Merge branch 'i2c/for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa/linux

Pull more i2c updates from Wolfram Sang:
 "Included are two bugfixes needing some bigger refactoring (sh_mobile:
  deferred probe with DMA, mv64xxx: fix offload support) and one
  deprecated driver removal I thought would go in via ppc but I
  misunderstood.  It has a proper ack from BenH"

* 'i2c/for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa/linux:
  i2c: sh_mobile: fix uninitialized var when debug is enabled
  macintosh: therm_pm72: delete deprecated driver
  i2c: sh_mobile: I2C_SH_MOBILE should depend on HAS_DMA
  i2c: sh_mobile: rework deferred probing
  i2c: sh_mobile: refactor DMA setup
  i2c: mv64xxx: rework offload support to fix several problems
  i2c: mv64xxx: use BIT() macro for register value definitions
diff --git a/drivers/i2c/busses/Kconfig b/drivers/i2c/busses/Kconfig
index 91a488c..31e8308 100644
--- a/drivers/i2c/busses/Kconfig
+++ b/drivers/i2c/busses/Kconfig
@@ -753,6 +753,7 @@
 
 config I2C_SH_MOBILE
 	tristate "SuperH Mobile I2C Controller"
+	depends on HAS_DMA
 	depends on SUPERH || ARCH_SHMOBILE || COMPILE_TEST
 	help
 	  If you say yes to this option, support will be included for the
diff --git a/drivers/i2c/busses/i2c-mv64xxx.c b/drivers/i2c/busses/i2c-mv64xxx.c
index 373f6d4..30059c1 100644
--- a/drivers/i2c/busses/i2c-mv64xxx.c
+++ b/drivers/i2c/busses/i2c-mv64xxx.c
@@ -30,12 +30,12 @@
 #define MV64XXX_I2C_BAUD_DIV_N(val)			(val & 0x7)
 #define MV64XXX_I2C_BAUD_DIV_M(val)			((val & 0xf) << 3)
 
-#define	MV64XXX_I2C_REG_CONTROL_ACK			0x00000004
-#define	MV64XXX_I2C_REG_CONTROL_IFLG			0x00000008
-#define	MV64XXX_I2C_REG_CONTROL_STOP			0x00000010
-#define	MV64XXX_I2C_REG_CONTROL_START			0x00000020
-#define	MV64XXX_I2C_REG_CONTROL_TWSIEN			0x00000040
-#define	MV64XXX_I2C_REG_CONTROL_INTEN			0x00000080
+#define	MV64XXX_I2C_REG_CONTROL_ACK			BIT(2)
+#define	MV64XXX_I2C_REG_CONTROL_IFLG			BIT(3)
+#define	MV64XXX_I2C_REG_CONTROL_STOP			BIT(4)
+#define	MV64XXX_I2C_REG_CONTROL_START			BIT(5)
+#define	MV64XXX_I2C_REG_CONTROL_TWSIEN			BIT(6)
+#define	MV64XXX_I2C_REG_CONTROL_INTEN			BIT(7)
 
 /* Ctlr status values */
 #define	MV64XXX_I2C_STATUS_BUS_ERR			0x00
@@ -68,19 +68,17 @@
 #define	MV64XXX_I2C_REG_BRIDGE_TIMING			0xe0
 
 /* Bridge Control values */
-#define	MV64XXX_I2C_BRIDGE_CONTROL_WR			0x00000001
-#define	MV64XXX_I2C_BRIDGE_CONTROL_RD			0x00000002
+#define	MV64XXX_I2C_BRIDGE_CONTROL_WR			BIT(0)
+#define	MV64XXX_I2C_BRIDGE_CONTROL_RD			BIT(1)
 #define	MV64XXX_I2C_BRIDGE_CONTROL_ADDR_SHIFT		2
-#define	MV64XXX_I2C_BRIDGE_CONTROL_ADDR_EXT		0x00001000
+#define	MV64XXX_I2C_BRIDGE_CONTROL_ADDR_EXT		BIT(12)
 #define	MV64XXX_I2C_BRIDGE_CONTROL_TX_SIZE_SHIFT	13
 #define	MV64XXX_I2C_BRIDGE_CONTROL_RX_SIZE_SHIFT	16
-#define	MV64XXX_I2C_BRIDGE_CONTROL_ENABLE		0x00080000
+#define	MV64XXX_I2C_BRIDGE_CONTROL_ENABLE		BIT(19)
+#define	MV64XXX_I2C_BRIDGE_CONTROL_REPEATED_START	BIT(20)
 
 /* Bridge Status values */
-#define	MV64XXX_I2C_BRIDGE_STATUS_ERROR			0x00000001
-#define	MV64XXX_I2C_STATUS_OFFLOAD_ERROR		0xf0000001
-#define	MV64XXX_I2C_STATUS_OFFLOAD_OK			0xf0000000
-
+#define	MV64XXX_I2C_BRIDGE_STATUS_ERROR			BIT(0)
 
 /* Driver states */
 enum {
@@ -99,14 +97,12 @@
 	MV64XXX_I2C_ACTION_INVALID,
 	MV64XXX_I2C_ACTION_CONTINUE,
 	MV64XXX_I2C_ACTION_SEND_RESTART,
-	MV64XXX_I2C_ACTION_OFFLOAD_RESTART,
 	MV64XXX_I2C_ACTION_SEND_ADDR_1,
 	MV64XXX_I2C_ACTION_SEND_ADDR_2,
 	MV64XXX_I2C_ACTION_SEND_DATA,
 	MV64XXX_I2C_ACTION_RCV_DATA,
 	MV64XXX_I2C_ACTION_RCV_DATA_STOP,
 	MV64XXX_I2C_ACTION_SEND_STOP,
-	MV64XXX_I2C_ACTION_OFFLOAD_SEND_STOP,
 };
 
 struct mv64xxx_i2c_regs {
@@ -193,75 +189,6 @@
 	}
 }
 
-static int mv64xxx_i2c_offload_msg(struct mv64xxx_i2c_data *drv_data)
-{
-	unsigned long data_reg_hi = 0;
-	unsigned long data_reg_lo = 0;
-	unsigned long ctrl_reg;
-	struct i2c_msg *msg = drv_data->msgs;
-
-	if (!drv_data->offload_enabled)
-		return -EOPNOTSUPP;
-
-	/* Only regular transactions can be offloaded */
-	if ((msg->flags & ~(I2C_M_TEN | I2C_M_RD)) != 0)
-		return -EINVAL;
-
-	/* Only 1-8 byte transfers can be offloaded */
-	if (msg->len < 1 || msg->len > 8)
-		return -EINVAL;
-
-	/* Build transaction */
-	ctrl_reg = MV64XXX_I2C_BRIDGE_CONTROL_ENABLE |
-		   (msg->addr << MV64XXX_I2C_BRIDGE_CONTROL_ADDR_SHIFT);
-
-	if ((msg->flags & I2C_M_TEN) != 0)
-		ctrl_reg |=  MV64XXX_I2C_BRIDGE_CONTROL_ADDR_EXT;
-
-	if ((msg->flags & I2C_M_RD) == 0) {
-		u8 local_buf[8] = { 0 };
-
-		memcpy(local_buf, msg->buf, msg->len);
-		data_reg_lo = cpu_to_le32(*((u32 *)local_buf));
-		data_reg_hi = cpu_to_le32(*((u32 *)(local_buf+4)));
-
-		ctrl_reg |= MV64XXX_I2C_BRIDGE_CONTROL_WR |
-		    (msg->len - 1) << MV64XXX_I2C_BRIDGE_CONTROL_TX_SIZE_SHIFT;
-
-		writel(data_reg_lo,
-			drv_data->reg_base + MV64XXX_I2C_REG_TX_DATA_LO);
-		writel(data_reg_hi,
-			drv_data->reg_base + MV64XXX_I2C_REG_TX_DATA_HI);
-
-	} else {
-		ctrl_reg |= MV64XXX_I2C_BRIDGE_CONTROL_RD |
-		    (msg->len - 1) << MV64XXX_I2C_BRIDGE_CONTROL_RX_SIZE_SHIFT;
-	}
-
-	/* Execute transaction */
-	writel(ctrl_reg, drv_data->reg_base + MV64XXX_I2C_REG_BRIDGE_CONTROL);
-
-	return 0;
-}
-
-static void
-mv64xxx_i2c_update_offload_data(struct mv64xxx_i2c_data *drv_data)
-{
-	struct i2c_msg *msg = drv_data->msg;
-
-	if (msg->flags & I2C_M_RD) {
-		u32 data_reg_lo = readl(drv_data->reg_base +
-				MV64XXX_I2C_REG_RX_DATA_LO);
-		u32 data_reg_hi = readl(drv_data->reg_base +
-				MV64XXX_I2C_REG_RX_DATA_HI);
-		u8 local_buf[8] = { 0 };
-
-		*((u32 *)local_buf) = le32_to_cpu(data_reg_lo);
-		*((u32 *)(local_buf+4)) = le32_to_cpu(data_reg_hi);
-		memcpy(msg->buf, local_buf, msg->len);
-	}
-
-}
 /*
  *****************************************************************************
  *
@@ -389,16 +316,6 @@
 		drv_data->rc = -ENXIO;
 		break;
 
-	case MV64XXX_I2C_STATUS_OFFLOAD_OK:
-		if (drv_data->send_stop || drv_data->aborting) {
-			drv_data->action = MV64XXX_I2C_ACTION_OFFLOAD_SEND_STOP;
-			drv_data->state = MV64XXX_I2C_STATE_IDLE;
-		} else {
-			drv_data->action = MV64XXX_I2C_ACTION_OFFLOAD_RESTART;
-			drv_data->state = MV64XXX_I2C_STATE_WAITING_FOR_RESTART;
-		}
-		break;
-
 	default:
 		dev_err(&drv_data->adapter.dev,
 			"mv64xxx_i2c_fsm: Ctlr Error -- state: 0x%x, "
@@ -419,25 +336,15 @@
 	drv_data->aborting = 0;
 	drv_data->rc = 0;
 
-	/* Can we offload this msg ? */
-	if (mv64xxx_i2c_offload_msg(drv_data) < 0) {
-		/* No, switch to standard path */
-		mv64xxx_i2c_prepare_for_io(drv_data, drv_data->msgs);
-		writel(drv_data->cntl_bits | MV64XXX_I2C_REG_CONTROL_START,
-			drv_data->reg_base + drv_data->reg_offsets.control);
-	}
+	mv64xxx_i2c_prepare_for_io(drv_data, drv_data->msgs);
+	writel(drv_data->cntl_bits | MV64XXX_I2C_REG_CONTROL_START,
+	       drv_data->reg_base + drv_data->reg_offsets.control);
 }
 
 static void
 mv64xxx_i2c_do_action(struct mv64xxx_i2c_data *drv_data)
 {
 	switch(drv_data->action) {
-	case MV64XXX_I2C_ACTION_OFFLOAD_RESTART:
-		mv64xxx_i2c_update_offload_data(drv_data);
-		writel(0, drv_data->reg_base +	MV64XXX_I2C_REG_BRIDGE_CONTROL);
-		writel(0, drv_data->reg_base +
-			MV64XXX_I2C_REG_BRIDGE_INTR_CAUSE);
-		/* FALLTHRU */
 	case MV64XXX_I2C_ACTION_SEND_RESTART:
 		/* We should only get here if we have further messages */
 		BUG_ON(drv_data->num_msgs == 0);
@@ -518,18 +425,73 @@
 		drv_data->block = 0;
 		wake_up(&drv_data->waitq);
 		break;
-
-	case MV64XXX_I2C_ACTION_OFFLOAD_SEND_STOP:
-		mv64xxx_i2c_update_offload_data(drv_data);
-		writel(0, drv_data->reg_base +	MV64XXX_I2C_REG_BRIDGE_CONTROL);
-		writel(0, drv_data->reg_base +
-			MV64XXX_I2C_REG_BRIDGE_INTR_CAUSE);
-		drv_data->block = 0;
-		wake_up(&drv_data->waitq);
-		break;
 	}
 }
 
+static void
+mv64xxx_i2c_read_offload_rx_data(struct mv64xxx_i2c_data *drv_data,
+				 struct i2c_msg *msg)
+{
+	u32 buf[2];
+
+	buf[0] = readl(drv_data->reg_base + MV64XXX_I2C_REG_RX_DATA_LO);
+	buf[1] = readl(drv_data->reg_base + MV64XXX_I2C_REG_RX_DATA_HI);
+
+	memcpy(msg->buf, buf, msg->len);
+}
+
+static int
+mv64xxx_i2c_intr_offload(struct mv64xxx_i2c_data *drv_data)
+{
+	u32 cause, status;
+
+	cause = readl(drv_data->reg_base +
+		      MV64XXX_I2C_REG_BRIDGE_INTR_CAUSE);
+	if (!cause)
+		return IRQ_NONE;
+
+	status = readl(drv_data->reg_base +
+		       MV64XXX_I2C_REG_BRIDGE_STATUS);
+
+	if (status & MV64XXX_I2C_BRIDGE_STATUS_ERROR) {
+		drv_data->rc = -EIO;
+		goto out;
+	}
+
+	drv_data->rc = 0;
+
+	/*
+	 * Transaction is a one message read transaction, read data
+	 * for this message.
+	 */
+	if (drv_data->num_msgs == 1 && drv_data->msgs[0].flags & I2C_M_RD) {
+		mv64xxx_i2c_read_offload_rx_data(drv_data, drv_data->msgs);
+		drv_data->msgs++;
+		drv_data->num_msgs--;
+	}
+	/*
+	 * Transaction is a two messages write/read transaction, read
+	 * data for the second (read) message.
+	 */
+	else if (drv_data->num_msgs == 2 &&
+		 !(drv_data->msgs[0].flags & I2C_M_RD) &&
+		 drv_data->msgs[1].flags & I2C_M_RD) {
+		mv64xxx_i2c_read_offload_rx_data(drv_data, drv_data->msgs + 1);
+		drv_data->msgs += 2;
+		drv_data->num_msgs -= 2;
+	}
+
+out:
+	writel(0, drv_data->reg_base +	MV64XXX_I2C_REG_BRIDGE_CONTROL);
+	writel(0, drv_data->reg_base +
+	       MV64XXX_I2C_REG_BRIDGE_INTR_CAUSE);
+	drv_data->block = 0;
+
+	wake_up(&drv_data->waitq);
+
+	return IRQ_HANDLED;
+}
+
 static irqreturn_t
 mv64xxx_i2c_intr(int irq, void *dev_id)
 {
@@ -540,20 +502,9 @@
 
 	spin_lock_irqsave(&drv_data->lock, flags);
 
