blob: 119dddb752b2892ff81a7ab7ce43011eef056b35 [file] [log] [blame]
/*
* Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/seq_file.h>
#include <linux/fs.h>
#include <linux/delay.h>
#include <linux/root_dev.h>
#include <linux/console.h>
#include <linux/module.h>
#include <linux/cpu.h>
#include <linux/of_fdt.h>
#include <linux/cache.h>
#include <asm/sections.h>
#include <asm/arcregs.h>
#include <asm/tlb.h>
#include <asm/setup.h>
#include <asm/page.h>
#include <asm/irq.h>
#include <asm/unwind.h>
#include <asm/clk.h>
#include <asm/mach_desc.h>
#define FIX_PTR(x) __asm__ __volatile__(";" : "+r"(x))
int running_on_hw = 1; /* vs. on ISS */
/* Part of U-boot ABI: see head.S */
int __initdata uboot_tag;
char __initdata *uboot_arg;
const struct machine_desc *machine_desc;
struct task_struct *_current_task[NR_CPUS]; /* For stack switching */
struct cpuinfo_arc cpuinfo_arc700[NR_CPUS];
static void read_arc_build_cfg_regs(void)
{
struct bcr_perip uncached_space;
struct cpuinfo_arc *cpu = &cpuinfo_arc700[smp_processor_id()];
FIX_PTR(cpu);
READ_BCR(AUX_IDENTITY, cpu->core);
cpu->timers = read_aux_reg(ARC_REG_TIMERS_BCR);
cpu->vec_base = read_aux_reg(AUX_INTR_VEC_BASE);
READ_BCR(ARC_REG_D_UNCACH_BCR, uncached_space);
cpu->uncached_base = uncached_space.start << 24;
cpu->extn.mul = read_aux_reg(ARC_REG_MUL_BCR);
cpu->extn.swap = read_aux_reg(ARC_REG_SWAP_BCR);
cpu->extn.norm = read_aux_reg(ARC_REG_NORM_BCR);
cpu->extn.minmax = read_aux_reg(ARC_REG_MIXMAX_BCR);
cpu->extn.barrel = read_aux_reg(ARC_REG_BARREL_BCR);
READ_BCR(ARC_REG_MAC_BCR, cpu->extn_mac_mul);
cpu->extn.ext_arith = read_aux_reg(ARC_REG_EXTARITH_BCR);
cpu->extn.crc = read_aux_reg(ARC_REG_CRC_BCR);
/* Note that we read the CCM BCRs independent of kernel config
* This is to catch the cases where user doesn't know that
* CCMs are present in hardware build
*/
{
struct bcr_iccm iccm;
struct bcr_dccm dccm;
struct bcr_dccm_base dccm_base;
unsigned int bcr_32bit_val;
bcr_32bit_val = read_aux_reg(ARC_REG_ICCM_BCR);
if (bcr_32bit_val) {
iccm = *((struct bcr_iccm *)&bcr_32bit_val);
cpu->iccm.base_addr = iccm.base << 16;
cpu->iccm.sz = 0x2000 << (iccm.sz - 1);
}
bcr_32bit_val = read_aux_reg(ARC_REG_DCCM_BCR);
if (bcr_32bit_val) {
dccm = *((struct bcr_dccm *)&bcr_32bit_val);
cpu->dccm.sz = 0x800 << (dccm.sz);
READ_BCR(ARC_REG_DCCMBASE_BCR, dccm_base);
cpu->dccm.base_addr = dccm_base.addr << 8;
}
}
READ_BCR(ARC_REG_XY_MEM_BCR, cpu->extn_xymem);
read_decode_mmu_bcr();
read_decode_cache_bcr();
READ_BCR(ARC_REG_FP_BCR, cpu->fp);
READ_BCR(ARC_REG_DPFP_BCR, cpu->dpfp);
}
static const struct cpuinfo_data arc_cpu_tbl[] = {
{ {0x10, "ARCTangent A5"}, 0x1F},
{ {0x20, "ARC 600" }, 0x2F},
{ {0x30, "ARC 700" }, 0x33},
{ {0x34, "ARC 700 R4.10"}, 0x34},
{ {0x00, NULL } }
};
static char *arc_cpu_mumbojumbo(int cpu_id, char *buf, int len)
{
int n = 0;
struct cpuinfo_arc *cpu = &cpuinfo_arc700[cpu_id];
struct bcr_identity *core = &cpu->core;
const struct cpuinfo_data *tbl;
