REG_READ(CLK1_CLK1_CURRENT_CNT);
internal->CLK1_CLK1_BYPASS_CNTL = REG_READ(CLK1_CLK1_BYPASS_CNTL);
internal->CLK1_CLK2_CURRENT_CNT = REG_READ(CLK1_CLK2_CURRENT_CNT);
internal->CLK1_CLK2_BYPASS_CNTL = REG_READ(CLK1_CLK2_BYPASS_CNTL);
internal->CLK1_CLK0_CURRENT_CNT = REG_READ(CLK1_CLK0_CURRENT_CNT);
internal->CLK1_CLK0_BYPASS_CNTL = REG_READ(CLK1_CLK0_BYPASS_CNTL);
}
/* This function collect raw clk register values */
static void rn_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
{
struct rn_clk_internal internal = {0};
char *bypass_clks[5] = {"0x0 DFS", "0x1 REFCLK", "0x2 ERROR", "0x3 400 FCH", "0x4 600 FCH"};
unsigned int chars_printed = 0;
unsigned int remaining_buffer = log_info->bufSize;
rn_dump_clk_registers_internal(&internal, clk_mgr_base);
regs_and_bypass->dcfclk = internal.CLK1_CLK3_CURRENT_CNT / 10;
regs_and_bypass->dcf_deep_sleep_divider = internal.CLK1_CLK3_DS_CNTL / 10;
regs_and_bypass->dcf_deep_sleep_allow = internal.CLK1_CLK3_ALLOW_DS;
regs_and_bypass->dprefclk = internal.CLK1_CLK2_CURRENT_CNT / 10;
regs_and_bypass->dispclk = internal.CLK1_CLK0_CURRENT_CNT / 10;
regs_and_bypass->dppclk = internal.CLK1_CLK1_CURRENT_CNT / 10;
regs_and_bypass->dppclk_bypass = internal.CLK1_CLK1_BYPASS_CNTL & 0x0007;
if (regs_and_bypass->dppclk_bypass < 0 || regs_and_bypass->dppclk_bypass > 4)
regs_and_bypass->dppclk_bypass = 0;
regs_and_bypass->dcfclk_bypass = internal.CLK1_CLK3_BYPASS_CNTL & 0x0007;
if (regs_and_bypass->dcfclk_bypass < 0 || regs_and_bypass->dcfclk_bypass > 4)
regs_and_bypass->dcfclk_bypass = 0;
regs_and_bypass->dispclk_bypass = internal.CLK1_CLK0_BYPASS_CNTL & 0x0007;
if (regs_and_bypass->dispclk_bypass < 0 || regs_and_bypass->dispclk_bypass > 4)
regs_and_bypass->dispclk_bypass = 0;
regs_and_bypass->dprefclk_bypass = internal.CLK1_CLK2_BYPASS_CNTL & 0x0007;
if (regs_and_bypass->dprefclk_bypass < 0 || regs_and_bypass->dprefclk_bypass > 4)
regs_and_bypass->dprefclk_bypass = 0;
if (log_info->enabled) {
chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "clk_type,clk_value,deepsleep_cntl,deepsleep_allow,bypass\n");
remaining_buffer -= chars_printed;
*log_info->sum_chars_printed += chars_printed;
log_info->pBuf += chars_printed;
chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dcfclk,%d,%d,%d,%s\n",
regs_and_bypass->dcfclk,
regs_and_bypass->dcf_deep_sleep_divider,
regs_and_bypass->dcf_deep_sleep_allow,
bypass_clks[(int) regs_and_bypass->dcfclk_bypass]);
remaining_buffer -= chars_printed;
*log_info->sum_chars_printed += chars_printed;
log_info->pBuf += chars_printed;
chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dprefclk,%d,N/A,N/A,%s\n",
regs_and_bypass->dprefclk,
bypass_clks[(int) regs_and_bypass->dprefclk_bypass]);
remaining_buffer -= chars_printed;
*log_info->sum_chars_printed += chars_printed;
log_info->pBuf += chars_printed;
chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dispclk,%d,N/A,N/A,%s\n",
regs_and_bypass->dispclk,
bypass_clks[(int) regs_and_bypass->dispclk_bypass]);
remaining_buffer -= chars_printed;
*log_info->sum_chars_printed += chars_printed;
log_info->pBuf += chars_printed;
//split
chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "SPLIT\n");
remaining_buffer -= chars_printed;