-	if (drv_data->offload_enabled) {
-		while (readl(drv_data->reg_base +
-				MV64XXX_I2C_REG_BRIDGE_INTR_CAUSE)) {
-			int reg_status = readl(drv_data->reg_base +
-					MV64XXX_I2C_REG_BRIDGE_STATUS);
-			if (reg_status & MV64XXX_I2C_BRIDGE_STATUS_ERROR)
-				status = MV64XXX_I2C_STATUS_OFFLOAD_ERROR;
-			else
-				status = MV64XXX_I2C_STATUS_OFFLOAD_OK;
-			mv64xxx_i2c_fsm(drv_data, status);
-			mv64xxx_i2c_do_action(drv_data);
-			rc = IRQ_HANDLED;
-		}
-	}
+	if (drv_data->offload_enabled)
+		rc = mv64xxx_i2c_intr_offload(drv_data);
+
 	while (readl(drv_data->reg_base + drv_data->reg_offsets.control) &
 						MV64XXX_I2C_REG_CONTROL_IFLG) {
 		status = readl(drv_data->reg_base + drv_data->reg_offsets.status);
@@ -635,6 +586,117 @@
 	return drv_data->rc;
 }
 
+static void
+mv64xxx_i2c_prepare_tx(struct mv64xxx_i2c_data *drv_data)
+{
+	struct i2c_msg *msg = drv_data->msgs;
+	u32 buf[2];
+
+	memcpy(buf, msg->buf, msg->len);
+
+	writel(buf[0], drv_data->reg_base + MV64XXX_I2C_REG_TX_DATA_LO);
+	writel(buf[1], drv_data->reg_base + MV64XXX_I2C_REG_TX_DATA_HI);
+}
+
+static int
+mv64xxx_i2c_offload_xfer(struct mv64xxx_i2c_data *drv_data)
+{
+	struct i2c_msg *msgs = drv_data->msgs;
+	int num = drv_data->num_msgs;
+	unsigned long ctrl_reg;
+	unsigned long flags;
+
+	spin_lock_irqsave(&drv_data->lock, flags);
+
+	/* Build transaction */
+	ctrl_reg = MV64XXX_I2C_BRIDGE_CONTROL_ENABLE |
+		(msgs[0].addr << MV64XXX_I2C_BRIDGE_CONTROL_ADDR_SHIFT);
+
+	if (msgs[0].flags & I2C_M_TEN)
+		ctrl_reg |= MV64XXX_I2C_BRIDGE_CONTROL_ADDR_EXT;
+
+	/* Single write message transaction */
+	if (num == 1 && !(msgs[0].flags & I2C_M_RD)) {
+		size_t len = msgs[0].len - 1;
+
+		ctrl_reg |= MV64XXX_I2C_BRIDGE_CONTROL_WR |
+			(len << MV64XXX_I2C_BRIDGE_CONTROL_TX_SIZE_SHIFT);
+		mv64xxx_i2c_prepare_tx(drv_data);
+	}
+	/* Single read message transaction */
+	else if (num == 1 && msgs[0].flags & I2C_M_RD) {
+		size_t len = msgs[0].len - 1;
+
+		ctrl_reg |= MV64XXX_I2C_BRIDGE_CONTROL_RD |
+			(len << MV64XXX_I2C_BRIDGE_CONTROL_RX_SIZE_SHIFT);
+	}
+	/*
+	 * Transaction with one write and one read message. This is
+	 * guaranteed by the mv64xx_i2c_can_offload() checks.
+	 */
+	else if (num == 2) {
+		size_t lentx = msgs[0].len - 1;
+		size_t lenrx = msgs[1].len - 1;
+
+		ctrl_reg |=
+			MV64XXX_I2C_BRIDGE_CONTROL_RD |
+			MV64XXX_I2C_BRIDGE_CONTROL_WR |
+			(lentx << MV64XXX_I2C_BRIDGE_CONTROL_TX_SIZE_SHIFT) |
+			(lenrx << MV64XXX_I2C_BRIDGE_CONTROL_RX_SIZE_SHIFT) |
+			MV64XXX_I2C_BRIDGE_CONTROL_REPEATED_START;
+		mv64xxx_i2c_prepare_tx(drv_data);
+	}
+
+	/* Execute transaction */
+	drv_data->block = 1;
+	writel(ctrl_reg, drv_data->reg_base + MV64XXX_I2C_REG_BRIDGE_CONTROL);
+	spin_unlock_irqrestore(&drv_data->lock, flags);
+
+	mv64xxx_i2c_wait_for_completion(drv_data);
+
+	return drv_data->rc;
+}
+
+static bool
+mv64xxx_i2c_valid_offload_sz(struct i2c_msg *msg)
+{
+	return msg->len <= 8 && msg->len >= 1;
+}
+
+static bool
+mv64xxx_i2c_can_offload(struct mv64xxx_i2c_data *drv_data)
+{
+	struct i2c_msg *msgs = drv_data->msgs;
+	int num = drv_data->num_msgs;
+
+	return false;
+
+	if (!drv_data->offload_enabled)
+		return false;
+
+	/*
+	 * We can offload a transaction consisting of a single
+	 * message, as long as the message has a length between 1 and
+	 * 8 bytes.
+	 */
+	if (num == 1 && mv64xxx_i2c_valid_offload_sz(msgs))
+		return true;
+
+	/*
+	 * We can offload a transaction consisting of two messages, if
+	 * the first is a write and a second is a read, and both have
+	 * a length between 1 and 8 bytes.
+	 */
+	if (num == 2 &&
+	    mv64xxx_i2c_valid_offload_sz(msgs) &&
+	    mv64xxx_i2c_valid_offload_sz(msgs + 1) &&
+	    !(msgs[0].flags & I2C_M_RD) &&
+	    msgs[1].flags & I2C_M_RD)
+		return true;
+
+	return false;
+}
+
 /*
  *****************************************************************************
  *
@@ -658,7 +720,11 @@
 	drv_data->msgs = msgs;
 	drv_data->num_msgs = num;
 
-	rc = mv64xxx_i2c_execute_msg(drv_data, &msgs[0], num == 1);
+	if (mv64xxx_i2c_can_offload(drv_data))
+		rc = mv64xxx_i2c_offload_xfer(drv_data);
+	else
+		rc = mv64xxx_i2c_execute_msg(drv_data, &msgs[0], num == 1);
+
 	if (rc < 0)
 		ret = rc;
 
diff --git a/drivers/i2c/busses/i2c-sh_mobile.c b/drivers/i2c/busses/i2c-sh_mobile.c
index d7efaf4..440d5db 100644
--- a/drivers/i2c/busses/i2c-sh_mobile.c
+++ b/drivers/i2c/busses/i2c-sh_mobile.c
@@ -140,6 +140,7 @@
 	int sr;
 	bool send_stop;
 
+	struct resource *res;
 	struct dma_chan *dma_tx;
 	struct dma_chan *dma_rx;
 	struct scatterlist sg;
@@ -539,6 +540,42 @@
 	iic_set_clr(pd, ICIC, 0, ICIC_TDMAE | ICIC_RDMAE);
 }
 
+static struct dma_chan *sh_mobile_i2c_request_dma_chan(struct device *dev,
+				enum dma_transfer_direction dir, dma_addr_t port_addr)
+{
+	struct dma_chan *chan;
+	struct dma_slave_config cfg;
+	char *chan_name = dir == DMA_MEM_TO_DEV ? "tx" : "rx";
+	int ret;
+
+	chan = dma_request_slave_channel_reason(dev, chan_name);
+	if (IS_ERR(chan)) {
+		ret = PTR_ERR(chan);
+		dev_dbg(dev, "request_channel failed for %s (%d)\n", chan_name, ret);
+		return chan;
+	}
+
+	memset(&cfg, 0, sizeof(cfg));
+	cfg.direction = dir;
+	if (dir == DMA_MEM_TO_DEV) {
+		cfg.dst_addr = port_addr;
+		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
+	} else {
+		cfg.src_addr = port_addr;
+		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
+	}
+
+	ret = dmaengine_slave_config(chan, &cfg);
+	if (ret) {
+		dev_dbg(dev, "slave_config failed for %s (%d)\n", chan_name, ret);
+		dma_release_channel(chan);
+		return ERR_PTR(ret);
+	}
+
+	dev_dbg(dev, "got DMA channel for %s\n", chan_name);
+	return chan;
+}
+
 static void sh_mobile_i2c_xfer_dma(struct sh_mobile_i2c_data *pd)
 {
 	bool read = pd->msg->flags & I2C_M_RD;
@@ -548,7 +585,16 @@
 	dma_addr_t dma_addr;
 	dma_cookie_t cookie;
 
-	if (!chan)
+	if (PTR_ERR(chan) == -EPROBE_DEFER) {
+		if (read)
+			chan = pd->dma_rx = sh_mobile_i2c_request_dma_chan(pd->dev, DMA_DEV_TO_MEM,
+									   pd->res->start + ICDR);
+		else
+			chan = pd->dma_tx = sh_mobile_i2c_request_dma_chan(pd->dev, DMA_MEM_TO_DEV,
+									   pd->res->start + ICDR);
+	}
+
+	if (IS_ERR(chan))
 		return;
 
 	dma_addr = dma_map_single(chan->device->dev, pd->msg->buf, pd->msg->len, dir);
@@ -747,56 +793,16 @@
 };
 MODULE_DEVICE_TABLE(of, sh_mobile_i2c_dt_ids);
 
-static int sh_mobile_i2c_request_dma_chan(struct device *dev, enum dma_transfer_direction dir,
-					  dma_addr_t port_addr, struct dma_chan **chan_ptr)
-{
-	struct dma_chan *chan;
-	struct dma_slave_config cfg;
-	char *chan_name = dir == DMA_MEM_TO_DEV ? "tx" : "rx";
-	int ret;
-
-	*chan_ptr = NULL;
-
-	chan = dma_request_slave_channel_reason(dev, chan_name);
-	if (IS_ERR(chan)) {
-		ret = PTR_ERR(chan);
-		dev_dbg(dev, "request_channel failed for %s (%d)\n", chan_name, ret);
-		return ret;
-	}
-
-	memset(&cfg, 0, sizeof(cfg));
-	cfg.direction = dir;
-	if (dir == DMA_MEM_TO_DEV) {
-		cfg.dst_addr = port_addr;
-		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
-	} else {
-		cfg.src_addr = port_addr;
-		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
-	}
-
-	ret = dmaengine_slave_config(chan, &cfg);
-	if (ret) {
-		dev_dbg(dev, "slave_config failed for %s (%d)\n", chan_name, ret);
-		dma_release_channel(chan);
-		return ret;
-	}
-
-	*chan_ptr = chan;
-
-	dev_dbg(dev, "got DMA channel for %s\n", chan_name);
-	return 0;
-}
-
 static void sh_mobile_i2c_release_dma(struct sh_mobile_i2c_data *pd)
 {
-	if (pd->dma_tx) {
+	if (!IS_ERR(pd->dma_tx)) {
 		dma_release_channel(pd->dma_tx);
-		pd->dma_tx = NULL;
+		pd->dma_tx = ERR_PTR(-EPROBE_DEFER);
 	}
 
-	if (pd->dma_rx) {
+	if (!IS_ERR(pd->dma_rx)) {
 		dma_release_channel(pd->dma_rx);
-		pd->dma_rx = NULL;
+		pd->dma_rx = ERR_PTR(-EPROBE_DEFER);
 	}
 }
 
@@ -849,6 +855,7 @@
 
 	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
 
+	pd->res = res;
 	pd->reg = devm_ioremap_resource(&dev->dev, res);
 	if (IS_ERR(pd->reg))
 		return PTR_ERR(pd->reg);
@@ -889,17 +896,7 @@
 	/* Init DMA */
 	sg_init_table(&pd->sg, 1);
 	pd->dma_direction = DMA_NONE;
-	ret = sh_mobile_i2c_request_dma_chan(pd->dev, DMA_DEV_TO_MEM,
-					     res->start + ICDR, &pd->dma_rx);
-	if (ret == -EPROBE_DEFER)
-		return ret;
-
-	ret = sh_mobile_i2c_request_dma_chan(pd->dev, DMA_MEM_TO_DEV,
-					     res->start + ICDR, &pd->dma_tx);
-	if (ret == -EPROBE_DEFER) {
-		sh_mobile_i2c_release_dma(pd);
-		return ret;
-	}
+	pd->dma_rx = pd->dma_tx = ERR_PTR(-EPROBE_DEFER);
 
 	/* Enable Runtime PM for this device.
 	 *
@@ -937,8 +934,7 @@
 		return ret;
 	}
 
-	dev_info(&dev->dev, "I2C adapter %d, bus speed %lu Hz, DMA=%c\n",
-		 adap->nr, pd->bus_speed, (pd->dma_rx || pd->dma_tx) ? 'y' : 'n');
+	dev_info(&dev->dev, "I2C adapter %d, bus speed %lu Hz\n", adap->nr, pd->bus_speed);
 
 	return 0;
 }
diff --git a/drivers/macintosh/Kconfig b/drivers/macintosh/Kconfig
index 3067d56..5844b80 100644
--- a/drivers/macintosh/Kconfig
+++ b/drivers/macintosh/Kconfig
@@ -204,16 +204,6 @@
           iBook G4, and the ATI based aluminium PowerBooks, allowing slightly
 	  better fan behaviour by default, and some manual control.
 
