blob: 38b688e0b8ff2abef405af4703d3ffff0d773281 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
*
* The data sheet for this device can be found at:
* http://wiki.laptop.org/go/Datasheets
*
* Copyright © 2006 Red Hat, Inc.
* Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
*/
#include <linux/bitfield.h>
#include <linux/device.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/partitions.h>
#include <linux/rslib.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/iopoll.h>
#define CAFE_NAND_CTRL1 0x00
#define CAFE_NAND_CTRL1_HAS_CMD BIT(31)
#define CAFE_NAND_CTRL1_HAS_ADDR BIT(30)
#define CAFE_NAND_CTRL1_NUM_ADDR_CYC GENMASK(29, 27)
#define CAFE_NAND_CTRL1_HAS_DATA_IN BIT(26)
#define CAFE_NAND_CTRL1_HAS_DATA_OUT BIT(25)
#define CAFE_NAND_CTRL1_NUM_NONMEM_READ_HIGH GENMASK(24, 22)
#define CAFE_NAND_CTRL1_WAIT_BSY_AFTER_SEQ BIT(21)
#define CAFE_NAND_CTRL1_NUM_NONMEM_READ_LOW BIT(20)
#define CAFE_NAND_CTRL1_CE BIT(19)
#define CAFE_NAND_CTRL1_CMD GENMASK(7, 0)
#define CAFE_NAND_CTRL2 0x04
#define CAFE_NAND_CTRL2_AUTO_WRITE_ECC BIT(30)
#define CAFE_NAND_CTRL2_PAGE_SIZE GENMASK(29, 28)
#define CAFE_NAND_CTRL2_ECC_ALG_RS BIT(27)
#define CAFE_NAND_CTRL2_HAS_CMD2 BIT(8)
#define CAFE_NAND_CTRL2_CMD2 GENMASK(7, 0)
#define CAFE_NAND_CTRL3 0x08
#define CAFE_NAND_CTRL3_READ_BUSY_RESET BIT(31)
#define CAFE_NAND_CTRL3_WP BIT(30)
#define CAFE_NAND_STATUS 0x0c
#define CAFE_NAND_STATUS_CONTROLLER_BUSY BIT(31)
#define CAFE_NAND_STATUS_FLASH_BUSY BIT(30)
#define CAFE_NAND_IRQ 0x10
#define CAFE_NAND_IRQ_MASK 0x14
#define CAFE_NAND_IRQ_CMD_DONE BIT(31)
#define CAFE_NAND_IRQ_FLASH_RDY BIT(30)
#define CAFE_NAND_IRQ_DMA_DONE BIT(28)
#define CAFE_NAND_IRQ_BOOT_DONE BIT(27)
#define CAFE_NAND_DATA_LEN 0x18
#define CAFE_NAND_ADDR1 0x1c
#define CAFE_NAND_ADDR2 0x20
#define CAFE_NAND_TIMING1 0x24
#define CAFE_NAND_TIMING1_TCLS GENMASK(31, 28)
#define CAFE_NAND_TIMING1_TCLH GENMASK(27, 24)
#define CAFE_NAND_TIMING1_TALS GENMASK(23, 20)
#define CAFE_NAND_TIMING1_TALH GENMASK(19, 16)
#define CAFE_NAND_TIMING1_TWB GENMASK(15, 8)
#define CAFE_NAND_TIMING1_TRB GENMASK(7, 0)
#define CAFE_NAND_TIMING2 0x28
#define CAFE_NAND_TIMING2_TRR GENMASK(31, 28)
#define CAFE_NAND_TIMING2_TREA GENMASK(27, 24)
#define CAFE_NAND_TIMING2_TDH GENMASK(23, 20)
#define CAFE_NAND_TIMING2_TDS GENMASK(19, 16)