int be = 0;
#ifdef CONFIG_CPU_BIG_ENDIAN
be = 1;
#endif
FIX_PTR(cpu);
n += scnprintf(buf + n, len - n,
"\nARC IDENTITY\t: Family [%#02x]"
" Cpu-id [%#02x] Chip-id [%#4x]\n",
core->family, core->cpu_id,
core->chip_id);
for (tbl = &arc_cpu_tbl[0]; tbl->info.id != 0; tbl++) {
if ((core->family >= tbl->info.id) &&
(core->family <= tbl->up_range)) {
n += scnprintf(buf + n, len - n,
"processor\t: %s %s\n",
tbl->info.str,
be ? "[Big Endian]" : "");
break;
}
}
if (tbl->info.id == 0)
n += scnprintf(buf + n, len - n, "UNKNOWN ARC Processor\n");
n += scnprintf(buf + n, len - n, "CPU speed\t: %u.%02u Mhz\n",
(unsigned int)(arc_get_core_freq() / 1000000),
(unsigned int)(arc_get_core_freq() / 10000) % 100);
n += scnprintf(buf + n, len - n, "Timers\t\t: %s %s\n",
(cpu->timers & 0x200) ? "TIMER1" : "",
(cpu->timers & 0x100) ? "TIMER0" : "");
n += scnprintf(buf + n, len - n, "Vect Tbl Base\t: %#x\n",
cpu->vec_base);
n += scnprintf(buf + n, len - n, "UNCACHED Base\t: %#x\n",
cpu->uncached_base);
return buf;
}
static const struct id_to_str mul_type_nm[] = {
{ 0x0, "N/A"},
{ 0x1, "32x32 (spl Result Reg)" },
{ 0x2, "32x32 (ANY Result Reg)" }
};
static const struct id_to_str mac_mul_nm[] = {
{0x0, "N/A"},
{0x1, "N/A"},
{0x2, "Dual 16 x 16"},
{0x3, "N/A"},
{0x4, "32x16"},
{0x5, "N/A"},
{0x6, "Dual 16x16 and 32x16"}
};
static char *arc_extn_mumbojumbo(int cpu_id, char *buf, int len)
{
int n = 0;
struct cpuinfo_arc *cpu = &cpuinfo_arc700[cpu_id];
FIX_PTR(cpu);
#define IS_AVAIL1(var, str) ((var) ? str : "")
#define IS_AVAIL2(var, str) ((var == 0x2) ? str : "")
#define IS_USED(cfg) (IS_ENABLED(cfg) ? "(in-use)" : "(not used)")
n += scnprintf(buf + n, len - n,
"Extn [700-Base]\t: %s %s %s %s %s %s\n",
IS_AVAIL2(cpu->extn.norm, "norm,"),
IS_AVAIL2(cpu->extn.barrel, "barrel-shift,"),
IS_AVAIL1(cpu->extn.swap, "swap,"),
IS_AVAIL2(cpu->extn.minmax, "minmax,"),
IS_AVAIL1(cpu->extn.crc, "crc,"),
IS_AVAIL2(cpu->extn.ext_arith, "ext-arith"));
n += scnprintf(buf + n, len - n, "Extn [700-MPY]\t: %s",
mul_type_nm[cpu->extn.mul].str);
n += scnprintf(buf + n, len - n, " MAC MPY: %s\n",
mac_mul_nm[cpu->extn_mac_mul.type].str);
if (cpu->core.family == 0x34) {
n += scnprintf(buf + n, len - n,
"Extn [700-4.10]\t: LLOCK/SCOND %s, SWAPE %s, RTSC %s\n",
IS_USED(CONFIG_ARC_HAS_LLSC),
IS_USED(CONFIG_ARC_HAS_SWAPE),
IS_USED(CONFIG_ARC_HAS_RTSC));
}
n += scnprintf(buf + n, len - n, "Extn [CCM]\t: %s",
!(cpu->dccm.sz || cpu->iccm.sz) ? "N/A" : "");
if (cpu->dccm.sz)
n += scnprintf(buf + n, len - n, "DCCM: @ %x, %d KB ",
cpu->dccm.base_addr, TO_KB(cpu->dccm.sz));
if (cpu->iccm.sz)
n += scnprintf(buf + n, len - n, "ICCM: @ %x, %d KB",
cpu->iccm.base_addr, TO_KB(cpu->iccm.sz));
n += scnprintf(buf + n, len - n, "\nExtn [FPU]\t: %s",
!(cpu->fp.ver || cpu->dpfp.ver) ? "N/A" : "");
if (cpu->fp.ver)
n += scnprintf(buf + n, len - n, "SP [v%d] %s",
cpu->fp.ver, cpu->fp.fast ? "(fast)" : "");
if (cpu->dpfp.ver)