-config THERM_PM72
-	tristate "Support for thermal management on PowerMac G5 (AGP)"
-	depends on I2C && I2C_POWERMAC && PPC_PMAC64
-	default n
-	help
-	  This driver provides thermostat and fan control for the desktop
-	  G5 machines.
-
-	  This is deprecated, use windfarm instead.
-
 config WINDFARM
 	tristate "New PowerMac thermal control infrastructure"
 	depends on PPC
diff --git a/drivers/macintosh/Makefile b/drivers/macintosh/Makefile
index d2f0120..383ba92 100644
--- a/drivers/macintosh/Makefile
+++ b/drivers/macintosh/Makefile
@@ -25,7 +25,6 @@
 obj-$(CONFIG_ADB_PMU68K)	+= via-pmu68k.o
 obj-$(CONFIG_ADB_MACIO)		+= macio-adb.o
 
-obj-$(CONFIG_THERM_PM72)	+= therm_pm72.o
 obj-$(CONFIG_THERM_WINDTUNNEL)	+= therm_windtunnel.o
 obj-$(CONFIG_THERM_ADT746X)	+= therm_adt746x.o
 obj-$(CONFIG_WINDFARM)	        += windfarm_core.o
diff --git a/drivers/macintosh/therm_pm72.c b/drivers/macintosh/therm_pm72.c
deleted file mode 100644
index 7ed9258..0000000
--- a/drivers/macintosh/therm_pm72.c
+++ /dev/null
@@ -1,2278 +0,0 @@
-/*
- * Device driver for the thermostats & fan controller of  the
- * Apple G5 "PowerMac7,2" desktop machines.
- *
- * (c) Copyright IBM Corp. 2003-2004
- *
- * Maintained by: Benjamin Herrenschmidt
- *                <benh@kernel.crashing.org>
- * 
- *
- * The algorithm used is the PID control algorithm, used the same
- * way the published Darwin code does, using the same values that
- * are present in the Darwin 7.0 snapshot property lists.
- *
- * As far as the CPUs control loops are concerned, I use the
- * calibration & PID constants provided by the EEPROM,
- * I do _not_ embed any value from the property lists, as the ones
- * provided by Darwin 7.0 seem to always have an older version that
- * what I've seen on the actual computers.
- * It would be interesting to verify that though. Darwin has a
- * version code of 1.0.0d11 for all control loops it seems, while
- * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
- *
- * Darwin doesn't provide source to all parts, some missing
- * bits like the AppleFCU driver or the actual scale of some
- * of the values returned by sensors had to be "guessed" some
- * way... or based on what Open Firmware does.
- *
- * I didn't yet figure out how to get the slots power consumption
- * out of the FCU, so that part has not been implemented yet and
- * the slots fan is set to a fixed 50% PWM, hoping this value is
- * safe enough ...
- *
- * Note: I have observed strange oscillations of the CPU control
- * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
- * oscillates slowly (over several minutes) between the minimum
- * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
- * this, it could be some incorrect constant or an error in the
- * way I ported the algorithm, or it could be just normal. I
- * don't have full understanding on the way Apple tweaked the PID
- * algorithm for the CPU control, it is definitely not a standard
- * implementation...
- *
- * TODO:  - Check MPU structure version/signature
- *        - Add things like /sbin/overtemp for non-critical
- *          overtemp conditions so userland can take some policy
- *          decisions, like slowing down CPUs
- *	  - Deal with fan and i2c failures in a better way
- *	  - Maybe do a generic PID based on params used for
- *	    U3 and Drives ? Definitely need to factor code a bit
- *          better... also make sensor detection more robust using
- *          the device-tree to probe for them
- *        - Figure out how to get the slots consumption and set the
- *          slots fan accordingly
- *
- * History:
- *
- *  Nov. 13, 2003 : 0.5
- *	- First release
- *
- *  Nov. 14, 2003 : 0.6
- *	- Read fan speed from FCU, low level fan routines now deal
- *	  with errors & check fan status, though higher level don't
- *	  do much.
- *	- Move a bunch of definitions to .h file
- *
- *  Nov. 18, 2003 : 0.7
- *	- Fix build on ppc64 kernel
- *	- Move back statics definitions to .c file
- *	- Avoid calling schedule_timeout with a negative number
- *
- *  Dec. 18, 2003 : 0.8
- *	- Fix typo when reading back fan speed on 2 CPU machines
- *
- *  Mar. 11, 2004 : 0.9
- *	- Rework code accessing the ADC chips, make it more robust and
- *	  closer to the chip spec. Also make sure it is configured properly,
- *        I've seen yet unexplained cases where on startup, I would have stale
- *        values in the configuration register
- *	- Switch back to use of target fan speed for PID, thus lowering
- *        pressure on i2c
- *
- *  Oct. 20, 2004 : 1.1
- *	- Add device-tree lookup for fan IDs, should detect liquid cooling
- *        pumps when present
- *	- Enable driver for PowerMac7,3 machines
- *	- Split the U3/Backside cooling on U3 & U3H versions as Darwin does
- *	- Add new CPU cooling algorithm for machines with liquid cooling
- *	- Workaround for some PowerMac7,3 with empty "fan" node in the devtree
- *	- Fix a signed/unsigned compare issue in some PID loops
- *
- *  Mar. 10, 2005 : 1.2
- *	- Add basic support for Xserve G5
- *	- Retrieve pumps min/max from EEPROM image in device-tree (broken)
- *	- Use min/max macros here or there
- *	- Latest darwin updated U3H min fan speed to 20% PWM
- *
- *  July. 06, 2006 : 1.3
- *	- Fix setting of RPM fans on Xserve G5 (they were going too fast)
- *      - Add missing slots fan control loop for Xserve G5
- *	- Lower fixed slots fan speed from 50% to 40% on desktop G5s. We
- *        still can't properly implement the control loop for these, so let's
- *        reduce the noise a little bit, it appears that 40% still gives us
- *        a pretty good air flow
- *	- Add code to "tickle" the FCU regulary so it doesn't think that
- *        we are gone while in fact, the machine just didn't need any fan
- *        speed change lately
- *
- */
-
-#include <linux/types.h>
-#include <linux/module.h>
-#include <linux/errno.h>
-#include <linux/kernel.h>
-#include <linux/delay.h>
-#include <linux/sched.h>
-#include <linux/init.h>
-#include <linux/spinlock.h>
-#include <linux/wait.h>
-#include <linux/reboot.h>
-#include <linux/kmod.h>
-#include <linux/i2c.h>
-#include <linux/kthread.h>
-#include <linux/mutex.h>
-#include <linux/of_device.h>
-#include <linux/of_platform.h>
-#include <asm/prom.h>
-#include <asm/machdep.h>
-#include <asm/io.h>
-#include <asm/sections.h>
-#include <asm/macio.h>
-
-#include "therm_pm72.h"
-
-#define VERSION "1.3"
-
-#undef DEBUG
-
-#ifdef DEBUG
-#define DBG(args...)	printk(args)
-#else
-#define DBG(args...)	do { } while(0)
-#endif
-
-
-/*
- * Driver statics
- */
-
-static struct platform_device *		of_dev;
-static struct i2c_adapter *		u3_0;
-static struct i2c_adapter *		u3_1;
-static struct i2c_adapter *		k2;
-static struct i2c_client *		fcu;
-static struct cpu_pid_state		processor_state[2];
-static struct basckside_pid_params	backside_params;
-static struct backside_pid_state	backside_state;
-static struct drives_pid_state		drives_state;
-static struct dimm_pid_state		dimms_state;
-static struct slots_pid_state		slots_state;
-static int				state;
-static int				cpu_count;
-static int				cpu_pid_type;
-static struct task_struct		*ctrl_task;
-static struct completion		ctrl_complete;
-static int				critical_state;
-static int				rackmac;
-static s32				dimm_output_clamp;
-static int 				fcu_rpm_shift;
-static int				fcu_tickle_ticks;
-static DEFINE_MUTEX(driver_lock);
-
-/*
- * We have 3 types of CPU PID control. One is "split" old style control
- * for intake & exhaust fans, the other is "combined" control for both
- * CPUs that also deals with the pumps when present. To be "compatible"
- * with OS X at this point, we only use "COMBINED" on the machines that
- * are identified as having the pumps (though that identification is at
- * least dodgy). Ultimately, we could probably switch completely to this
- * algorithm provided we hack it to deal with the UP case
- */
-#define CPU_PID_TYPE_SPLIT	0
-#define CPU_PID_TYPE_COMBINED	1
-#define CPU_PID_TYPE_RACKMAC	2
-
-/*
- * This table describes all fans in the FCU. The "id" and "type" values
- * are defaults valid for all earlier machines. Newer machines will
- * eventually override the table content based on the device-tree
- */
-struct fcu_fan_table
-{
-	char*	loc;	/* location code */
-	int	type;	/* 0 = rpm, 1 = pwm, 2 = pump */
-	int	id;	/* id or -1 */
-};
-
-#define FCU_FAN_RPM		0
-#define FCU_FAN_PWM		1
-
-#define FCU_FAN_ABSENT_ID	-1
-
-#define FCU_FAN_COUNT		ARRAY_SIZE(fcu_fans)
-
-struct fcu_fan_table	fcu_fans[] = {
-	[BACKSIDE_FAN_PWM_INDEX] = {
-		.loc	= "BACKSIDE,SYS CTRLR FAN",
-		.type	= FCU_FAN_PWM,
-		.id	= BACKSIDE_FAN_PWM_DEFAULT_ID,
-	},
-	[DRIVES_FAN_RPM_INDEX] = {
-		.loc	= "DRIVE BAY",
-		.type	= FCU_FAN_RPM,
-		.id	= DRIVES_FAN_RPM_DEFAULT_ID,
-	},
-	[SLOTS_FAN_PWM_INDEX] = {
-		.loc	= "SLOT,PCI FAN",
-		.type	= FCU_FAN_PWM,
-		.id	= SLOTS_FAN_PWM_DEFAULT_ID,
-	},
-	[CPUA_INTAKE_FAN_RPM_INDEX] = {
-		.loc	= "CPU A INTAKE",
-		.type	= FCU_FAN_RPM,
-		.id	= CPUA_INTAKE_FAN_RPM_DEFAULT_ID,
-	},
-	[CPUA_EXHAUST_FAN_RPM_INDEX] = {
-		.loc	= "CPU A EXHAUST",
-		.type	= FCU_FAN_RPM,
-		.id	= CPUA_EXHAUST_FAN_RPM_DEFAULT_ID,
-	},
-	[CPUB_INTAKE_FAN_RPM_INDEX] = {
-		.loc	= "CPU B INTAKE",
-		.type	= FCU_FAN_RPM,
-		.id	= CPUB_INTAKE_FAN_RPM_DEFAULT_ID,
-	},
-	[CPUB_EXHAUST_FAN_RPM_INDEX] = {
-		.loc	= "CPU B EXHAUST",
-		.type	= FCU_FAN_RPM,
-		.id	= CPUB_EXHAUST_FAN_RPM_DEFAULT_ID,
-	},
-	/* pumps aren't present by default, have to be looked up in the
-	 * device-tree
-	 */
-	[CPUA_PUMP_RPM_INDEX] = {
-		.loc	= "CPU A PUMP",
-		.type	= FCU_FAN_RPM,		
-		.id	= FCU_FAN_ABSENT_ID,
-	},
-	[CPUB_PUMP_RPM_INDEX] = {
-		.loc	= "CPU B PUMP",
-		.type	= FCU_FAN_RPM,
-		.id	= FCU_FAN_ABSENT_ID,
-	},
-	/* Xserve fans */
-	[CPU_A1_FAN_RPM_INDEX] = {
-		.loc	= "CPU A 1",
-		.type	= FCU_FAN_RPM,
-		.id	= FCU_FAN_ABSENT_ID,
-	},
-	[CPU_A2_FAN_RPM_INDEX] = {
-		.loc	= "CPU A 2",
-		.type	= FCU_FAN_RPM,
-		.id	= FCU_FAN_ABSENT_ID,
-	},
-	[CPU_A3_FAN_RPM_INDEX] = {
-		.loc	= "CPU A 3",
-		.type	= FCU_FAN_RPM,
-		.id	= FCU_FAN_ABSENT_ID,
-	},
-	[CPU_B1_FAN_RPM_INDEX] = {
-		.loc	= "CPU B 1",
-		.type	= FCU_FAN_RPM,
-		.id	= FCU_FAN_ABSENT_ID,
-	},
-	[CPU_B2_FAN_RPM_INDEX] = {
-		.loc	= "CPU B 2",
-		.type	= FCU_FAN_RPM,
-		.id	= FCU_FAN_ABSENT_ID,
-	},
-	[CPU_B3_FAN_RPM_INDEX] = {
-		.loc	= "CPU B 3",
-		.type	= FCU_FAN_RPM,
-		.id	= FCU_FAN_ABSENT_ID,
-	},
-};
-
-static struct i2c_driver therm_pm72_driver;
-
-/*
- * Utility function to create an i2c_client structure and
- * attach it to one of u3 adapters
- */
-static struct i2c_client *attach_i2c_chip(int id, const char *name)
-{
-	struct i2c_client *clt;
-	struct i2c_adapter *adap;
-	struct i2c_board_info info;
-
-	if (id & 0x200)
-		adap = k2;
-	else if (id & 0x100)
-		adap = u3_1;
-	else
-		adap = u3_0;
-	if (adap == NULL)
-		return NULL;
-
-	memset(&info, 0, sizeof(struct i2c_board_info));
-	info.addr = (id >> 1) & 0x7f;
-	strlcpy(info.type, "therm_pm72", I2C_NAME_SIZE);
-	clt = i2c_new_device(adap, &info);
-	if (!clt) {
-		printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id);
-		return NULL;
-	}
-
-	/*
-	 * Let i2c-core delete that device on driver removal.
-	 * This is safe because i2c-core holds the core_lock mutex for us.
-	 */
-	list_add_tail(&clt->detected, &therm_pm72_driver.clients);
-	return clt;
-}
-
-/*
- * Here are the i2c chip access wrappers
- */
-
-static void initialize_adc(struct cpu_pid_state *state)
-{
-	int rc;
-	u8 buf[2];
-
-	/* Read ADC the configuration register and cache it. We
-	 * also make sure Config2 contains proper values, I've seen
-	 * cases where we got stale grabage in there, thus preventing
-	 * proper reading of conv. values
-	 */
-
-	/* Clear Config2 */
-	buf[0] = 5;
-	buf[1] = 0;
-	i2c_master_send(state->monitor, buf, 2);
-
-	/* Read & cache Config1 */
-	buf[0] = 1;
-	rc = i2c_master_send(state->monitor, buf, 1);
-	if (rc > 0) {
-		rc = i2c_master_recv(state->monitor, buf, 1);
-		if (rc > 0) {
-			state->adc_config = buf[0];
-			DBG("ADC config reg: %02x\n", state->adc_config);
-			/* Disable shutdown mode */
-		       	state->adc_config &= 0xfe;
-			buf[0] = 1;
-			buf[1] = state->adc_config;
-			rc = i2c_master_send(state->monitor, buf, 2);
-		}
-	}
-	if (rc <= 0)
-		printk(KERN_ERR "therm_pm72: Error reading ADC config"
-		       " register !\n");
-}
-
-static int read_smon_adc(struct cpu_pid_state *state, int chan)
-{
-	int rc, data, tries = 0;
-	u8 buf[2];
-
-	for (;;) {
-		/* Set channel */
-		buf[0] = 1;
-		buf[1] = (state->adc_config & 0x1f) | (chan << 5);
-		rc = i2c_master_send(state->monitor, buf, 2);
-		if (rc <= 0)
-			goto error;
-		/* Wait for conversion */
-		msleep(1);
-		/* Switch to data register */
-		buf[0] = 4;
-		rc = i2c_master_send(state->monitor, buf, 1);
-		if (rc <= 0)
-			goto error;
-		/* Read result */
-		rc = i2c_master_recv(state->monitor, buf, 2);
-		if (rc < 0)
