blob: 6d16bea94e1cd1cac5c102efa8b50290c2b4e218 [file] [log] [blame]
/*
* Copyright (C) 2009 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/sort.h>
#include "ctree.h"
#include "delayed-ref.h"
#include "transaction.h"
struct kmem_cache *btrfs_delayed_ref_head_cachep;
struct kmem_cache *btrfs_delayed_tree_ref_cachep;
struct kmem_cache *btrfs_delayed_data_ref_cachep;
struct kmem_cache *btrfs_delayed_extent_op_cachep;
/*
* delayed back reference update tracking. For subvolume trees
* we queue up extent allocations and backref maintenance for
* delayed processing. This avoids deep call chains where we
* add extents in the middle of btrfs_search_slot, and it allows
* us to buffer up frequently modified backrefs in an rb tree instead
* of hammering updates on the extent allocation tree.
*/
/*
* compare two delayed tree backrefs with same bytenr and type
*/
static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref2,
struct btrfs_delayed_tree_ref *ref1, int type)
{
if (type == BTRFS_TREE_BLOCK_REF_KEY) {
if (ref1->root < ref2->root)
return -1;
if (ref1->root > ref2->root)
return 1;
} else {
if (ref1->parent < ref2->parent)
return -1;
if (ref1->parent > ref2->parent)
return 1;
}
return 0;
}
/*
* compare two delayed data backrefs with same bytenr and type
*/
static int comp_data_refs(struct btrfs_delayed_data_ref *ref2,
struct btrfs_delayed_data_ref *ref1)
{
if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
if (ref1->root < ref2->root)
return -1;
if (ref1->root > ref2->root)
return 1;
if (ref1->objectid < ref2->objectid)
return -1;
if (ref1->objectid > ref2->objectid)
return 1;
if (ref1->offset < ref2->offset)
return -1;
if (ref1->offset > ref2->offset)
return 1;
} else {
if (ref1->parent < ref2->parent)
return -1;
if (ref1->parent > ref2->parent)
return 1;
}
return 0;
}
/*
* entries in the rb tree are ordered by the byte number of the extent,
* type of the delayed backrefs and content of delayed backrefs.
*/
static int comp_entry(struct btrfs_delayed_ref_node *ref2,
struct btrfs_delayed_ref_node *ref1,
bool compare_seq)
{
if (ref1->bytenr < ref2->bytenr)
return -1;
if (ref1->bytenr > ref2->bytenr)
return 1;
if (ref1->is_head && ref2->is_head)
return 0;
if (ref2->is_head)
return -1;
if (ref1->is_head)
return 1;
if (ref1->type < ref2->type)
return -1;
if (ref1->type > ref2->type)
return 1;
if (ref1->no_quota > ref2->no_quota)
return 1;
if (ref1->no_quota < ref2->no_quota)
return -1;
/* merging of sequenced refs is not allowed */
if (compare_seq) {
if (ref1->seq < ref2->seq)
return -1;
if (ref1->seq > ref2->seq)
return 1;
}
if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
ref1->type == BTRFS_SHARED_BLOCK_REF_KEY) {
return comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref2),
btrfs_delayed_node_to_tree_ref(ref1),
ref1->type);
} else if (ref1->type == BTRFS_EXTENT_DATA_REF_KEY ||
ref1->type == BTRFS_SHARED_DATA_REF_KEY) {
return comp_data_refs(btrfs_delayed_node_to_data_ref(ref2),
btrfs_delayed_node_to_data_ref(ref1));
}
BUG();
return 0;
}
/*
* insert a new ref into the rbtree. This returns any existing refs
* for the same (bytenr,parent) tuple, or NULL if the new node was properly
* inserted.