n += scnprintf(buf + n, len - n, "DP [v%d] %s",
cpu->dpfp.ver, cpu->dpfp.fast ? "(fast)" : "");
n += scnprintf(buf + n, len - n, "\n");
n += scnprintf(buf + n, len - n,
"OS ABI [v3]\t: no-legacy-syscalls\n");
return buf;
}
static void arc_chk_ccms(void)
{
#if defined(CONFIG_ARC_HAS_DCCM) || defined(CONFIG_ARC_HAS_ICCM)
struct cpuinfo_arc *cpu = &cpuinfo_arc700[smp_processor_id()];
#ifdef CONFIG_ARC_HAS_DCCM
/*
* DCCM can be arbit placed in hardware.
* Make sure it's placement/sz matches what Linux is built with
*/
if ((unsigned int)__arc_dccm_base != cpu->dccm.base_addr)
panic("Linux built with incorrect DCCM Base address\n");
if (CONFIG_ARC_DCCM_SZ != cpu->dccm.sz)
panic("Linux built with incorrect DCCM Size\n");
#endif
#ifdef CONFIG_ARC_HAS_ICCM
if (CONFIG_ARC_ICCM_SZ != cpu->iccm.sz)
panic("Linux built with incorrect ICCM Size\n");
#endif
#endif
}
/*
* Ensure that FP hardware and kernel config match
* -If hardware contains DPFP, kernel needs to save/restore FPU state
* across context switches
* -If hardware lacks DPFP, but kernel configured to save FPU state then
* kernel trying to access non-existant DPFP regs will crash
*
* We only check for Dbl precision Floating Point, because only DPFP
* hardware has dedicated regs which need to be saved/restored on ctx-sw
* (Single Precision uses core regs), thus kernel is kind of oblivious to it
*/
static void arc_chk_fpu(void)
{
struct cpuinfo_arc *cpu = &cpuinfo_arc700[smp_processor_id()];
if (cpu->dpfp.ver) {
#ifndef CONFIG_ARC_FPU_SAVE_RESTORE
pr_warn("DPFP support broken in this kernel...\n");
#endif
} else {
#ifdef CONFIG_ARC_FPU_SAVE_RESTORE
panic("H/w lacks DPFP support, apps won't work\n");
#endif
}
}
/*
* Initialize and setup the processor core
* This is called by all the CPUs thus should not do special case stuff
* such as only for boot CPU etc
*/
void setup_processor(void)
{
char str[512];
int cpu_id = smp_processor_id();
read_arc_build_cfg_regs();
arc_init_IRQ();
printk(arc_cpu_mumbojumbo(cpu_id, str, sizeof(str)));
arc_mmu_init();
arc_cache_init();
arc_chk_ccms();
printk(arc_extn_mumbojumbo(cpu_id, str, sizeof(str)));
#ifdef CONFIG_SMP
printk(arc_platform_smp_cpuinfo());
#endif
arc_chk_fpu();
}
static inline int is_kernel(unsigned long addr)
{
if (addr >= (unsigned long)_stext && addr <= (unsigned long)_end)
return 1;
return 0;
}
void __init setup_arch(char **cmdline_p)
{
/* make sure that uboot passed pointer to cmdline/dtb is valid */
if (uboot_tag && is_kernel((unsigned long)uboot_arg))
panic("Invalid uboot arg\n");
/* See if u-boot passed an external Device Tree blob */
machine_desc = setup_machine_fdt(uboot_arg); /* uboot_tag == 2 */
if (!machine_desc) {
/* No, so try the embedded one */
machine_desc = setup_machine_fdt(__dtb_start);
if (!machine_desc)
panic("Embedded DT invalid\n");
/*
* If we are here, it is established that @uboot_arg didn't
* point to DT blob. Instead if u-boot says it is cmdline,
* Appent to embedded DT cmdline.