-			goto error;
-		data = ((u16)buf[0]) << 8 | (u16)buf[1];
-		return data >> 6;
-	error:
-		DBG("Error reading ADC, retrying...\n");
-		if (++tries > 10) {
-			printk(KERN_ERR "therm_pm72: Error reading ADC !\n");
-			return -1;
-		}
-		msleep(10);
-	}
-}
-
-static int read_lm87_reg(struct i2c_client * chip, int reg)
-{
-	int rc, tries = 0;
-	u8 buf;
-
-	for (;;) {
-		/* Set address */
-		buf = (u8)reg;
-		rc = i2c_master_send(chip, &buf, 1);
-		if (rc <= 0)
-			goto error;
-		rc = i2c_master_recv(chip, &buf, 1);
-		if (rc <= 0)
-			goto error;
-		return (int)buf;
-	error:
-		DBG("Error reading LM87, retrying...\n");
-		if (++tries > 10) {
-			printk(KERN_ERR "therm_pm72: Error reading LM87 !\n");
-			return -1;
-		}
-		msleep(10);
-	}
-}
-
-static int fan_read_reg(int reg, unsigned char *buf, int nb)
-{
-	int tries, nr, nw;
-
-	buf[0] = reg;
-	tries = 0;
-	for (;;) {
-		nw = i2c_master_send(fcu, buf, 1);
-		if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
-			break;
-		msleep(10);
-		++tries;
-	}
-	if (nw <= 0) {
-		printk(KERN_ERR "Failure writing address to FCU: %d", nw);
-		return -EIO;
-	}
-	tries = 0;
-	for (;;) {
-		nr = i2c_master_recv(fcu, buf, nb);
-		if (nr > 0 || (nr < 0 && nr != -ENODEV) || tries >= 100)
-			break;
-		msleep(10);
-		++tries;
-	}
-	if (nr <= 0)
-		printk(KERN_ERR "Failure reading data from FCU: %d", nw);
-	return nr;
-}
-
-static int fan_write_reg(int reg, const unsigned char *ptr, int nb)
-{
-	int tries, nw;
-	unsigned char buf[16];
-
-	buf[0] = reg;
-	memcpy(buf+1, ptr, nb);
-	++nb;
-	tries = 0;
-	for (;;) {
-		nw = i2c_master_send(fcu, buf, nb);
-		if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
-			break;
-		msleep(10);
-		++tries;
-	}
-	if (nw < 0)
-		printk(KERN_ERR "Failure writing to FCU: %d", nw);
-	return nw;
-}
-
-static int start_fcu(void)
-{
-	unsigned char buf = 0xff;
-	int rc;
-
-	rc = fan_write_reg(0xe, &buf, 1);
-	if (rc < 0)
-		return -EIO;
-	rc = fan_write_reg(0x2e, &buf, 1);
-	if (rc < 0)
-		return -EIO;
-	rc = fan_read_reg(0, &buf, 1);
-	if (rc < 0)
-		return -EIO;
-	fcu_rpm_shift = (buf == 1) ? 2 : 3;
-	printk(KERN_DEBUG "FCU Initialized, RPM fan shift is %d\n",
-	       fcu_rpm_shift);
-
-	return 0;
-}
-
-static int set_rpm_fan(int fan_index, int rpm)
-{
-	unsigned char buf[2];
-	int rc, id, min, max;
-
-	if (fcu_fans[fan_index].type != FCU_FAN_RPM)
-		return -EINVAL;
-	id = fcu_fans[fan_index].id; 
-	if (id == FCU_FAN_ABSENT_ID)
-		return -EINVAL;
-
-	min = 2400 >> fcu_rpm_shift;
-	max = 56000 >> fcu_rpm_shift;
-
-	if (rpm < min)
-		rpm = min;
-	else if (rpm > max)
-		rpm = max;
-	buf[0] = rpm >> (8 - fcu_rpm_shift);
-	buf[1] = rpm << fcu_rpm_shift;
-	rc = fan_write_reg(0x10 + (id * 2), buf, 2);
-	if (rc < 0)
-		return -EIO;
-	return 0;
-}
-
-static int get_rpm_fan(int fan_index, int programmed)
-{
-	unsigned char failure;
-	unsigned char active;
-	unsigned char buf[2];
-	int rc, id, reg_base;
-
-	if (fcu_fans[fan_index].type != FCU_FAN_RPM)
-		return -EINVAL;
-	id = fcu_fans[fan_index].id; 
-	if (id == FCU_FAN_ABSENT_ID)
-		return -EINVAL;
-
-	rc = fan_read_reg(0xb, &failure, 1);
-	if (rc != 1)
-		return -EIO;
-	if ((failure & (1 << id)) != 0)
-		return -EFAULT;
-	rc = fan_read_reg(0xd, &active, 1);
-	if (rc != 1)
-		return -EIO;
-	if ((active & (1 << id)) == 0)
-		return -ENXIO;
-
-	/* Programmed value or real current speed */
-	reg_base = programmed ? 0x10 : 0x11;
-	rc = fan_read_reg(reg_base + (id * 2), buf, 2);
-	if (rc != 2)
-		return -EIO;
-
-	return (buf[0] << (8 - fcu_rpm_shift)) | buf[1] >> fcu_rpm_shift;
-}
-
-static int set_pwm_fan(int fan_index, int pwm)
-{
-	unsigned char buf[2];
-	int rc, id;
-
-	if (fcu_fans[fan_index].type != FCU_FAN_PWM)
-		return -EINVAL;
-	id = fcu_fans[fan_index].id; 
-	if (id == FCU_FAN_ABSENT_ID)
-		return -EINVAL;
-
-	if (pwm < 10)
-		pwm = 10;
-	else if (pwm > 100)
-		pwm = 100;
-	pwm = (pwm * 2559) / 1000;
-	buf[0] = pwm;
-	rc = fan_write_reg(0x30 + (id * 2), buf, 1);
-	if (rc < 0)
-		return rc;
-	return 0;
-}
-
-static int get_pwm_fan(int fan_index)
-{
-	unsigned char failure;
-	unsigned char active;
-	unsigned char buf[2];
-	int rc, id;
-
-	if (fcu_fans[fan_index].type != FCU_FAN_PWM)
-		return -EINVAL;
-	id = fcu_fans[fan_index].id; 
-	if (id == FCU_FAN_ABSENT_ID)
-		return -EINVAL;
-
-	rc = fan_read_reg(0x2b, &failure, 1);
-	if (rc != 1)
-		return -EIO;
-	if ((failure & (1 << id)) != 0)
-		return -EFAULT;
-	rc = fan_read_reg(0x2d, &active, 1);
-	if (rc != 1)
-		return -EIO;
-	if ((active & (1 << id)) == 0)
-		return -ENXIO;
-
-	/* Programmed value or real current speed */
-	rc = fan_read_reg(0x30 + (id * 2), buf, 1);
-	if (rc != 1)
-		return -EIO;
-
-	return (buf[0] * 1000) / 2559;
-}
-
-static void tickle_fcu(void)
-{
-	int pwm;
-
-	pwm = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
-
-	DBG("FCU Tickle, slots fan is: %d\n", pwm);
-	if (pwm < 0)
-		pwm = 100;
-
-	if (!rackmac) {
-		pwm = SLOTS_FAN_DEFAULT_PWM;
-	} else if (pwm < SLOTS_PID_OUTPUT_MIN)
-		pwm = SLOTS_PID_OUTPUT_MIN;
-
-	/* That is hopefully enough to make the FCU happy */
-	set_pwm_fan(SLOTS_FAN_PWM_INDEX, pwm);
-}
-
-
-/*
- * Utility routine to read the CPU calibration EEPROM data
- * from the device-tree
- */
-static int read_eeprom(int cpu, struct mpu_data *out)
-{
-	struct device_node *np;
-	char nodename[64];
-	const u8 *data;
-	int len;
-
-	/* prom.c routine for finding a node by path is a bit brain dead
-	 * and requires exact @xxx unit numbers. This is a bit ugly but
-	 * will work for these machines
-	 */
-	sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0);
-	np = of_find_node_by_path(nodename);
-	if (np == NULL) {
-		printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid node from device-tree\n");
-		return -ENODEV;
-	}
-	data = of_get_property(np, "cpuid", &len);
-	if (data == NULL) {
-		printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid property from device-tree\n");
-		of_node_put(np);
-		return -ENODEV;
-	}
-	memcpy(out, data, sizeof(struct mpu_data));
-	of_node_put(np);
-	
-	return 0;
-}
-
-static void fetch_cpu_pumps_minmax(void)
-{
-	struct cpu_pid_state *state0 = &processor_state[0];
-	struct cpu_pid_state *state1 = &processor_state[1];
-	u16 pump_min = 0, pump_max = 0xffff;
-	u16 tmp[4];
-
-	/* Try to fetch pumps min/max infos from eeprom */
-
-	memcpy(&tmp, &state0->mpu.processor_part_num, 8);
-	if (tmp[0] != 0xffff && tmp[1] != 0xffff) {
-		pump_min = max(pump_min, tmp[0]);
-		pump_max = min(pump_max, tmp[1]);
-	}
-	if (tmp[2] != 0xffff && tmp[3] != 0xffff) {
-		pump_min = max(pump_min, tmp[2]);
-		pump_max = min(pump_max, tmp[3]);
-	}
-
-	/* Double check the values, this _IS_ needed as the EEPROM on
-	 * some dual 2.5Ghz G5s seem, at least, to have both min & max
-	 * same to the same value ... (grrrr)
-	 */
-	if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) {
-		pump_min = CPU_PUMP_OUTPUT_MIN;
-		pump_max = CPU_PUMP_OUTPUT_MAX;
-	}
-
-	state0->pump_min = state1->pump_min = pump_min;
-	state0->pump_max = state1->pump_max = pump_max;
-}
-
-/* 
- * Now, unfortunately, sysfs doesn't give us a nice void * we could
- * pass around to the attribute functions, so we don't really have
- * choice but implement a bunch of them...
- *
- * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
- * the input twice... I accept patches :)
- */
-#define BUILD_SHOW_FUNC_FIX(name, data)				\
-static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)	\
-{								\
-	ssize_t r;						\
-	mutex_lock(&driver_lock);					\
-	r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data));	\
-	mutex_unlock(&driver_lock);					\
-	return r;						\
-}
-#define BUILD_SHOW_FUNC_INT(name, data)				\
-static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)	\
-{								\
-	return sprintf(buf, "%d", data);			\
-}
-
-BUILD_SHOW_FUNC_FIX(cpu0_temperature, processor_state[0].last_temp)
-BUILD_SHOW_FUNC_FIX(cpu0_voltage, processor_state[0].voltage)
-BUILD_SHOW_FUNC_FIX(cpu0_current, processor_state[0].current_a)
-BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, processor_state[0].rpm)
-BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, processor_state[0].intake_rpm)
-
-BUILD_SHOW_FUNC_FIX(cpu1_temperature, processor_state[1].last_temp)
-BUILD_SHOW_FUNC_FIX(cpu1_voltage, processor_state[1].voltage)
-BUILD_SHOW_FUNC_FIX(cpu1_current, processor_state[1].current_a)
-BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, processor_state[1].rpm)
-BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, processor_state[1].intake_rpm)
-
-BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp)
-BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm)
-
-BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp)
-BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm)
-
-BUILD_SHOW_FUNC_FIX(slots_temperature, slots_state.last_temp)
-BUILD_SHOW_FUNC_INT(slots_fan_pwm, slots_state.pwm)
-
-BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp)
-
-static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL);
-static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL);
-static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL);
-static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL);
-static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL);
-
-static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL);
-static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL);
-static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL);
-static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL);
-static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL);
-
-static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL);
-static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL);
-
-static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL);
-static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL);
-
-static DEVICE_ATTR(slots_temperature,S_IRUGO,show_slots_temperature,NULL);
-static DEVICE_ATTR(slots_fan_pwm,S_IRUGO,show_slots_fan_pwm,NULL);
-
-static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL);
-
-/*
- * CPUs fans control loop
- */
-
-static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power)
-{
-	s32 ltemp, volts, amps;
-	int index, rc = 0;
-
-	/* Default (in case of error) */
-	*temp = state->cur_temp;
-	*power = state->cur_power;
-
-	if (cpu_pid_type == CPU_PID_TYPE_RACKMAC)
-		index = (state->index == 0) ?
-			CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX;
-	else
-		index = (state->index == 0) ?
-			CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX;
-
-	/* Read current fan status */
-	rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED);
-	if (rc < 0) {
-		/* XXX What do we do now ? Nothing for now, keep old value, but
-		 * return error upstream
-		 */
-		DBG("  cpu %d, fan reading error !\n", state->index);
-	} else {
-		state->rpm = rc;
-		DBG("  cpu %d, exhaust RPM: %d\n", state->index, state->rpm);
-	}
-
-	/* Get some sensor readings and scale it */
-	ltemp = read_smon_adc(state, 1);
-	if (ltemp == -1) {
-		/* XXX What do we do now ? */
-		state->overtemp++;
-		if (rc == 0)
-			rc = -EIO;
-		DBG("  cpu %d, temp reading error !\n", state->index);
-	} else {
-		/* Fixup temperature according to diode calibration
-		 */
-		DBG("  cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
-		    state->index,
-		    ltemp, state->mpu.mdiode, state->mpu.bdiode);
-		*temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2;
-		state->last_temp = *temp;
-		DBG("  temp: %d.%03d\n", FIX32TOPRINT((*temp)));
-	}
-
-	/*
-	 * Read voltage & current and calculate power
-	 */
-	volts = read_smon_adc(state, 3);
-	amps = read_smon_adc(state, 4);
-
-	/* Scale voltage and current raw sensor values according to fixed scales
-	 * obtained in Darwin and calculate power from I and V
-	 */
-	volts *= ADC_CPU_VOLTAGE_SCALE;
-	amps *= ADC_CPU_CURRENT_SCALE;
-	*power = (((u64)volts) * ((u64)amps)) >> 16;
-	state->voltage = volts;
-	state->current_a = amps;
-	state->last_power = *power;
-
-	DBG("  cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
-	    state->index, FIX32TOPRINT(state->current_a),
-	    FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power));
-
-	return 0;
-}
-
-static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power)
-{
-	s32 power_target, integral, derivative, proportional, adj_in_target, sval;
-	s64 integ_p, deriv_p, prop_p, sum; 
-	int i;
-
-	/* Calculate power target value (could be done once for all)
-	 * and convert to a 16.16 fp number
-	 */
-	power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16;
-	DBG("  power target: %d.%03d, error: %d.%03d\n",
-	    FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power));
-
-	/* Store temperature and power in history array */
-	state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
-	state->temp_history[state->cur_temp] = temp;
-	state->cur_power = (state->cur_power + 1) % state->count_power;