*/
static struct btrfs_delayed_ref_node *tree_insert(struct rb_root *root,
struct rb_node *node)
{
struct rb_node **p = &root->rb_node;
struct rb_node *parent_node = NULL;
struct btrfs_delayed_ref_node *entry;
struct btrfs_delayed_ref_node *ins;
int cmp;
ins = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
while (*p) {
parent_node = *p;
entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
rb_node);
cmp = comp_entry(entry, ins, 1);
if (cmp < 0)
p = &(*p)->rb_left;
else if (cmp > 0)
p = &(*p)->rb_right;
else
return entry;
}
rb_link_node(node, parent_node, p);
rb_insert_color(node, root);
return NULL;
}
/* insert a new ref to head ref rbtree */
static struct btrfs_delayed_ref_head *htree_insert(struct rb_root *root,
struct rb_node *node)
{
struct rb_node **p = &root->rb_node;
struct rb_node *parent_node = NULL;
struct btrfs_delayed_ref_head *entry;
struct btrfs_delayed_ref_head *ins;
u64 bytenr;
ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
bytenr = ins->node.bytenr;
while (*p) {
parent_node = *p;
entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
href_node);
if (bytenr < entry->node.bytenr)
p = &(*p)->rb_left;
else if (bytenr > entry->node.bytenr)
p = &(*p)->rb_right;
else
return entry;
}
rb_link_node(node, parent_node, p);
rb_insert_color(node, root);
return NULL;
}
/*
* find an head entry based on bytenr. This returns the delayed ref
* head if it was able to find one, or NULL if nothing was in that spot.
* If return_bigger is given, the next bigger entry is returned if no exact
* match is found.
*/
static struct btrfs_delayed_ref_head *
find_ref_head(struct rb_root *root, u64 bytenr,
int return_bigger)
{
struct rb_node *n;
struct btrfs_delayed_ref_head *entry;
n = root->rb_node;
entry = NULL;
while (n) {
entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
if (bytenr < entry->node.bytenr)
n = n->rb_left;
else if (bytenr > entry->node.bytenr)
n = n->rb_right;
else
return entry;
}
if (entry && return_bigger) {
if (bytenr > entry->node.bytenr) {
n = rb_next(&entry->href_node);
if (!n)
n = rb_first(root);
entry = rb_entry(n, struct btrfs_delayed_ref_head,
href_node);
return entry;
}
return entry;
}
return NULL;
}
int btrfs_delayed_ref_lock(struct btrfs_trans_handle *trans,
struct btrfs_delayed_ref_head *head)
{
struct btrfs_delayed_ref_root *delayed_refs;
delayed_refs = &trans->transaction->delayed_refs;
assert_spin_locked(&delayed_refs->lock);
if (mutex_trylock(&head->mutex))
return 0;
atomic_inc(&head->node.refs);
spin_unlock(&delayed_refs->lock);
mutex_lock(&head->mutex);
spin_lock(&delayed_refs->lock);
if (!head->node.in_tree) {
mutex_unlock(&head->mutex);
btrfs_put_delayed_ref(&head->node);
return -EAGAIN;
}
btrfs_put_delayed_ref(&head->node);
return 0;
}
static inline void drop_delayed_ref(struct btrfs_trans_handle *trans,
struct btrfs_delayed_ref_root *delayed_refs,
struct btrfs_delayed_ref_head *head,
struct btrfs_delayed_ref_node *ref)
{
if (btrfs_delayed_ref_is_head(ref)) {
head = btrfs_delayed_node_to_head(ref);
rb_erase(&head->href_node, &delayed_refs->href_root);
} else {
assert_spin_locked(&head->lock);
rb_erase(&ref->rb_node, &head->ref_root);
}
ref->in_tree = 0;
btrfs_put_delayed_ref(ref);
atomic_dec(&delayed_refs->num_entries);
if (trans->delayed_ref_updates)
trans->delayed_ref_updates--;
}
static int merge_ref(struct btrfs_trans_handle *trans,
struct btrfs_delayed_ref_root *delayed_refs,
struct btrfs_delayed_ref_head *head,
struct btrfs_delayed_ref_node *ref, u64 seq)
{
struct rb_node *node;
int mod = 0;
int done = 0;
node = rb_next(&ref->rb_node);
while (!done && node) {
struct btrfs_delayed_ref_node *next;
next = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
node = rb_next(node);
if (seq && next->seq >= seq)
break;
if (comp_entry(ref, next, 0))
continue;
if (ref->action == next->action) {
mod = next->ref_mod;
} else {
if (ref->ref_mod < next->ref_mod) {
struct btrfs_delayed_ref_node *tmp;
tmp = ref;
ref = next;
next = tmp;
done = 1;
}
mod = -next->ref_mod;
}
drop_delayed_ref(trans, delayed_refs, head, next);
ref->ref_mod += mod;
if (ref->ref_mod == 0) {
drop_delayed_ref(trans, delayed_refs, head, ref);
done = 1;
} else {
/*
* You can't have multiples of the same ref on a tree
* block.