*log_info->sum_chars_printed += chars_printed;
log_info->pBuf += chars_printed;
// REGISTER VALUES
chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "reg_name,value,clk_type\n");
remaining_buffer -= chars_printed;
*log_info->sum_chars_printed += chars_printed;
log_info->pBuf += chars_printed;
chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_CURRENT_CNT,%d,dcfclk\n",
internal.CLK1_CLK3_CURRENT_CNT);
remaining_buffer -= chars_printed;
*log_info->sum_chars_printed += chars_printed;
log_info->pBuf += chars_printed;
chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_DS_CNTL,%d,dcf_deep_sleep_divider\n",
internal.CLK1_CLK3_DS_CNTL);
remaining_buffer -= chars_printed;
*log_info->sum_chars_printed += chars_printed;
log_info->pBuf += chars_printed;
chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_ALLOW_DS,%d,dcf_deep_sleep_allow\n",
internal.CLK1_CLK3_ALLOW_DS);
remaining_buffer -= chars_printed;
*log_info->sum_chars_printed += chars_printed;
log_info->pBuf += chars_printed;
chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_CURRENT_CNT,%d,dprefclk\n",
internal.CLK1_CLK2_CURRENT_CNT);
remaining_buffer -= chars_printed;
*log_info->sum_chars_printed += chars_printed;
log_info->pBuf += chars_printed;
chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_CURRENT_CNT,%d,dispclk\n",
internal.CLK1_CLK0_CURRENT_CNT);
remaining_buffer -= chars_printed;
*log_info->sum_chars_printed += chars_printed;
log_info->pBuf += chars_printed;
chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_CURRENT_CNT,%d,dppclk\n",
internal.CLK1_CLK1_CURRENT_CNT);
remaining_buffer -= chars_printed;
*log_info->sum_chars_printed += chars_printed;
log_info->pBuf += chars_printed;
chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_BYPASS_CNTL,%d,dcfclk_bypass\n",
internal.CLK1_CLK3_BYPASS_CNTL);
remaining_buffer -= chars_printed;
*log_info->sum_chars_printed += chars_printed;
log_info->pBuf += chars_printed;
chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_BYPASS_CNTL,%d,dprefclk_bypass\n",
internal.CLK1_CLK2_BYPASS_CNTL);
remaining_buffer -= chars_printed;
*log_info->sum_chars_printed += chars_printed;
log_info->pBuf += chars_printed;
chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_BYPASS_CNTL,%d,dispclk_bypass\n",
internal.CLK1_CLK0_BYPASS_CNTL);
remaining_buffer -= chars_printed;
*log_info->sum_chars_printed += chars_printed;
log_info->pBuf += chars_printed;
chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_BYPASS_CNTL,%d,dppclk_bypass\n",
internal.CLK1_CLK1_BYPASS_CNTL);
remaining_buffer -= chars_printed;
*log_info->sum_chars_printed += chars_printed;
log_info->pBuf += chars_printed;
}
}
/* This function produce translated logical clk state values*/
void rn_get_clk_states(struct clk_mgr *clk_mgr_base, struct clk_states *s)
{
struct clk_state_registers_and_bypass sb = { 0 };
struct clk_log_info log_info = { 0 };
rn_dump_clk_registers(&sb, clk_mgr_base, &log_info);
s->dprefclk_khz = sb.dprefclk * 1000;
}
void rn_enable_pme_wa(struct clk_mgr *clk_mgr_base)
{
struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
rn_vbios_smu_enable_pme_wa(clk_mgr);
}
void rn_init_clocks(struct clk_mgr *clk_mgr)
{
memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks));
// Assumption is that boot state always supports pstate
clk_mgr->clks.p_state_change_support = true;
clk_mgr->clks.prev_p_state_change_support = true;
clk_mgr->clks.pwr_state = DCN_PWR_STATE_UNKNOWN;
}
static void build_watermark_ranges(struct clk_bw_params *bw_params, struct pp_smu_wm_range_sets *ranges)
{
int i, num_valid_sets;
num_valid_sets = 0;
for (i = 0; i < WM_SET_COUNT; i++) {
/* skip empty entries, the smu array has no holes*/
if (!bw_params->wm_table.entries[i].valid)
continue;
ranges->reader_wm_sets[num_valid_sets].wm_inst = bw_params->wm_table.entries[i].wm_inst;
ranges->reader_wm_sets[num_valid_sets].wm_type = bw_params->wm_table.entries[i].wm_type;
/* We will not select WM based on fclk, so leave it as unconstrained */
ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
/* dcfclk wil be used to select WM*/
if (ranges->reader_wm_sets[num_valid_sets].wm_type == WM_TYPE_PSTATE_CHG) {
if (i == 0)
ranges->reader_wm_sets[num_valid_sets].min_drain_clk_mhz = 0;
else {
/* add 1 to make it non-overlapping with next lvl */
ranges->reader_wm_sets[num_valid_sets].min_drain_clk_mhz = bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1;
}
ranges->reader_wm_sets[num_valid_sets].max_drain_clk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
} else {
/* unconstrained for memory retraining */
ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
/* Modify previous watermark range to cover up to max */
ranges->reader_wm_sets[num_valid_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
}
num_valid_sets++;
}
ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
ranges->num_reader_wm_sets = num_valid_sets;
/* modify the min and max to make sure we cover the whole range*/
ranges->reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges->reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
/* This is for writeback only, does not matter currently as no writeback support*/
ranges->num_writer_wm_sets = 1;
ranges->writer_wm_sets[0].wm_inst = WM_A;
ranges->writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges->writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
ranges->writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges->writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
}
static void rn_notify_wm_ranges(struct clk_mgr *clk_mgr_base)
{
struct dc_debug_options *debug = &clk_mgr_base->ctx->dc->debug;
struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
struct pp_smu_funcs *pp_smu = clk_mgr->pp_smu;
if (!debug->disable_pplib_wm_range) {
build_watermark_ranges(clk_mgr_base->bw_params, &clk_mgr_base->ranges);
/* Notify PP Lib/SMU which Watermarks to use for which clock ranges */
if (pp_smu && pp_smu->rn_funcs.set_wm_ranges)
pp_smu->rn_funcs.set_wm_ranges(&pp_smu->rn_funcs.pp_smu, &clk_mgr_base->ranges);
}
}
static bool rn_are_clock_states_equal(struct dc_clocks *a,
struct dc_clocks *b)
{
if (a->dispclk_khz != b->dispclk_khz)
return false;
else if (a->dppclk_khz != b->dppclk_khz)
return false;
else if (a->dcfclk_khz != b->dcfclk_khz)
return false;
else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz)
return false;
return true;
}