-	state->power_history[state->cur_power] = power;
-	state->error_history[state->cur_power] = power_target - power;
-	
-	/* If first loop, fill the history table */
-	if (state->first) {
-		for (i = 0; i < (state->count_power - 1); i++) {
-			state->cur_power = (state->cur_power + 1) % state->count_power;
-			state->power_history[state->cur_power] = power;
-			state->error_history[state->cur_power] = power_target - power;
-		}
-		for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) {
-			state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
-			state->temp_history[state->cur_temp] = temp;			
-		}
-		state->first = 0;
-	}
-
-	/* Calculate the integral term normally based on the "power" values */
-	sum = 0;
-	integral = 0;
-	for (i = 0; i < state->count_power; i++)
-		integral += state->error_history[i];
-	integral *= CPU_PID_INTERVAL;
-	DBG("  integral: %08x\n", integral);
-
-	/* Calculate the adjusted input (sense value).
-	 *   G_r is 12.20
-	 *   integ is 16.16
-	 *   so the result is 28.36
-	 *
-	 * input target is mpu.ttarget, input max is mpu.tmax
-	 */
-	integ_p = ((s64)state->mpu.pid_gr) * (s64)integral;
-	DBG("   integ_p: %d\n", (int)(integ_p >> 36));
-	sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff);
-	adj_in_target = (state->mpu.ttarget << 16);
-	if (adj_in_target > sval)
-		adj_in_target = sval;
-	DBG("   adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target),
-	    state->mpu.ttarget);
-
-	/* Calculate the derivative term */
-	derivative = state->temp_history[state->cur_temp] -
-		state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1)
-				    % CPU_TEMP_HISTORY_SIZE];
-	derivative /= CPU_PID_INTERVAL;
-	deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative;
-	DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
-	sum += deriv_p;
-
-	/* Calculate the proportional term */
-	proportional = temp - adj_in_target;
-	prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional;
-	DBG("   prop_p: %d\n", (int)(prop_p >> 36));
-	sum += prop_p;
-
-	/* Scale sum */
-	sum >>= 36;
-
-	DBG("   sum: %d\n", (int)sum);
-	state->rpm += (s32)sum;
-}
-
-static void do_monitor_cpu_combined(void)
-{
-	struct cpu_pid_state *state0 = &processor_state[0];
-	struct cpu_pid_state *state1 = &processor_state[1];
-	s32 temp0, power0, temp1, power1;
-	s32 temp_combi, power_combi;
-	int rc, intake, pump;
-
-	rc = do_read_one_cpu_values(state0, &temp0, &power0);
-	if (rc < 0) {
-		/* XXX What do we do now ? */
-	}
-	state1->overtemp = 0;
-	rc = do_read_one_cpu_values(state1, &temp1, &power1);
-	if (rc < 0) {
-		/* XXX What do we do now ? */
-	}
-	if (state1->overtemp)
-		state0->overtemp++;
-
-	temp_combi = max(temp0, temp1);
-	power_combi = max(power0, power1);
-
-	/* Check tmax, increment overtemp if we are there. At tmax+8, we go
-	 * full blown immediately and try to trigger a shutdown
-	 */
-	if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) {
-		printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n",
-		       temp_combi >> 16);
-		state0->overtemp += CPU_MAX_OVERTEMP / 4;
-	} else if (temp_combi > (state0->mpu.tmax << 16)) {
-		state0->overtemp++;
-		printk(KERN_WARNING "Temperature %d above max %d. overtemp %d\n",
-		       temp_combi >> 16, state0->mpu.tmax, state0->overtemp);
-	} else {
-		if (state0->overtemp)
-			printk(KERN_WARNING "Temperature back down to %d\n",
-			       temp_combi >> 16);
-		state0->overtemp = 0;
-	}
-	if (state0->overtemp >= CPU_MAX_OVERTEMP)
-		critical_state = 1;
-	if (state0->overtemp > 0) {
-		state0->rpm = state0->mpu.rmaxn_exhaust_fan;
-		state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan;
-		pump = state0->pump_max;
-		goto do_set_fans;
-	}
-
-	/* Do the PID */
-	do_cpu_pid(state0, temp_combi, power_combi);
-
-	/* Range check */
-	state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan);
-	state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan);
-
-	/* Calculate intake fan speed */
-	intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16;
-	intake = max(intake, (int)state0->mpu.rminn_intake_fan);
-	intake = min(intake, (int)state0->mpu.rmaxn_intake_fan);
-	state0->intake_rpm = intake;
-
-	/* Calculate pump speed */
-	pump = (state0->rpm * state0->pump_max) /
-		state0->mpu.rmaxn_exhaust_fan;
-	pump = min(pump, state0->pump_max);
-	pump = max(pump, state0->pump_min);
-	
- do_set_fans:
-	/* We copy values from state 0 to state 1 for /sysfs */
-	state1->rpm = state0->rpm;
-	state1->intake_rpm = state0->intake_rpm;
-
-	DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
-	    state1->index, (int)state1->rpm, intake, pump, state1->overtemp);
-
-	/* We should check for errors, shouldn't we ? But then, what
-	 * do we do once the error occurs ? For FCU notified fan
-	 * failures (-EFAULT) we probably want to notify userland
-	 * some way...
-	 */
-	set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
-	set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm);
-	set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
-	set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm);
-
-	if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
-		set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump);
-	if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
-		set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump);
-}
-
-static void do_monitor_cpu_split(struct cpu_pid_state *state)
-{
-	s32 temp, power;
-	int rc, intake;
-
-	/* Read current fan status */
-	rc = do_read_one_cpu_values(state, &temp, &power);
-	if (rc < 0) {
-		/* XXX What do we do now ? */
-	}
-
-	/* Check tmax, increment overtemp if we are there. At tmax+8, we go
-	 * full blown immediately and try to trigger a shutdown
-	 */
-	if (temp >= ((state->mpu.tmax + 8) << 16)) {
-		printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
-		       " (%d) !\n",
-		       state->index, temp >> 16);
-		state->overtemp += CPU_MAX_OVERTEMP / 4;
-	} else if (temp > (state->mpu.tmax << 16)) {
-		state->overtemp++;
-		printk(KERN_WARNING "CPU %d temperature %d above max %d. overtemp %d\n",
-		       state->index, temp >> 16, state->mpu.tmax, state->overtemp);
-	} else {
-		if (state->overtemp)
-			printk(KERN_WARNING "CPU %d temperature back down to %d\n",
-			       state->index, temp >> 16);
-		state->overtemp = 0;
-	}
-	if (state->overtemp >= CPU_MAX_OVERTEMP)
-		critical_state = 1;
-	if (state->overtemp > 0) {
-		state->rpm = state->mpu.rmaxn_exhaust_fan;
-		state->intake_rpm = intake = state->mpu.rmaxn_intake_fan;
-		goto do_set_fans;
-	}
-
-	/* Do the PID */
-	do_cpu_pid(state, temp, power);
-
-	/* Range check */
-	state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan);
-	state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan);
-
-	/* Calculate intake fan */
-	intake = (state->rpm * CPU_INTAKE_SCALE) >> 16;
-	intake = max(intake, (int)state->mpu.rminn_intake_fan);
-	intake = min(intake, (int)state->mpu.rmaxn_intake_fan);
-	state->intake_rpm = intake;
-
- do_set_fans:
-	DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
-	    state->index, (int)state->rpm, intake, state->overtemp);
-
-	/* We should check for errors, shouldn't we ? But then, what
-	 * do we do once the error occurs ? For FCU notified fan
-	 * failures (-EFAULT) we probably want to notify userland
-	 * some way...
-	 */
-	if (state->index == 0) {
-		set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
-		set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm);
-	} else {
-		set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
-		set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm);
-	}
-}
-
-static void do_monitor_cpu_rack(struct cpu_pid_state *state)
-{
-	s32 temp, power, fan_min;
-	int rc;
-
-	/* Read current fan status */
-	rc = do_read_one_cpu_values(state, &temp, &power);
-	if (rc < 0) {
-		/* XXX What do we do now ? */
-	}
-
-	/* Check tmax, increment overtemp if we are there. At tmax+8, we go
-	 * full blown immediately and try to trigger a shutdown
-	 */
-	if (temp >= ((state->mpu.tmax + 8) << 16)) {
-		printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
-		       " (%d) !\n",
-		       state->index, temp >> 16);
-		state->overtemp = CPU_MAX_OVERTEMP / 4;
-	} else if (temp > (state->mpu.tmax << 16)) {
-		state->overtemp++;
-		printk(KERN_WARNING "CPU %d temperature %d above max %d. overtemp %d\n",
-		       state->index, temp >> 16, state->mpu.tmax, state->overtemp);
-	} else {
-		if (state->overtemp)
-			printk(KERN_WARNING "CPU %d temperature back down to %d\n",
-			       state->index, temp >> 16);
-		state->overtemp = 0;
-	}
-	if (state->overtemp >= CPU_MAX_OVERTEMP)
-		critical_state = 1;
-	if (state->overtemp > 0) {
-		state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan;
-		goto do_set_fans;
-	}
-
-	/* Do the PID */
-	do_cpu_pid(state, temp, power);
-
-	/* Check clamp from dimms */
-	fan_min = dimm_output_clamp;
-	fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan);
-
-	DBG(" CPU min mpu = %d, min dimm = %d\n",
-	    state->mpu.rminn_intake_fan, dimm_output_clamp);
-
-	state->rpm = max(state->rpm, (int)fan_min);
-	state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan);
-	state->intake_rpm = state->rpm;
-
- do_set_fans:
-	DBG("** CPU %d RPM: %d overtemp: %d\n",
-	    state->index, (int)state->rpm, state->overtemp);
-
-	/* We should check for errors, shouldn't we ? But then, what
-	 * do we do once the error occurs ? For FCU notified fan
-	 * failures (-EFAULT) we probably want to notify userland
-	 * some way...
-	 */
-	if (state->index == 0) {
-		set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm);
-		set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm);
-		set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm);
-	} else {
-		set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm);
-		set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm);
-		set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm);
-	}
-}
-
-/*
- * Initialize the state structure for one CPU control loop
- */
-static int init_processor_state(struct cpu_pid_state *state, int index)
-{
-	int err;
-
-	state->index = index;
-	state->first = 1;
-	state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000;
-	state->overtemp = 0;
-	state->adc_config = 0x00;
-
-
-	if (index == 0)
-		state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor");
-	else if (index == 1)
-		state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor");
-	if (state->monitor == NULL)
-		goto fail;
-
-	if (read_eeprom(index, &state->mpu))
-		goto fail;
-
-	state->count_power = state->mpu.tguardband;
-	if (state->count_power > CPU_POWER_HISTORY_SIZE) {
-		printk(KERN_WARNING "Warning ! too many power history slots\n");
-		state->count_power = CPU_POWER_HISTORY_SIZE;
-	}
-	DBG("CPU %d Using %d power history entries\n", index, state->count_power);
-
-	if (index == 0) {
-		err = device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature);
-		err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage);
-		err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_current);
-		err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
-		err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
-	} else {
-		err = device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature);
-		err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage);
-		err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_current);
-		err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
-		err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
-	}
-	if (err)
-		printk(KERN_WARNING "Failed to create some of the attribute"
-			"files for CPU %d\n", index);
-
-	return 0;
- fail:
-	state->monitor = NULL;
-	
-	return -ENODEV;
-}
-
-/*
- * Dispose of the state data for one CPU control loop
- */
-static void dispose_processor_state(struct cpu_pid_state *state)
-{
-	if (state->monitor == NULL)
-		return;
-
-	if (state->index == 0) {
-		device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature);
-		device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage);
-		device_remove_file(&of_dev->dev, &dev_attr_cpu0_current);
-		device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
-		device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
-	} else {
-		device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature);
-		device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage);
-		device_remove_file(&of_dev->dev, &dev_attr_cpu1_current);
-		device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
-		device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
-	}
-
-	state->monitor = NULL;
-}
-
-/*
- * Motherboard backside & U3 heatsink fan control loop
- */
-static void do_monitor_backside(struct backside_pid_state *state)
-{
-	s32 temp, integral, derivative, fan_min;
-	s64 integ_p, deriv_p, prop_p, sum; 
-	int i, rc;
-