*/
WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
}
}
return done;
}
void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
struct btrfs_fs_info *fs_info,
struct btrfs_delayed_ref_root *delayed_refs,
struct btrfs_delayed_ref_head *head)
{
struct rb_node *node;
u64 seq = 0;
assert_spin_locked(&head->lock);
/*
* We don't have too much refs to merge in the case of delayed data
* refs.
*/
if (head->is_data)
return;
spin_lock(&fs_info->tree_mod_seq_lock);
if (!list_empty(&fs_info->tree_mod_seq_list)) {
struct seq_list *elem;
elem = list_first_entry(&fs_info->tree_mod_seq_list,
struct seq_list, list);
seq = elem->seq;
}
spin_unlock(&fs_info->tree_mod_seq_lock);
node = rb_first(&head->ref_root);
while (node) {
struct btrfs_delayed_ref_node *ref;
ref = rb_entry(node, struct btrfs_delayed_ref_node,
rb_node);
/* We can't merge refs that are outside of our seq count */
if (seq && ref->seq >= seq)
break;
if (merge_ref(trans, delayed_refs, head, ref, seq))
node = rb_first(&head->ref_root);
else
node = rb_next(&ref->rb_node);
}
}
int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info,
struct btrfs_delayed_ref_root *delayed_refs,
u64 seq)
{
struct seq_list *elem;
int ret = 0;
spin_lock(&fs_info->tree_mod_seq_lock);
if (!list_empty(&fs_info->tree_mod_seq_list)) {
elem = list_first_entry(&fs_info->tree_mod_seq_list,
struct seq_list, list);
if (seq >= elem->seq) {
pr_debug("holding back delayed_ref %#x.%x, lowest is %#x.%x (%p)\n",
(u32)(seq >> 32), (u32)seq,
(u32)(elem->seq >> 32), (u32)elem->seq,
delayed_refs);
ret = 1;
}
}
spin_unlock(&fs_info->tree_mod_seq_lock);
return ret;
}
struct btrfs_delayed_ref_head *
btrfs_select_ref_head(struct btrfs_trans_handle *trans)
{
struct btrfs_delayed_ref_root *delayed_refs;
struct btrfs_delayed_ref_head *head;
u64 start;
bool loop = false;
delayed_refs = &trans->transaction->delayed_refs;
again:
start = delayed_refs->run_delayed_start;
head = find_ref_head(&delayed_refs->href_root, start, 1);
if (!head && !loop) {
delayed_refs->run_delayed_start = 0;
start = 0;
loop = true;
head = find_ref_head(&delayed_refs->href_root, start, 1);
if (!head)
return NULL;
} else if (!head && loop) {
return NULL;
}
while (head->processing) {
struct rb_node *node;
node = rb_next(&head->href_node);
if (!node) {
if (loop)
return NULL;
delayed_refs->run_delayed_start = 0;
start = 0;
loop = true;
goto again;
}
head = rb_entry(node, struct btrfs_delayed_ref_head,
href_node);
}
head->processing = 1;
WARN_ON(delayed_refs->num_heads_ready == 0);
delayed_refs->num_heads_ready--;
delayed_refs->run_delayed_start = head->node.bytenr +
head->node.num_bytes;
return head;
}
/*
* helper function to update an extent delayed ref in the
* rbtree. existing and update must both have the same
* bytenr and parent
*
* This may free existing if the update cancels out whatever
* operation it was doing.