* setup_machine_fdt() would have populated @boot_command_line
*/
if (uboot_tag == 1) {
/* Ensure a whitespace between the 2 cmdlines */
strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
strlcat(boot_command_line, uboot_arg,
COMMAND_LINE_SIZE);
}
}
/* Save unparsed command line copy for /proc/cmdline */
*cmdline_p = boot_command_line;
/* To force early parsing of things like mem=xxx */
parse_early_param();
/* Platform/board specific: e.g. early console registration */
if (machine_desc->init_early)
machine_desc->init_early();
setup_processor();
#ifdef CONFIG_SMP
smp_init_cpus();
#endif
setup_arch_memory();
/* copy flat DT out of .init and then unflatten it */
unflatten_and_copy_device_tree();
/* Can be issue if someone passes cmd line arg "ro"
* But that is unlikely so keeping it as it is
*/
root_mountflags &= ~MS_RDONLY;
#if defined(CONFIG_VT) && defined(CONFIG_DUMMY_CONSOLE)
conswitchp = &dummy_con;
#endif
arc_unwind_init();
arc_unwind_setup();
}
static int __init customize_machine(void)
{
/* Add platform devices */
if (machine_desc->init_machine)
machine_desc->init_machine();
return 0;
}
arch_initcall(customize_machine);
static int __init init_late_machine(void)
{
if (machine_desc->init_late)
machine_desc->init_late();
return 0;
}
late_initcall(init_late_machine);
/*
* Get CPU information for use by the procfs.
*/
#define cpu_to_ptr(c) ((void *)(0xFFFF0000 | (unsigned int)(c)))
#define ptr_to_cpu(p) (~0xFFFF0000UL & (unsigned int)(p))
static int show_cpuinfo(struct seq_file *m, void *v)
{
char *str;
int cpu_id = ptr_to_cpu(v);
str = (char *)__get_free_page(GFP_TEMPORARY);
if (!str)
goto done;
seq_printf(m, arc_cpu_mumbojumbo(cpu_id, str, PAGE_SIZE));
seq_printf(m, "Bogo MIPS : \t%lu.%02lu\n",
loops_per_jiffy / (500000 / HZ),
(loops_per_jiffy / (5000 / HZ)) % 100);
seq_printf(m, arc_mmu_mumbojumbo(cpu_id, str, PAGE_SIZE));
seq_printf(m, arc_cache_mumbojumbo(cpu_id, str, PAGE_SIZE));
seq_printf(m, arc_extn_mumbojumbo(cpu_id, str, PAGE_SIZE));
#ifdef CONFIG_SMP
seq_printf(m, arc_platform_smp_cpuinfo());
#endif
free_page((unsigned long)str);
done:
seq_printf(m, "\n\n");
return 0;
}
static void *c_start(struct seq_file *m, loff_t *pos)
{
/*
* Callback returns cpu-id to iterator for show routine, NULL to stop.
* However since NULL is also a valid cpu-id (0), we use a round-about
* way to pass it w/o having to kmalloc/free a 2 byte string.
* Encode cpu-id as 0xFFcccc, which is decoded by show routine.
*/
return *pos < num_possible_cpus() ? cpu_to_ptr(*pos) : NULL;
}
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
{
++*pos;
return c_start(m, pos);
}
static void c_stop(struct seq_file *m, void *v)
{
}
const struct seq_operations cpuinfo_op = {
.start = c_start,
.next = c_next,
.stop = c_stop,
.show = show_cpuinfo
};
static DEFINE_PER_CPU(struct cpu, cpu_topology);
static int __init topology_init(void)
{
int cpu;
for_each_present_cpu(cpu)
register_cpu(&per_cpu(cpu_topology, cpu), cpu);
return 0;
}
subsys_initcall(topology_init);