-	if (--state->ticks != 0)
-		return;
-	state->ticks = backside_params.interval;
-
-	DBG("backside:\n");
-
-	/* Check fan status */
-	rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX);
-	if (rc < 0) {
-		printk(KERN_WARNING "Error %d reading backside fan !\n", rc);
-		/* XXX What do we do now ? */
-	} else
-		state->pwm = rc;
-	DBG("  current pwm: %d\n", state->pwm);
-
-	/* Get some sensor readings */
-	temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16;
-	state->last_temp = temp;
-	DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
-	    FIX32TOPRINT(backside_params.input_target));
-
-	/* Store temperature and error in history array */
-	state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE;
-	state->sample_history[state->cur_sample] = temp;
-	state->error_history[state->cur_sample] = temp - backside_params.input_target;
-	
-	/* If first loop, fill the history table */
-	if (state->first) {
-		for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) {
-			state->cur_sample = (state->cur_sample + 1) %
-				BACKSIDE_PID_HISTORY_SIZE;
-			state->sample_history[state->cur_sample] = temp;
-			state->error_history[state->cur_sample] =
-				temp - backside_params.input_target;
-		}
-		state->first = 0;
-	}
-
-	/* Calculate the integral term */
-	sum = 0;
-	integral = 0;
-	for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++)
-		integral += state->error_history[i];
-	integral *= backside_params.interval;
-	DBG("  integral: %08x\n", integral);
-	integ_p = ((s64)backside_params.G_r) * (s64)integral;
-	DBG("   integ_p: %d\n", (int)(integ_p >> 36));
-	sum += integ_p;
-
-	/* Calculate the derivative term */
-	derivative = state->error_history[state->cur_sample] -
-		state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1)
-				    % BACKSIDE_PID_HISTORY_SIZE];
-	derivative /= backside_params.interval;
-	deriv_p = ((s64)backside_params.G_d) * (s64)derivative;
-	DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
-	sum += deriv_p;
-
-	/* Calculate the proportional term */
-	prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]);
-	DBG("   prop_p: %d\n", (int)(prop_p >> 36));
-	sum += prop_p;
-
-	/* Scale sum */
-	sum >>= 36;
-
-	DBG("   sum: %d\n", (int)sum);
-	if (backside_params.additive)
-		state->pwm += (s32)sum;
-	else
-		state->pwm = sum;
-
-	/* Check for clamp */
-	fan_min = (dimm_output_clamp * 100) / 14000;
-	fan_min = max(fan_min, backside_params.output_min);
-
-	state->pwm = max(state->pwm, fan_min);
-	state->pwm = min(state->pwm, backside_params.output_max);
-
-	DBG("** BACKSIDE PWM: %d\n", (int)state->pwm);
-	set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm);
-}
-
-/*
- * Initialize the state structure for the backside fan control loop
- */
-static int init_backside_state(struct backside_pid_state *state)
-{
-	struct device_node *u3;
-	int u3h = 1; /* conservative by default */
-	int err;
-
-	/*
-	 * There are different PID params for machines with U3 and machines
-	 * with U3H, pick the right ones now
-	 */
-	u3 = of_find_node_by_path("/u3@0,f8000000");
-	if (u3 != NULL) {
-		const u32 *vers = of_get_property(u3, "device-rev", NULL);
-		if (vers)
-			if (((*vers) & 0x3f) < 0x34)
-				u3h = 0;
-		of_node_put(u3);
-	}
-
-	if (rackmac) {
-		backside_params.G_d = BACKSIDE_PID_RACK_G_d;
-		backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET;
-		backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
-		backside_params.interval = BACKSIDE_PID_RACK_INTERVAL;
-		backside_params.G_p = BACKSIDE_PID_RACK_G_p;
-		backside_params.G_r = BACKSIDE_PID_G_r;
-		backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
-		backside_params.additive = 0;
-	} else if (u3h) {
-		backside_params.G_d = BACKSIDE_PID_U3H_G_d;
-		backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET;
-		backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
-		backside_params.interval = BACKSIDE_PID_INTERVAL;
-		backside_params.G_p = BACKSIDE_PID_G_p;
-		backside_params.G_r = BACKSIDE_PID_G_r;
-		backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
-		backside_params.additive = 1;
-	} else {
-		backside_params.G_d = BACKSIDE_PID_U3_G_d;
-		backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET;
-		backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN;
-		backside_params.interval = BACKSIDE_PID_INTERVAL;
-		backside_params.G_p = BACKSIDE_PID_G_p;
-		backside_params.G_r = BACKSIDE_PID_G_r;
-		backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
-		backside_params.additive = 1;
-	}
-
-	state->ticks = 1;
-	state->first = 1;
-	state->pwm = 50;
-
-	state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp");
-	if (state->monitor == NULL)
-		return -ENODEV;
-
-	err = device_create_file(&of_dev->dev, &dev_attr_backside_temperature);
-	err |= device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
-	if (err)
-		printk(KERN_WARNING "Failed to create attribute file(s)"
-			" for backside fan\n");
-
-	return 0;
-}
-
-/*
- * Dispose of the state data for the backside control loop
- */
-static void dispose_backside_state(struct backside_pid_state *state)
-{
-	if (state->monitor == NULL)
-		return;
-
-	device_remove_file(&of_dev->dev, &dev_attr_backside_temperature);
-	device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
-
-	state->monitor = NULL;
-}
- 
-/*
- * Drives bay fan control loop
- */
-static void do_monitor_drives(struct drives_pid_state *state)
-{
-	s32 temp, integral, derivative;
-	s64 integ_p, deriv_p, prop_p, sum; 
-	int i, rc;
-
-	if (--state->ticks != 0)
-		return;
-	state->ticks = DRIVES_PID_INTERVAL;
-
-	DBG("drives:\n");
-
-	/* Check fan status */
-	rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED);
-	if (rc < 0) {
-		printk(KERN_WARNING "Error %d reading drives fan !\n", rc);
-		/* XXX What do we do now ? */
-	} else
-		state->rpm = rc;
-	DBG("  current rpm: %d\n", state->rpm);
-
-	/* Get some sensor readings */
-	temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
-						    DS1775_TEMP)) << 8;
-	state->last_temp = temp;
-	DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
-	    FIX32TOPRINT(DRIVES_PID_INPUT_TARGET));
-
-	/* Store temperature and error in history array */
-	state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE;
-	state->sample_history[state->cur_sample] = temp;
-	state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET;
-	
-	/* If first loop, fill the history table */
-	if (state->first) {
-		for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) {
-			state->cur_sample = (state->cur_sample + 1) %
-				DRIVES_PID_HISTORY_SIZE;
-			state->sample_history[state->cur_sample] = temp;
-			state->error_history[state->cur_sample] =
-				temp - DRIVES_PID_INPUT_TARGET;
-		}
-		state->first = 0;
-	}
-
-	/* Calculate the integral term */
-	sum = 0;
-	integral = 0;
-	for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++)
-		integral += state->error_history[i];
-	integral *= DRIVES_PID_INTERVAL;
-	DBG("  integral: %08x\n", integral);
-	integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral;
-	DBG("   integ_p: %d\n", (int)(integ_p >> 36));
-	sum += integ_p;
-
-	/* Calculate the derivative term */
-	derivative = state->error_history[state->cur_sample] -
-		state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1)
-				    % DRIVES_PID_HISTORY_SIZE];
-	derivative /= DRIVES_PID_INTERVAL;
-	deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative;
-	DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
-	sum += deriv_p;
-
-	/* Calculate the proportional term */
-	prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
-	DBG("   prop_p: %d\n", (int)(prop_p >> 36));
-	sum += prop_p;
-
-	/* Scale sum */
-	sum >>= 36;
-
-	DBG("   sum: %d\n", (int)sum);
-	state->rpm += (s32)sum;
-
-	state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN);
-	state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX);
-
-	DBG("** DRIVES RPM: %d\n", (int)state->rpm);
-	set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm);
-}
-
-/*
- * Initialize the state structure for the drives bay fan control loop
- */
-static int init_drives_state(struct drives_pid_state *state)
-{
-	int err;
-
-	state->ticks = 1;
-	state->first = 1;
-	state->rpm = 1000;
-
-	state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp");
-	if (state->monitor == NULL)
-		return -ENODEV;
-
-	err = device_create_file(&of_dev->dev, &dev_attr_drives_temperature);
-	err |= device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
-	if (err)
-		printk(KERN_WARNING "Failed to create attribute file(s)"
-			" for drives bay fan\n");
-
-	return 0;
-}
-
-/*
- * Dispose of the state data for the drives control loop
- */
-static void dispose_drives_state(struct drives_pid_state *state)
-{
-	if (state->monitor == NULL)
-		return;
-
-	device_remove_file(&of_dev->dev, &dev_attr_drives_temperature);
-	device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
-
-	state->monitor = NULL;
-}
-
-/*
- * DIMMs temp control loop
- */
-static void do_monitor_dimms(struct dimm_pid_state *state)
-{
-	s32 temp, integral, derivative, fan_min;
-	s64 integ_p, deriv_p, prop_p, sum;
-	int i;
-
-	if (--state->ticks != 0)
-		return;
-	state->ticks = DIMM_PID_INTERVAL;
-
-	DBG("DIMM:\n");
-
-	DBG("  current value: %d\n", state->output);
-
-	temp = read_lm87_reg(state->monitor, LM87_INT_TEMP);
-	if (temp < 0)
-		return;
-	temp <<= 16;
-	state->last_temp = temp;
-	DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
-	    FIX32TOPRINT(DIMM_PID_INPUT_TARGET));
-
-	/* Store temperature and error in history array */
-	state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE;
-	state->sample_history[state->cur_sample] = temp;
-	state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET;
-
-	/* If first loop, fill the history table */
-	if (state->first) {
-		for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) {
-			state->cur_sample = (state->cur_sample + 1) %
-				DIMM_PID_HISTORY_SIZE;
-			state->sample_history[state->cur_sample] = temp;
-			state->error_history[state->cur_sample] =
-				temp - DIMM_PID_INPUT_TARGET;
-		}
-		state->first = 0;
-	}
-
-	/* Calculate the integral term */
-	sum = 0;
-	integral = 0;
-	for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++)
-		integral += state->error_history[i];
-	integral *= DIMM_PID_INTERVAL;
-	DBG("  integral: %08x\n", integral);
-	integ_p = ((s64)DIMM_PID_G_r) * (s64)integral;
-	DBG("   integ_p: %d\n", (int)(integ_p >> 36));
-	sum += integ_p;
-
-	/* Calculate the derivative term */
-	derivative = state->error_history[state->cur_sample] -
-		state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1)
-				    % DIMM_PID_HISTORY_SIZE];
-	derivative /= DIMM_PID_INTERVAL;
-	deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative;
-	DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
-	sum += deriv_p;
-
-	/* Calculate the proportional term */
-	prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
-	DBG("   prop_p: %d\n", (int)(prop_p >> 36));
-	sum += prop_p;
-
-	/* Scale sum */
-	sum >>= 36;
-
-	DBG("   sum: %d\n", (int)sum);
-	state->output = (s32)sum;
-	state->output = max(state->output, DIMM_PID_OUTPUT_MIN);
-	state->output = min(state->output, DIMM_PID_OUTPUT_MAX);
-	dimm_output_clamp = state->output;
-
-	DBG("** DIMM clamp value: %d\n", (int)state->output);
-
-	/* Backside PID is only every 5 seconds, force backside fan clamping now */
-	fan_min = (dimm_output_clamp * 100) / 14000;
-	fan_min = max(fan_min, backside_params.output_min);
-	if (backside_state.pwm < fan_min) {
-		backside_state.pwm = fan_min;
-		DBG(" -> applying clamp to backside fan now: %d  !\n", fan_min);
-		set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min);
-	}
-}
-
-/*
- * Initialize the state structure for the DIMM temp control loop
- */
-static int init_dimms_state(struct dimm_pid_state *state)
-{
-	state->ticks = 1;
-	state->first = 1;
-	state->output = 4000;
-
-	state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp");
-	if (state->monitor == NULL)
-		return -ENODEV;
-
-	if (device_create_file(&of_dev->dev, &dev_attr_dimms_temperature))
-		printk(KERN_WARNING "Failed to create attribute file"
-			" for DIMM temperature\n");
-
-	return 0;
-}
-
-/*
- * Dispose of the state data for the DIMM control loop
- */
-static void dispose_dimms_state(struct dimm_pid_state *state)
-{
-	if (state->monitor == NULL)
-		return;
-
-	device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature);
-
-	state->monitor = NULL;
-}
-
-/*
- * Slots fan control loop
- */
-static void do_monitor_slots(struct slots_pid_state *state)
-{
-	s32 temp, integral, derivative;
-	s64 integ_p, deriv_p, prop_p, sum;
-	int i, rc;
-
-	if (--state->ticks != 0)
-		return;
-	state->ticks = SLOTS_PID_INTERVAL;
-
-	DBG("slots:\n");
-
-	/* Check fan status */
-	rc = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
-	if (rc < 0) {
-		printk(KERN_WARNING "Error %d reading slots fan !\n", rc);