*/
static noinline void
update_existing_ref(struct btrfs_trans_handle *trans,
struct btrfs_delayed_ref_root *delayed_refs,
struct btrfs_delayed_ref_head *head,
struct btrfs_delayed_ref_node *existing,
struct btrfs_delayed_ref_node *update)
{
if (update->action != existing->action) {
/*
* this is effectively undoing either an add or a
* drop. We decrement the ref_mod, and if it goes
* down to zero we just delete the entry without
* every changing the extent allocation tree.
*/
existing->ref_mod--;
if (existing->ref_mod == 0)
drop_delayed_ref(trans, delayed_refs, head, existing);
else
WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
} else {
WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
/*
* the action on the existing ref matches
* the action on the ref we're trying to add.
* Bump the ref_mod by one so the backref that
* is eventually added/removed has the correct
* reference count
*/
existing->ref_mod += update->ref_mod;
}
}
/*
* helper function to update the accounting in the head ref
* existing and update must have the same bytenr
*/
static noinline void
update_existing_head_ref(struct btrfs_delayed_ref_node *existing,
struct btrfs_delayed_ref_node *update)
{
struct btrfs_delayed_ref_head *existing_ref;
struct btrfs_delayed_ref_head *ref;
existing_ref = btrfs_delayed_node_to_head(existing);
ref = btrfs_delayed_node_to_head(update);
BUG_ON(existing_ref->is_data != ref->is_data);
spin_lock(&existing_ref->lock);
if (ref->must_insert_reserved) {
/* if the extent was freed and then
* reallocated before the delayed ref
* entries were processed, we can end up
* with an existing head ref without
* the must_insert_reserved flag set.
* Set it again here
*/
existing_ref->must_insert_reserved = ref->must_insert_reserved;
/*
* update the num_bytes so we make sure the accounting
* is done correctly
*/
existing->num_bytes = update->num_bytes;
}
if (ref->extent_op) {
if (!existing_ref->extent_op) {
existing_ref->extent_op = ref->extent_op;
} else {
if (ref->extent_op->update_key) {
memcpy(&existing_ref->extent_op->key,
&ref->extent_op->key,
sizeof(ref->extent_op->key));
existing_ref->extent_op->update_key = 1;
}
if (ref->extent_op->update_flags) {
existing_ref->extent_op->flags_to_set |=
ref->extent_op->flags_to_set;
existing_ref->extent_op->update_flags = 1;
}
btrfs_free_delayed_extent_op(ref->extent_op);
}
}
/*
* update the reference mod on the head to reflect this new operation,
* only need the lock for this case cause we could be processing it
* currently, for refs we just added we know we're a-ok.
*/
existing->ref_mod += update->ref_mod;
spin_unlock(&existing_ref->lock);
}
/*
* helper function to actually insert a head node into the rbtree.
* this does all the dirty work in terms of maintaining the correct
* overall modification count.
*/
static noinline struct btrfs_delayed_ref_head *
add_delayed_ref_head(struct btrfs_fs_info *fs_info,
struct btrfs_trans_handle *trans,
struct btrfs_delayed_ref_node *ref, u64 bytenr,
u64 num_bytes, int action, int is_data)
{
struct btrfs_delayed_ref_head *existing;
struct btrfs_delayed_ref_head *head_ref = NULL;
struct btrfs_delayed_ref_root *delayed_refs;
int count_mod = 1;
int must_insert_reserved = 0;
/*
* the head node stores the sum of all the mods, so dropping a ref
* should drop the sum in the head node by one.