static struct clk_mgr_funcs dcn21_funcs = {
.get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
.update_clocks = rn_update_clocks,
.init_clocks = rn_init_clocks,
.enable_pme_wa = rn_enable_pme_wa,
.are_clock_states_equal = rn_are_clock_states_equal,
.notify_wm_ranges = rn_notify_wm_ranges
};
static struct clk_bw_params rn_bw_params = {
.vram_type = Ddr4MemType,
.num_channels = 1,
.clk_table = {
.entries = {
{
.voltage = 0,
.dcfclk_mhz = 400,
.fclk_mhz = 400,
.memclk_mhz = 800,
.socclk_mhz = 0,
},
{
.voltage = 0,
.dcfclk_mhz = 483,
.fclk_mhz = 800,
.memclk_mhz = 1600,
.socclk_mhz = 0,
},
{
.voltage = 0,
.dcfclk_mhz = 602,
.fclk_mhz = 1067,
.memclk_mhz = 1067,
.socclk_mhz = 0,
},
{
.voltage = 0,
.dcfclk_mhz = 738,
.fclk_mhz = 1333,
.memclk_mhz = 1600,
.socclk_mhz = 0,
},
},
.num_entries = 4,
},
};
static struct wm_table ddr4_wm_table = {
.entries = {
{
.wm_inst = WM_A,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.72,
.sr_exit_time_us = 6.09,
.sr_enter_plus_exit_time_us = 7.14,
.valid = true,
},
{
.wm_inst = WM_B,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.72,
.sr_exit_time_us = 10.12,
.sr_enter_plus_exit_time_us = 11.48,
.valid = true,
},
{
.wm_inst = WM_C,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.72,
.sr_exit_time_us = 10.12,
.sr_enter_plus_exit_time_us = 11.48,
.valid = true,
},
{
.wm_inst = WM_D,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.72,
.sr_exit_time_us = 10.12,
.sr_enter_plus_exit_time_us = 11.48,
.valid = true,
},
}
};
static struct wm_table lpddr4_wm_table = {
.entries = {
{
.wm_inst = WM_A,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.65333,
.sr_exit_time_us = 5.32,
.sr_enter_plus_exit_time_us = 6.38,
.valid = true,
},
{
.wm_inst = WM_B,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.65333,
.sr_exit_time_us = 9.82,
.sr_enter_plus_exit_time_us = 11.196,
.valid = true,
},
{
.wm_inst = WM_C,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.65333,
.sr_exit_time_us = 9.89,
.sr_enter_plus_exit_time_us = 11.24,
.valid = true,
},
{
.wm_inst = WM_D,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.65333,
.sr_exit_time_us = 9.748,
.sr_enter_plus_exit_time_us = 11.102,
.valid = true,
},
}
};
static unsigned int find_dcfclk_for_voltage(struct dpm_clocks *clock_table, unsigned int voltage)
{
int i;
for (i = 0; i < PP_SMU_NUM_DCFCLK_DPM_LEVELS; i++) {
if (clock_table->DcfClocks[i].Vol == voltage)
return clock_table->DcfClocks[i].Freq;
}
ASSERT(0);
return 0;
}
static void rn_clk_mgr_helper_populate_bw_params(struct clk_bw_params *bw_params, struct dpm_clocks *clock_table, struct integrated_info *bios_info)
{
int i, j = 0;
j = -1;
ASSERT(PP_SMU_NUM_FCLK_DPM_LEVELS <= MAX_NUM_DPM_LVL);
/* Find lowest DPM, FCLK is filled in reverse order*/
for (i = PP_SMU_NUM_FCLK_DPM_LEVELS - 1; i >= 0; i--) {
if (clock_table->FClocks[i].Freq != 0 && clock_table->FClocks[i].Vol != 0) {
j = i;
break;
}
}
if (j == -1) {
/* clock table is all 0s, just use our own hardcode */
ASSERT(0);
return;
}
bw_params->clk_table.num_entries = j + 1;
for (i = 0; i < bw_params->clk_table.num_entries; i++, j--) {
bw_params->clk_table.entries[i].fclk_mhz = clock_table->FClocks[j].Freq;