-		/* XXX What do we do now ? */
-	} else
-		state->pwm = rc;
-	DBG("  current pwm: %d\n", state->pwm);
-
-	/* Get some sensor readings */
-	temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
-						    DS1775_TEMP)) << 8;
-	state->last_temp = temp;
-	DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
-	    FIX32TOPRINT(SLOTS_PID_INPUT_TARGET));
-
-	/* Store temperature and error in history array */
-	state->cur_sample = (state->cur_sample + 1) % SLOTS_PID_HISTORY_SIZE;
-	state->sample_history[state->cur_sample] = temp;
-	state->error_history[state->cur_sample] = temp - SLOTS_PID_INPUT_TARGET;
-
-	/* If first loop, fill the history table */
-	if (state->first) {
-		for (i = 0; i < (SLOTS_PID_HISTORY_SIZE - 1); i++) {
-			state->cur_sample = (state->cur_sample + 1) %
-				SLOTS_PID_HISTORY_SIZE;
-			state->sample_history[state->cur_sample] = temp;
-			state->error_history[state->cur_sample] =
-				temp - SLOTS_PID_INPUT_TARGET;
-		}
-		state->first = 0;
-	}
-
-	/* Calculate the integral term */
-	sum = 0;
-	integral = 0;
-	for (i = 0; i < SLOTS_PID_HISTORY_SIZE; i++)
-		integral += state->error_history[i];
-	integral *= SLOTS_PID_INTERVAL;
-	DBG("  integral: %08x\n", integral);
-	integ_p = ((s64)SLOTS_PID_G_r) * (s64)integral;
-	DBG("   integ_p: %d\n", (int)(integ_p >> 36));
-	sum += integ_p;
-
-	/* Calculate the derivative term */
-	derivative = state->error_history[state->cur_sample] -
-		state->error_history[(state->cur_sample + SLOTS_PID_HISTORY_SIZE - 1)
-				    % SLOTS_PID_HISTORY_SIZE];
-	derivative /= SLOTS_PID_INTERVAL;
-	deriv_p = ((s64)SLOTS_PID_G_d) * (s64)derivative;
-	DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
-	sum += deriv_p;
-
-	/* Calculate the proportional term */
-	prop_p = ((s64)SLOTS_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
-	DBG("   prop_p: %d\n", (int)(prop_p >> 36));
-	sum += prop_p;
-
-	/* Scale sum */
-	sum >>= 36;
-
-	DBG("   sum: %d\n", (int)sum);
-	state->pwm = (s32)sum;
-
-	state->pwm = max(state->pwm, SLOTS_PID_OUTPUT_MIN);
-	state->pwm = min(state->pwm, SLOTS_PID_OUTPUT_MAX);
-
-	DBG("** DRIVES PWM: %d\n", (int)state->pwm);
-	set_pwm_fan(SLOTS_FAN_PWM_INDEX, state->pwm);
-}
-
-/*
- * Initialize the state structure for the slots bay fan control loop
- */
-static int init_slots_state(struct slots_pid_state *state)
-{
-	int err;
-
-	state->ticks = 1;
-	state->first = 1;
-	state->pwm = 50;
-
-	state->monitor = attach_i2c_chip(XSERVE_SLOTS_LM75, "slots_temp");
-	if (state->monitor == NULL)
-		return -ENODEV;
-
-	err = device_create_file(&of_dev->dev, &dev_attr_slots_temperature);
-	err |= device_create_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
-	if (err)
-		printk(KERN_WARNING "Failed to create attribute file(s)"
-			" for slots bay fan\n");
-
-	return 0;
-}
-
-/*
- * Dispose of the state data for the slots control loop
- */
-static void dispose_slots_state(struct slots_pid_state *state)
-{
-	if (state->monitor == NULL)
-		return;
-
-	device_remove_file(&of_dev->dev, &dev_attr_slots_temperature);
-	device_remove_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
-
-	state->monitor = NULL;
-}
-
-
-static int call_critical_overtemp(void)
-{
-	char *argv[] = { critical_overtemp_path, NULL };
-	static char *envp[] = { "HOME=/",
-				"TERM=linux",
-				"PATH=/sbin:/usr/sbin:/bin:/usr/bin",
-				NULL };
-
-	return call_usermodehelper(critical_overtemp_path,
-				   argv, envp, UMH_WAIT_EXEC);
-}
-
-
-/*
- * Here's the kernel thread that calls the various control loops
- */
-static int main_control_loop(void *x)
-{
-	DBG("main_control_loop started\n");
-
-	mutex_lock(&driver_lock);
-
-	if (start_fcu() < 0) {
-		printk(KERN_ERR "kfand: failed to start FCU\n");
-		mutex_unlock(&driver_lock);
-		goto out;
-	}
-
-	/* Set the PCI fan once for now on non-RackMac */
-	if (!rackmac)
-		set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM);
-
-	/* Initialize ADCs */
-	initialize_adc(&processor_state[0]);
-	if (processor_state[1].monitor != NULL)
-		initialize_adc(&processor_state[1]);
-
-	fcu_tickle_ticks = FCU_TICKLE_TICKS;
-
-	mutex_unlock(&driver_lock);
-
-	while (state == state_attached) {
-		unsigned long elapsed, start;
-
-		start = jiffies;
-
-		mutex_lock(&driver_lock);
-
-		/* Tickle the FCU just in case */
-		if (--fcu_tickle_ticks < 0) {
-			fcu_tickle_ticks = FCU_TICKLE_TICKS;
-			tickle_fcu();
-		}
-
-		/* First, we always calculate the new DIMMs state on an Xserve */
-		if (rackmac)
-			do_monitor_dimms(&dimms_state);
-
-		/* Then, the CPUs */
-		if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
-			do_monitor_cpu_combined();
-		else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) {
-			do_monitor_cpu_rack(&processor_state[0]);
-			if (processor_state[1].monitor != NULL)
-				do_monitor_cpu_rack(&processor_state[1]);
-			// better deal with UP
-		} else {
-			do_monitor_cpu_split(&processor_state[0]);
-			if (processor_state[1].monitor != NULL)
-				do_monitor_cpu_split(&processor_state[1]);
-			// better deal with UP
-		}
-		/* Then, the rest */
-		do_monitor_backside(&backside_state);
-		if (rackmac)
-			do_monitor_slots(&slots_state);
-		else
-			do_monitor_drives(&drives_state);
-		mutex_unlock(&driver_lock);
-
-		if (critical_state == 1) {
-			printk(KERN_WARNING "Temperature control detected a critical condition\n");
-			printk(KERN_WARNING "Attempting to shut down...\n");
-			if (call_critical_overtemp()) {
-				printk(KERN_WARNING "Can't call %s, power off now!\n",
-				       critical_overtemp_path);
-				machine_power_off();
-			}
-		}
-		if (critical_state > 0)
-			critical_state++;
-		if (critical_state > MAX_CRITICAL_STATE) {
-			printk(KERN_WARNING "Shutdown timed out, power off now !\n");
-			machine_power_off();
-		}
-
-		// FIXME: Deal with signals
-		elapsed = jiffies - start;
-		if (elapsed < HZ)
-			schedule_timeout_interruptible(HZ - elapsed);
-	}
-
- out:
-	DBG("main_control_loop ended\n");
-
-	ctrl_task = 0;
-	complete_and_exit(&ctrl_complete, 0);
-}
-
-/*
- * Dispose the control loops when tearing down
- */
-static void dispose_control_loops(void)
-{
-	dispose_processor_state(&processor_state[0]);
-	dispose_processor_state(&processor_state[1]);
-	dispose_backside_state(&backside_state);
-	dispose_drives_state(&drives_state);
-	dispose_slots_state(&slots_state);
-	dispose_dimms_state(&dimms_state);
-}
-
-/*
- * Create the control loops. U3-0 i2c bus is up, so we can now
- * get to the various sensors
- */
-static int create_control_loops(void)
-{
-	struct device_node *np;
-
-	/* Count CPUs from the device-tree, we don't care how many are
-	 * actually used by Linux
-	 */
-	cpu_count = 0;
-	for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));)
-		cpu_count++;
-
-	DBG("counted %d CPUs in the device-tree\n", cpu_count);
-
-	/* Decide the type of PID algorithm to use based on the presence of
-	 * the pumps, though that may not be the best way, that is good enough
-	 * for now
-	 */
-	if (rackmac)
-		cpu_pid_type = CPU_PID_TYPE_RACKMAC;
-	else if (of_machine_is_compatible("PowerMac7,3")
-	    && (cpu_count > 1)
-	    && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID
-	    && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) {
-		printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n");
-		cpu_pid_type = CPU_PID_TYPE_COMBINED;
-	} else
-		cpu_pid_type = CPU_PID_TYPE_SPLIT;
-
-	/* Create control loops for everything. If any fail, everything
-	 * fails
-	 */
-	if (init_processor_state(&processor_state[0], 0))
-		goto fail;
-	if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
-		fetch_cpu_pumps_minmax();
-
-	if (cpu_count > 1 && init_processor_state(&processor_state[1], 1))
-		goto fail;
-	if (init_backside_state(&backside_state))
-		goto fail;
-	if (rackmac && init_dimms_state(&dimms_state))
-		goto fail;
-	if (rackmac && init_slots_state(&slots_state))
-		goto fail;
-	if (!rackmac && init_drives_state(&drives_state))
-		goto fail;
-
-	DBG("all control loops up !\n");
-
-	return 0;
-	
- fail:
-	DBG("failure creating control loops, disposing\n");
-
-	dispose_control_loops();
-
-	return -ENODEV;
-}
-
-/*
- * Start the control loops after everything is up, that is create
- * the thread that will make them run
- */
-static void start_control_loops(void)
-{
-	init_completion(&ctrl_complete);
-
-	ctrl_task = kthread_run(main_control_loop, NULL, "kfand");
-}
-
-/*
- * Stop the control loops when tearing down
- */
-static void stop_control_loops(void)
-{
-	if (ctrl_task)
-		wait_for_completion(&ctrl_complete);
-}
-
-/*
- * Attach to the i2c FCU after detecting U3-1 bus
- */
-static int attach_fcu(void)
-{
-	fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu");
-	if (fcu == NULL)
-		return -ENODEV;
-
-	DBG("FCU attached\n");
-
-	return 0;
-}
-
-/*
- * Detach from the i2c FCU when tearing down
- */
-static void detach_fcu(void)
-{
-	fcu = NULL;
-}
-
-/*
- * Attach to the i2c controller. We probe the various chips based
- * on the device-tree nodes and build everything for the driver to
- * run, we then kick the driver monitoring thread
- */
-static int therm_pm72_attach(struct i2c_adapter *adapter)
-{
-	mutex_lock(&driver_lock);
-
-	/* Check state */
-	if (state == state_detached)
-		state = state_attaching;
-	if (state != state_attaching) {
-		mutex_unlock(&driver_lock);
-		return 0;
-	}
-
-	/* Check if we are looking for one of these */
-	if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) {
-		u3_0 = adapter;
-		DBG("found U3-0\n");
-		if (k2 || !rackmac)
-			if (create_control_loops())
-				u3_0 = NULL;
-	} else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) {
-		u3_1 = adapter;
-		DBG("found U3-1, attaching FCU\n");
-		if (attach_fcu())
-			u3_1 = NULL;
-	} else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) {
-		k2 = adapter;
-		DBG("Found K2\n");
-		if (u3_0 && rackmac)
-			if (create_control_loops())
-				k2 = NULL;
-	}
-	/* We got all we need, start control loops */
-	if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) {
-		DBG("everything up, starting control loops\n");
-		state = state_attached;
-		start_control_loops();
-	}
-	mutex_unlock(&driver_lock);
-
-	return 0;
-}
-
-static int therm_pm72_probe(struct i2c_client *client,
-			    const struct i2c_device_id *id)
-{
-	/* Always succeed, the real work was done in therm_pm72_attach() */
-	return 0;
-}
-
-/*
- * Called when any of the devices which participates into thermal management
- * is going away.
- */
-static int therm_pm72_remove(struct i2c_client *client)
-{
-	struct i2c_adapter *adapter = client->adapter;
-
-	mutex_lock(&driver_lock);
-
-	if (state != state_detached)
-		state = state_detaching;
-
-	/* Stop control loops if any */
-	DBG("stopping control loops\n");
-	mutex_unlock(&driver_lock);
-	stop_control_loops();
-	mutex_lock(&driver_lock);
-
-	if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) {
-		DBG("lost U3-0, disposing control loops\n");
-		dispose_control_loops();
-		u3_0 = NULL;
-	}
-	
-	if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) {
-		DBG("lost U3-1, detaching FCU\n");
-		detach_fcu();
-		u3_1 = NULL;
-	}
-	if (u3_0 == NULL && u3_1 == NULL)
-		state = state_detached;
-
-	mutex_unlock(&driver_lock);
-
-	return 0;
-}
-
-/*
- * i2c_driver structure to attach to the host i2c controller
- */
-
-static const struct i2c_device_id therm_pm72_id[] = {
-	/*
-	 * Fake device name, thermal management is done by several
-	 * chips but we don't need to differentiate between them at
-	 * this point.
-	 */
-	{ "therm_pm72", 0 },
-	{ }
-};
-
-static struct i2c_driver therm_pm72_driver = {
-	.driver = {
-		.name	= "therm_pm72",
-	},
-	.attach_adapter	= therm_pm72_attach,
-	.probe		= therm_pm72_probe,
-	.remove		= therm_pm72_remove,
-	.id_table	= therm_pm72_id,
-};
-
-static int fan_check_loc_match(const char *loc, int fan)
-{
-	char	tmp[64];
-	char	*c, *e;
-
-	strlcpy(tmp, fcu_fans[fan].loc, 64);
-
-	c = tmp;
-	for (;;) {
-		e = strchr(c, ',');
-		if (e)
-			*e = 0;
-		if (strcmp(loc, c) == 0)
-			return 1;
-		if (e == NULL)
-			break;
-		c = e + 1;
-	}
-	return 0;
-}
-
-static void fcu_lookup_fans(struct device_node *fcu_node)
-{
-	struct device_node *np = NULL;
-	int i;
-
-	/* The table is filled by default with values that are suitable
-	 * for the old machines without device-tree informations. We scan
-	 * the device-tree and override those values with whatever is
-	 * there
-	 */
-
-	DBG("Looking up FCU controls in device-tree...\n");
-
-	while ((np = of_get_next_child(fcu_node, np)) != NULL) {
-		int type = -1;
-		const char *loc;
-		const u32 *reg;
-
-		DBG(" control: %s, type: %s\n", np->name, np->type);
-
-		/* Detect control type */
-		if (!strcmp(np->type, "fan-rpm-control") ||
-		    !strcmp(np->type, "fan-rpm"))
-			type = FCU_FAN_RPM;
-		if (!strcmp(np->type, "fan-pwm-control") ||
-		    !strcmp(np->type, "fan-pwm"))
-			type = FCU_FAN_PWM;