*/
if (action == BTRFS_UPDATE_DELAYED_HEAD)
count_mod = 0;
else if (action == BTRFS_DROP_DELAYED_REF)
count_mod = -1;
/*
* BTRFS_ADD_DELAYED_EXTENT means that we need to update
* the reserved accounting when the extent is finally added, or
* if a later modification deletes the delayed ref without ever
* inserting the extent into the extent allocation tree.
* ref->must_insert_reserved is the flag used to record
* that accounting mods are required.
*
* Once we record must_insert_reserved, switch the action to
* BTRFS_ADD_DELAYED_REF because other special casing is not required.
*/
if (action == BTRFS_ADD_DELAYED_EXTENT)
must_insert_reserved = 1;
else
must_insert_reserved = 0;
delayed_refs = &trans->transaction->delayed_refs;
/* first set the basic ref node struct up */
atomic_set(&ref->refs, 1);
ref->bytenr = bytenr;
ref->num_bytes = num_bytes;
ref->ref_mod = count_mod;
ref->type = 0;
ref->action = 0;
ref->is_head = 1;
ref->in_tree = 1;
ref->seq = 0;
head_ref = btrfs_delayed_node_to_head(ref);
head_ref->must_insert_reserved = must_insert_reserved;
head_ref->is_data = is_data;
head_ref->ref_root = RB_ROOT;
head_ref->processing = 0;
spin_lock_init(&head_ref->lock);
mutex_init(&head_ref->mutex);
trace_add_delayed_ref_head(ref, head_ref, action);
existing = htree_insert(&delayed_refs->href_root,
&head_ref->href_node);
if (existing) {
update_existing_head_ref(&existing->node, ref);
/*
* we've updated the existing ref, free the newly
* allocated ref
*/
kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
head_ref = existing;
} else {
delayed_refs->num_heads++;
delayed_refs->num_heads_ready++;
atomic_inc(&delayed_refs->num_entries);
trans->delayed_ref_updates++;
}
return head_ref;
}
/*
* helper to insert a delayed tree ref into the rbtree.
*/
static noinline void
add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
struct btrfs_trans_handle *trans,
struct btrfs_delayed_ref_head *head_ref,
struct btrfs_delayed_ref_node *ref, u64 bytenr,
u64 num_bytes, u64 parent, u64 ref_root, int level,
int action, int no_quota)
{
struct btrfs_delayed_ref_node *existing;
struct btrfs_delayed_tree_ref *full_ref;
struct btrfs_delayed_ref_root *delayed_refs;
u64 seq = 0;
if (action == BTRFS_ADD_DELAYED_EXTENT)
action = BTRFS_ADD_DELAYED_REF;
if (is_fstree(ref_root))
seq = atomic64_read(&fs_info->tree_mod_seq);
delayed_refs = &trans->transaction->delayed_refs;
/* first set the basic ref node struct up */
atomic_set(&ref->refs, 1);
ref->bytenr = bytenr;
ref->num_bytes = num_bytes;
ref->ref_mod = 1;
ref->action = action;
ref->is_head = 0;
ref->in_tree = 1;
ref->no_quota = no_quota;
ref->seq = seq;
full_ref = btrfs_delayed_node_to_tree_ref(ref);
full_ref->parent = parent;
full_ref->root = ref_root;
if (parent)
ref->type = BTRFS_SHARED_BLOCK_REF_KEY;
else
ref->type = BTRFS_TREE_BLOCK_REF_KEY;
full_ref->level = level;
trace_add_delayed_tree_ref(ref, full_ref, action);
spin_lock(&head_ref->lock);
existing = tree_insert(&head_ref->ref_root, &ref->rb_node);
if (existing) {
update_existing_ref(trans, delayed_refs, head_ref, existing,
ref);
/*
* we've updated the existing ref, free the newly
* allocated ref
*/
kmem_cache_free(btrfs_delayed_tree_ref_cachep, full_ref);
} else {
atomic_inc(&delayed_refs->num_entries);
trans->delayed_ref_updates++;
}
spin_unlock(&head_ref->lock);
}
/*
* helper to insert a delayed data ref into the rbtree.