bw_params->clk_table.entries[i].memclk_mhz = clock_table->MemClocks[j].Freq;
bw_params->clk_table.entries[i].voltage = clock_table->FClocks[j].Vol;
bw_params->clk_table.entries[i].dcfclk_mhz = find_dcfclk_for_voltage(clock_table, clock_table->FClocks[j].Vol);
}
bw_params->vram_type = bios_info->memory_type;
bw_params->num_channels = bios_info->ma_channel_number;
for (i = 0; i < WM_SET_COUNT; i++) {
bw_params->wm_table.entries[i].wm_inst = i;
if (i >= bw_params->clk_table.num_entries) {
bw_params->wm_table.entries[i].valid = false;
continue;
}
bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
bw_params->wm_table.entries[i].valid = true;
}
if (bw_params->vram_type == LpDdr4MemType) {
/*
* WM set D will be re-purposed for memory retraining
*/
bw_params->wm_table.entries[WM_D].pstate_latency_us = LPDDR_MEM_RETRAIN_LATENCY;
bw_params->wm_table.entries[WM_D].wm_inst = WM_D;
bw_params->wm_table.entries[WM_D].wm_type = WM_TYPE_RETRAINING;
bw_params->wm_table.entries[WM_D].valid = true;
}
}
void rn_clk_mgr_construct(
struct dc_context *ctx,
struct clk_mgr_internal *clk_mgr,
struct pp_smu_funcs *pp_smu,
struct dccg *dccg)
{
struct dc_debug_options *debug = &ctx->dc->debug;
struct dpm_clocks clock_table = { 0 };
clk_mgr->base.ctx = ctx;
clk_mgr->base.funcs = &dcn21_funcs;
clk_mgr->pp_smu = pp_smu;
clk_mgr->dccg = dccg;
clk_mgr->dfs_bypass_disp_clk = 0;
clk_mgr->dprefclk_ss_percentage = 0;
clk_mgr->dprefclk_ss_divider = 1000;
clk_mgr->ss_on_dprefclk = false;
clk_mgr->dfs_ref_freq_khz = 48000;
clk_mgr->smu_ver = rn_vbios_smu_get_smu_version(clk_mgr);
if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment)) {
dcn21_funcs.update_clocks = dcn2_update_clocks_fpga;
clk_mgr->base.dentist_vco_freq_khz = 3600000;
} else {
struct clk_log_info log_info = {0};
clk_mgr->smu_ver = rn_vbios_smu_get_smu_version(clk_mgr);
/* SMU Version 55.51.0 and up no longer have an issue
* that needs to limit minimum dispclk */
if (clk_mgr->smu_ver >= SMU_VER_55_51_0)
debug->min_disp_clk_khz = 0;
/* TODO: Check we get what we expect during bringup */
clk_mgr->base.dentist_vco_freq_khz = get_vco_frequency_from_reg(clk_mgr);
/* in case we don't get a value from the register, use default */
if (clk_mgr->base.dentist_vco_freq_khz == 0)
clk_mgr->base.dentist_vco_freq_khz = 3600000;
if (ctx->dc_bios->integrated_info->memory_type == LpDdr4MemType) {
rn_bw_params.wm_table = lpddr4_wm_table;
} else {
rn_bw_params.wm_table = ddr4_wm_table;
}
/* Saved clocks configured at boot for debug purposes */
rn_dump_clk_registers(&clk_mgr->base.boot_snapshot, &clk_mgr->base, &log_info);
}
clk_mgr->base.dprefclk_khz = 600000;
dce_clock_read_ss_info(clk_mgr);
clk_mgr->base.bw_params = &rn_bw_params;
if (pp_smu && pp_smu->rn_funcs.get_dpm_clock_table) {
pp_smu->rn_funcs.get_dpm_clock_table(&pp_smu->rn_funcs.pp_smu, &clock_table);
if (ctx->dc_bios && ctx->dc_bios->integrated_info) {
rn_clk_mgr_helper_populate_bw_params (clk_mgr->base.bw_params, &clock_table, ctx->dc_bios->integrated_info);
}
}
if (!IS_FPGA_MAXIMUS_DC(ctx->dce_environment) && clk_mgr->smu_ver >= 0x00371500) {
/* enable powerfeatures when displaycount goes to 0 */
rn_vbios_smu_enable_48mhz_tmdp_refclk_pwrdwn(clk_mgr, !debug->disable_48mhz_pwrdwn);
}
}