-		/* Only care about fans for now */
-		if (type == -1)
-			continue;
-
-		/* Lookup for a matching location */
-		loc = of_get_property(np, "location", NULL);
-		reg = of_get_property(np, "reg", NULL);
-		if (loc == NULL || reg == NULL)
-			continue;
-		DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg);
-
-		for (i = 0; i < FCU_FAN_COUNT; i++) {
-			int fan_id;
-
-			if (!fan_check_loc_match(loc, i))
-				continue;
-			DBG(" location match, index: %d\n", i);
-			fcu_fans[i].id = FCU_FAN_ABSENT_ID;
-			if (type != fcu_fans[i].type) {
-				printk(KERN_WARNING "therm_pm72: Fan type mismatch "
-				       "in device-tree for %s\n", np->full_name);
-				break;
-			}
-			if (type == FCU_FAN_RPM)
-				fan_id = ((*reg) - 0x10) / 2;
-			else
-				fan_id = ((*reg) - 0x30) / 2;
-			if (fan_id > 7) {
-				printk(KERN_WARNING "therm_pm72: Can't parse "
-				       "fan ID in device-tree for %s\n", np->full_name);
-				break;
-			}
-			DBG(" fan id -> %d, type -> %d\n", fan_id, type);
-			fcu_fans[i].id = fan_id;
-		}
-	}
-
-	/* Now dump the array */
-	printk(KERN_INFO "Detected fan controls:\n");
-	for (i = 0; i < FCU_FAN_COUNT; i++) {
-		if (fcu_fans[i].id == FCU_FAN_ABSENT_ID)
-			continue;
-		printk(KERN_INFO "  %d: %s fan, id %d, location: %s\n", i,
-		       fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM",
-		       fcu_fans[i].id, fcu_fans[i].loc);
-	}
-}
-
-static int fcu_of_probe(struct platform_device* dev)
-{
-	state = state_detached;
-	of_dev = dev;
-
-	dev_info(&dev->dev, "PowerMac G5 Thermal control driver %s\n", VERSION);
-
-	/* Lookup the fans in the device tree */
-	fcu_lookup_fans(dev->dev.of_node);
-
-	/* Add the driver */
-	return i2c_add_driver(&therm_pm72_driver);
-}
-
-static int fcu_of_remove(struct platform_device* dev)
-{
-	i2c_del_driver(&therm_pm72_driver);
-
-	return 0;
-}
-
-static const struct of_device_id fcu_match[] = 
-{
-	{
-	.type		= "fcu",
-	},
-	{},
-};
-MODULE_DEVICE_TABLE(of, fcu_match);
-
-static struct platform_driver fcu_of_platform_driver = 
-{
-	.driver = {
-		.name = "temperature",
-		.of_match_table = fcu_match,
-	},
-	.probe		= fcu_of_probe,
-	.remove		= fcu_of_remove
-};
-
-/*
- * Check machine type, attach to i2c controller
- */
-static int __init therm_pm72_init(void)
-{
-	rackmac = of_machine_is_compatible("RackMac3,1");
-
-	if (!of_machine_is_compatible("PowerMac7,2") &&
-	    !of_machine_is_compatible("PowerMac7,3") &&
-	    !rackmac)
-	    	return -ENODEV;
-
-	return platform_driver_register(&fcu_of_platform_driver);
-}
-
-static void __exit therm_pm72_exit(void)
-{
-	platform_driver_unregister(&fcu_of_platform_driver);
-}
-
-module_init(therm_pm72_init);
-module_exit(therm_pm72_exit);
-
-MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
-MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
-MODULE_LICENSE("GPL");
-
diff --git a/drivers/macintosh/therm_pm72.h b/drivers/macintosh/therm_pm72.h
deleted file mode 100644
index df3680e..0000000
--- a/drivers/macintosh/therm_pm72.h
+++ /dev/null
@@ -1,326 +0,0 @@
-#ifndef __THERM_PMAC_7_2_H__
-#define __THERM_PMAC_7_2_H__
-
-typedef unsigned short fu16;
-typedef int fs32;
-typedef short fs16;
-
-struct mpu_data
-{
-	u8	signature;		/* 0x00 - EEPROM sig. */
-	u8	bytes_used;		/* 0x01 - Bytes used in eeprom (160 ?) */
-	u8	size;			/* 0x02 - EEPROM size (256 ?) */
-	u8	version;		/* 0x03 - EEPROM version */
-	u32	data_revision;		/* 0x04 - Dataset revision */
-	u8	processor_bin_code[3];	/* 0x08 - Processor BIN code */
-	u8	bin_code_expansion;	/* 0x0b - ??? (padding ?) */
-	u8	processor_num;		/* 0x0c - Number of CPUs on this MPU */
-	u8	input_mul_bus_div;	/* 0x0d - Clock input multiplier/bus divider */
-	u8	reserved1[2];		/* 0x0e - */
-	u32	input_clk_freq_high;	/* 0x10 - Input clock frequency high */
-	u8	cpu_nb_target_cycles;	/* 0x14 - ??? */
-	u8	cpu_statlat;		/* 0x15 - ??? */
-	u8	cpu_snooplat;		/* 0x16 - ??? */
-	u8	cpu_snoopacc;		/* 0x17 - ??? */
-	u8	nb_paamwin;		/* 0x18 - ??? */
-	u8	nb_statlat;		/* 0x19 - ??? */
-	u8	nb_snooplat;		/* 0x1a - ??? */
-	u8	nb_snoopwin;		/* 0x1b - ??? */
-	u8	api_bus_mode;		/* 0x1c - ??? */
-	u8	reserved2[3];		/* 0x1d - */
-	u32	input_clk_freq_low;	/* 0x20 - Input clock frequency low */
-	u8	processor_card_slot;	/* 0x24 - Processor card slot number */
-	u8	reserved3[2];		/* 0x25 - */
-	u8	padjmax;       		/* 0x27 - Max power adjustment (Not in OF!) */
-	u8	ttarget;		/* 0x28 - Target temperature */
-	u8	tmax;			/* 0x29 - Max temperature */
-	u8	pmaxh;			/* 0x2a - Max power */
-	u8	tguardband;		/* 0x2b - Guardband temp ??? Hist. len in OSX */
-	fs32	pid_gp;			/* 0x2c - PID proportional gain */
-	fs32	pid_gr;			/* 0x30 - PID reset gain */
-	fs32	pid_gd;			/* 0x34 - PID derivative gain */
-	fu16	voph;			/* 0x38 - Vop High */
-	fu16	vopl;			/* 0x3a - Vop Low */
-	fs16	nactual_die;		/* 0x3c - nActual Die */
-	fs16	nactual_heatsink;	/* 0x3e - nActual Heatsink */
-	fs16	nactual_system;		/* 0x40 - nActual System */
-	u16	calibration_flags;	/* 0x42 - Calibration flags */
-	fu16	mdiode;			/* 0x44 - Diode M value (scaling factor) */
-	fs16	bdiode;			/* 0x46 - Diode B value (offset) */
-	fs32	theta_heat_sink;	/* 0x48 - Theta heat sink */
-	u16	rminn_intake_fan;	/* 0x4c - Intake fan min RPM */
-	u16	rmaxn_intake_fan;	/* 0x4e - Intake fan max RPM */
-	u16	rminn_exhaust_fan;	/* 0x50 - Exhaust fan min RPM */
-	u16	rmaxn_exhaust_fan;	/* 0x52 - Exhaust fan max RPM */
-	u8	processor_part_num[8];	/* 0x54 - Processor part number XX pumps min/max */
-	u32	processor_lot_num;	/* 0x5c - Processor lot number */
-	u8	orig_card_sernum[0x10];	/* 0x60 - Card original serial number */
-	u8	curr_card_sernum[0x10];	/* 0x70 - Card current serial number */
-	u8	mlb_sernum[0x18];	/* 0x80 - MLB serial number */
-	u32	checksum1;		/* 0x98 - */
-	u32	checksum2;		/* 0x9c - */	
-}; /* Total size = 0xa0 */
-
-/* Display a 16.16 fixed point value */
-#define FIX32TOPRINT(f)	((f) >> 16),((((f) & 0xffff) * 1000) >> 16)
-
-/*
- * Maximum number of seconds to be in critical state (after a
- * normal shutdown attempt). If the machine isn't down after
- * this counter elapses, we force an immediate machine power
- * off.
- */
-#define MAX_CRITICAL_STATE			30
-static char * critical_overtemp_path = "/sbin/critical_overtemp";
-
-/*
- * This option is "weird" :) Basically, if you define this to 1
- * the control loop for the RPMs fans (not PWMs) will apply the
- * correction factor obtained from the PID to the _actual_ RPM
- * speed read from the FCU.
- * If you define the below constant to 0, then it will be
- * applied to the setpoint RPM speed, that is basically the
- * speed we proviously "asked" for.
- *
- * I'm not sure which of these Apple's algorithm is supposed
- * to use
- */
-#define RPM_PID_USE_ACTUAL_SPEED		0
-
-/*
- * i2c IDs. Currently, we hard code those and assume that
- * the FCU is on U3 bus 1 while all sensors are on U3 bus
- * 0. This appear to be safe enough for this first version
- * of the driver, though I would accept any clean patch
- * doing a better use of the device-tree without turning the
- * while i2c registration mechanism into a racy mess
- *
- * Note: Xserve changed this. We have some bits on the K2 bus,
- * which I arbitrarily set to 0x200. Ultimately, we really want
- * too lookup these in the device-tree though
- */
-#define FAN_CTRLER_ID		0x15e
-#define SUPPLY_MONITOR_ID      	0x58
-#define SUPPLY_MONITORB_ID     	0x5a
-#define DRIVES_DALLAS_ID	0x94
-#define BACKSIDE_MAX_ID		0x98
-#define XSERVE_DIMMS_LM87	0x25a
-#define XSERVE_SLOTS_LM75	0x290
-
-/*
- * Some MAX6690, DS1775, LM87 register definitions
- */
-#define MAX6690_INT_TEMP	0
-#define MAX6690_EXT_TEMP	1
-#define DS1775_TEMP		0
-#define LM87_INT_TEMP		0x27
-
-/*
- * Scaling factors for the AD7417 ADC converters (except
- * for the CPU diode which is obtained from the EEPROM).
- * Those values are obtained from the property list of
- * the darwin driver
- */
-#define ADC_12V_CURRENT_SCALE	0x0320	/* _AD2 */
-#define ADC_CPU_VOLTAGE_SCALE	0x00a0	/* _AD3 */
-#define ADC_CPU_CURRENT_SCALE	0x1f40	/* _AD4 */
-
-/*
- * PID factors for the U3/Backside fan control loop. We have 2 sets
- * of values here, one set for U3 and one set for U3H
- */
-#define BACKSIDE_FAN_PWM_DEFAULT_ID	1
-#define BACKSIDE_FAN_PWM_INDEX		0
-#define BACKSIDE_PID_U3_G_d		0x02800000
-#define BACKSIDE_PID_U3H_G_d		0x01400000
-#define BACKSIDE_PID_RACK_G_d		0x00500000
-#define BACKSIDE_PID_G_p		0x00500000
-#define BACKSIDE_PID_RACK_G_p		0x0004cccc
-#define BACKSIDE_PID_G_r		0x00000000
-#define BACKSIDE_PID_U3_INPUT_TARGET	0x00410000
-#define BACKSIDE_PID_U3H_INPUT_TARGET	0x004b0000
-#define BACKSIDE_PID_RACK_INPUT_TARGET	0x00460000
-#define BACKSIDE_PID_INTERVAL		5
-#define BACKSIDE_PID_RACK_INTERVAL	1
-#define BACKSIDE_PID_OUTPUT_MAX		100
-#define BACKSIDE_PID_U3_OUTPUT_MIN	20
-#define BACKSIDE_PID_U3H_OUTPUT_MIN	20
-#define BACKSIDE_PID_HISTORY_SIZE	2
-
-struct basckside_pid_params
-{
-	s32			G_d;
-	s32			G_p;
-	s32			G_r;
-	s32			input_target;
-	s32			output_min;
-	s32			output_max;
-	s32			interval;
-	int			additive;
-};
-
-struct backside_pid_state
-{
-	int			ticks;
-	struct i2c_client *	monitor;
-	s32		       	sample_history[BACKSIDE_PID_HISTORY_SIZE];
-	s32			error_history[BACKSIDE_PID_HISTORY_SIZE];
-	int			cur_sample;
-	s32			last_temp;
-	int			pwm;
-	int			first;
-};
-
-/*
- * PID factors for the Drive Bay fan control loop
- */
-#define DRIVES_FAN_RPM_DEFAULT_ID	2
-#define DRIVES_FAN_RPM_INDEX		1
-#define DRIVES_PID_G_d			0x01e00000
-#define DRIVES_PID_G_p			0x00500000
-#define DRIVES_PID_G_r			0x00000000
-#define DRIVES_PID_INPUT_TARGET		0x00280000
-#define DRIVES_PID_INTERVAL    		5
-#define DRIVES_PID_OUTPUT_MAX		4000
-#define DRIVES_PID_OUTPUT_MIN		300
-#define DRIVES_PID_HISTORY_SIZE		2
-
-struct drives_pid_state
-{
-	int			ticks;
-	struct i2c_client *	monitor;
-	s32	       		sample_history[BACKSIDE_PID_HISTORY_SIZE];
-	s32			error_history[BACKSIDE_PID_HISTORY_SIZE];
-	int			cur_sample;
-	s32			last_temp;
-	int			rpm;
-	int			first;
-};
-
-#define SLOTS_FAN_PWM_DEFAULT_ID	2
-#define SLOTS_FAN_PWM_INDEX		2
-#define	SLOTS_FAN_DEFAULT_PWM		40 /* Do better here ! */
-
-
-/*
- * PID factors for the Xserve DIMM control loop
- */
-#define DIMM_PID_G_d			0
-#define DIMM_PID_G_p			0
-#define DIMM_PID_G_r			0x06553600
-#define DIMM_PID_INPUT_TARGET		3276800
-#define DIMM_PID_INTERVAL    		1
-#define DIMM_PID_OUTPUT_MAX		14000
-#define DIMM_PID_OUTPUT_MIN		4000
-#define DIMM_PID_HISTORY_SIZE		20
-
-struct dimm_pid_state
-{
-	int			ticks;
-	struct i2c_client *	monitor;
-	s32	       		sample_history[DIMM_PID_HISTORY_SIZE];
-	s32			error_history[DIMM_PID_HISTORY_SIZE];
-	int			cur_sample;
-	s32			last_temp;
-	int			first;
-	int			output;
-};
-
-
-/*
- * PID factors for the Xserve Slots control loop
- */
-#define SLOTS_PID_G_d			0
-#define SLOTS_PID_G_p			0
-#define SLOTS_PID_G_r			0x00100000
-#define SLOTS_PID_INPUT_TARGET		3200000
-#define SLOTS_PID_INTERVAL    		1
-#define SLOTS_PID_OUTPUT_MAX		100
-#define SLOTS_PID_OUTPUT_MIN		20
-#define SLOTS_PID_HISTORY_SIZE		20
-
-struct slots_pid_state
-{
-	int			ticks;
-	struct i2c_client *	monitor;
-	s32	       		sample_history[SLOTS_PID_HISTORY_SIZE];
-	s32			error_history[SLOTS_PID_HISTORY_SIZE];
-	int			cur_sample;
-	s32			last_temp;
-	int			first;
-	int			pwm;
-};
-
-
-
-/* Desktops */
-
-#define CPUA_INTAKE_FAN_RPM_DEFAULT_ID	3
-#define CPUA_EXHAUST_FAN_RPM_DEFAULT_ID	4
-#define CPUB_INTAKE_FAN_RPM_DEFAULT_ID	5
-#define CPUB_EXHAUST_FAN_RPM_DEFAULT_ID	6
-
-#define CPUA_INTAKE_FAN_RPM_INDEX	3
-#define CPUA_EXHAUST_FAN_RPM_INDEX	4
-#define CPUB_INTAKE_FAN_RPM_INDEX	5
-#define CPUB_EXHAUST_FAN_RPM_INDEX	6
-
-#define CPU_INTAKE_SCALE		0x0000f852
-#define CPU_TEMP_HISTORY_SIZE		2
-#define CPU_POWER_HISTORY_SIZE		10
-#define CPU_PID_INTERVAL		1
-#define CPU_MAX_OVERTEMP		90
-
-#define CPUA_PUMP_RPM_INDEX		7
-#define CPUB_PUMP_RPM_INDEX		8
-#define CPU_PUMP_OUTPUT_MAX		3200
-#define CPU_PUMP_OUTPUT_MIN		1250
-
-/* Xserve */
-#define CPU_A1_FAN_RPM_INDEX		9
-#define CPU_A2_FAN_RPM_INDEX		10
-#define CPU_A3_FAN_RPM_INDEX		11
-#define CPU_B1_FAN_RPM_INDEX		12
-#define CPU_B2_FAN_RPM_INDEX		13
-#define CPU_B3_FAN_RPM_INDEX		14
-
-
-struct cpu_pid_state
-{
-	int			index;
-	struct i2c_client *	monitor;
-	struct mpu_data		mpu;
-	int			overtemp;
-	s32	       		temp_history[CPU_TEMP_HISTORY_SIZE];
-	int			cur_temp;
-	s32			power_history[CPU_POWER_HISTORY_SIZE];
-	s32			error_history[CPU_POWER_HISTORY_SIZE];
-	int			cur_power;
-	int			count_power;
-	int			rpm;
-	int			intake_rpm;
-	s32			voltage;
-	s32			current_a;
-	s32			last_temp;
-	s32			last_power;
-	int			first;
-	u8			adc_config;
-	s32			pump_min;
-	s32			pump_max;
-};
-
-/* Tickle FCU every 10 seconds */
-#define FCU_TICKLE_TICKS	10
-
-/*
- * Driver state
- */
-enum {
-	state_detached,
-	state_attaching,
-	state_attached,
-	state_detaching,
-};
-
-
-#endif /* __THERM_PMAC_7_2_H__ */