*/
static noinline void
add_delayed_data_ref(struct btrfs_fs_info *fs_info,
struct btrfs_trans_handle *trans,
struct btrfs_delayed_ref_head *head_ref,
struct btrfs_delayed_ref_node *ref, u64 bytenr,
u64 num_bytes, u64 parent, u64 ref_root, u64 owner,
u64 offset, int action, int no_quota)
{
struct btrfs_delayed_ref_node *existing;
struct btrfs_delayed_data_ref *full_ref;
struct btrfs_delayed_ref_root *delayed_refs;
u64 seq = 0;
if (action == BTRFS_ADD_DELAYED_EXTENT)
action = BTRFS_ADD_DELAYED_REF;
delayed_refs = &trans->transaction->delayed_refs;
if (is_fstree(ref_root))
seq = atomic64_read(&fs_info->tree_mod_seq);
/* first set the basic ref node struct up */
atomic_set(&ref->refs, 1);
ref->bytenr = bytenr;
ref->num_bytes = num_bytes;
ref->ref_mod = 1;
ref->action = action;
ref->is_head = 0;
ref->in_tree = 1;
ref->no_quota = no_quota;
ref->seq = seq;
full_ref = btrfs_delayed_node_to_data_ref(ref);
full_ref->parent = parent;
full_ref->root = ref_root;
if (parent)
ref->type = BTRFS_SHARED_DATA_REF_KEY;
else
ref->type = BTRFS_EXTENT_DATA_REF_KEY;
full_ref->objectid = owner;
full_ref->offset = offset;
trace_add_delayed_data_ref(ref, full_ref, action);
spin_lock(&head_ref->lock);
existing = tree_insert(&head_ref->ref_root, &ref->rb_node);
if (existing) {
update_existing_ref(trans, delayed_refs, head_ref, existing,
ref);
/*
* we've updated the existing ref, free the newly
* allocated ref
*/
kmem_cache_free(btrfs_delayed_data_ref_cachep, full_ref);
} else {
atomic_inc(&delayed_refs->num_entries);
trans->delayed_ref_updates++;
}
spin_unlock(&head_ref->lock);
}
/*
* add a delayed tree ref. This does all of the accounting required
* to make sure the delayed ref is eventually processed before this
* transaction commits.
*/
int btrfs_add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
struct btrfs_trans_handle *trans,
u64 bytenr, u64 num_bytes, u64 parent,
u64 ref_root, int level, int action,
struct btrfs_delayed_extent_op *extent_op,
int no_quota)
{
struct btrfs_delayed_tree_ref *ref;
struct btrfs_delayed_ref_head *head_ref;
struct btrfs_delayed_ref_root *delayed_refs;
if (!is_fstree(ref_root) || !fs_info->quota_enabled)
no_quota = 0;
BUG_ON(extent_op && extent_op->is_data);
ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
if (!ref)
return -ENOMEM;
head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
if (!head_ref) {
kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
return -ENOMEM;
}
head_ref->extent_op = extent_op;
delayed_refs = &trans->transaction->delayed_refs;
spin_lock(&delayed_refs->lock);
/*
* insert both the head node and the new ref without dropping
* the spin lock
*/
head_ref = add_delayed_ref_head(fs_info, trans, &head_ref->node,
bytenr, num_bytes, action, 0);
add_delayed_tree_ref(fs_info, trans, head_ref, &ref->node, bytenr,
num_bytes, parent, ref_root, level, action,
no_quota);
spin_unlock(&delayed_refs->lock);
return 0;
}
/*
* add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
*/
int btrfs_add_delayed_data_ref(struct btrfs_fs_info *fs_info,
struct btrfs_trans_handle *trans,
u64 bytenr, u64 num_bytes,
u64 parent, u64 ref_root,
u64 owner, u64 offset, int action,
struct btrfs_delayed_extent_op *extent_op,
int no_quota)
{
struct btrfs_delayed_data_ref *ref;
struct btrfs_delayed_ref_head *head_ref;
struct btrfs_delayed_ref_root *delayed_refs;
if (!is_fstree(ref_root) || !fs_info->quota_enabled)
no_quota = 0;
BUG_ON(extent_op && !extent_op->is_data);
ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
if (!ref)
return -ENOMEM;
head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
if (!head_ref) {
kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
return -ENOMEM;
}
head_ref->extent_op = extent_op;
delayed_refs = &trans->transaction->delayed_refs;
spin_lock(&delayed_refs->lock);
/*
* insert both the head node and the new ref without dropping
* the spin lock
*/
head_ref = add_delayed_ref_head(fs_info, trans, &head_ref->node,
bytenr, num_bytes, action, 1);
add_delayed_data_ref(fs_info, trans, head_ref, &ref->node, bytenr,
num_bytes, parent, ref_root, owner, offset,
action, no_quota);
spin_unlock(&delayed_refs->lock);
return 0;
}
int btrfs_add_delayed_extent_op(struct btrfs_fs_info *fs_info,
struct btrfs_trans_handle *trans,
u64 bytenr, u64 num_bytes,
struct btrfs_delayed_extent_op *extent_op)
{
struct btrfs_delayed_ref_head *head_ref;
struct btrfs_delayed_ref_root *delayed_refs;
head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
if (!head_ref)
return -ENOMEM;
head_ref->extent_op = extent_op;
delayed_refs = &trans->transaction->delayed_refs;
spin_lock(&delayed_refs->lock);
add_delayed_ref_head(fs_info, trans, &head_ref->node, bytenr,
num_bytes, BTRFS_UPDATE_DELAYED_HEAD,
extent_op->is_data);
spin_unlock(&delayed_refs->lock);
return 0;
}
/*
* this does a simple search for the head node for a given extent.
* It must be called with the delayed ref spinlock held, and it returns
* the head node if any where found, or NULL if not.
*/
struct btrfs_delayed_ref_head *
btrfs_find_delayed_ref_head(struct btrfs_trans_handle *trans, u64 bytenr)
{
struct btrfs_delayed_ref_root *delayed_refs;
delayed_refs = &trans->transaction->delayed_refs;
return find_ref_head(&delayed_refs->href_root, bytenr, 0);
}
void btrfs_delayed_ref_exit(void)
{
if (btrfs_delayed_ref_head_cachep)
kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
if (btrfs_delayed_tree_ref_cachep)
kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
if (btrfs_delayed_data_ref_cachep)
kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
if (btrfs_delayed_extent_op_cachep)
kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
}
int btrfs_delayed_ref_init(void)
{
btrfs_delayed_ref_head_cachep = kmem_cache_create(
"btrfs_delayed_ref_head",
sizeof(struct btrfs_delayed_ref_head), 0,
SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
if (!btrfs_delayed_ref_head_cachep)
goto fail;
btrfs_delayed_tree_ref_cachep = kmem_cache_create(
"btrfs_delayed_tree_ref",
sizeof(struct btrfs_delayed_tree_ref), 0,
SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
if (!btrfs_delayed_tree_ref_cachep)
goto fail;
btrfs_delayed_data_ref_cachep = kmem_cache_create(
"btrfs_delayed_data_ref",
sizeof(struct btrfs_delayed_data_ref), 0,
SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
if (!btrfs_delayed_data_ref_cachep)
goto fail;
btrfs_delayed_extent_op_cachep = kmem_cache_create(
"btrfs_delayed_extent_op",
sizeof(struct btrfs_delayed_extent_op), 0,
SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
if (!btrfs_delayed_extent_op_cachep)
goto fail;
return 0;
fail:
btrfs_delayed_ref_exit();
return -ENOMEM;
}