#define CAFE_NAND_TIMING2_TRH GENMASK(15, 12)
#define CAFE_NAND_TIMING2_TRP GENMASK(11, 8)
#define CAFE_NAND_TIMING2_TWH GENMASK(7, 4)
#define CAFE_NAND_TIMING2_TWP GENMASK(3, 0)
#define CAFE_NAND_TIMING3 0x2c
#define CAFE_NAND_TIMING3_TAR GENMASK(31, 28)
#define CAFE_NAND_TIMING3_TCLR GENMASK(27, 24)
#define CAFE_NAND_NONMEM_READ_DATA 0x30
#define CAFE_NAND_ECC_READ_CODE 0x38
#define CAFE_NAND_ECC_RESULT 0x3C
#define CAFE_NAND_ECC_RESULT_RS_ERRORS BIT(18)
#define CAFE_NAND_ECC_RESULT_STATUS GENMASK(17, 16)
#define CAFE_NAND_ECC_RESULT_NO_ERROR (0 << 16)
#define CAFE_NAND_ECC_RESULT_CORRECTABLE_ERRS (1 << 16)
#define CAFE_NAND_ECC_RESULT_UNCORRECTABLE_ERRS (2 << 16)
#define CAFE_NAND_ECC_RESULT_FAIL_BIT_LOC GENMASK(13, 0)
#define CAFE_NAND_DMA_CTRL 0x40
#define CAFE_NAND_DMA_CTRL_ENABLE BIT(31)
#define CAFE_NAND_DMA_CTRL_RESERVED BIT(30)
#define CAFE_NAND_DMA_CTRL_DATA_IN BIT(29)
#define CAFE_NAND_DMA_CTRL_DATA_LEN GENMASK(11, 0)
#define CAFE_NAND_DMA_ADDR0 0x44
#define CAFE_NAND_DMA_ADDR1 0x48
#define CAFE_NAND_ECC_SYN_REG(x) ((((x) / 2) * 4) + 0x50)
#define CAFE_NAND_ECC_SYN_FIELD(x) (((x) % 2) ? GENMASK(31, 16) : GENMASK(15, 0))
#define CAFE_NAND_CTRL4 0x60
#define CAFE_NAND_CTRL4_NO_READ_DELAY BIT(8)
#define CAFE_NAND_DRIVE_STRENGTH 0x64
#define CAFE_NAND_DRIVE_STRENGTH_VAL GENMASK(4, 0)
#define CAFE_NAND_READ_DATA 0x1000
#define CAFE_NAND_WRITE_DATA 0x2000
#define CAFE_GLOBAL_CTRL 0x3004
#define CAFE_GLOBAL_CCIC_CLK_ENABLE BIT(14)
#define CAFE_GLOBAL_SDH_CLK_ENABLE BIT(13)
#define CAFE_GLOBAL_NAND_CLK_ENABLE BIT(12)
#define CAFE_GLOBAL_CLKRUN_ENABLE_SET BIT(11)
#define CAFE_GLOBAL_CLKRUN_ENABLE_CLEAR BIT(10)
#define CAFE_GLOBAL_SW_IRQ_SET BIT(7)
#define CAFE_GLOBAL_SW_IRQ_CLEAR BIT(6)
#define CAFE_GLOBAL_STOP_MASTER_DONE BIT(5)
#define CAFE_GLOBAL_STOP_MASTER BIT(4)
#define CAFE_GLOBAL_MASTER_RESET_CLEAR BIT(3)
#define CAFE_GLOBAL_MASTER_RESET_SET BIT(2)
#define CAFE_GLOBAL_SW_RESET_CLEAR BIT(1)
#define CAFE_GLOBAL_SW_RESET_SET BIT(0)
#define CAFE_GLOBAL_IRQ 0x3008
#define CAFE_GLOBAL_IRQ_MASK 0x300c
#define CAFE_GLOBAL_IRQ_PCI_ERROR BIT(31)
#define CAFE_GLOBAL_IRQ_VPD_TWSI BIT(26)
#define CAFE_GLOBAL_IRQ_CCIC BIT(2)
#define CAFE_GLOBAL_IRQ_SDH BIT(1)
#define CAFE_GLOBAL_IRQ_NAND BIT(0)
#define CAFE_GLOBAL_RESET 0x3034
#define CAFE_GLOBAL_RESET_CCIC BIT(2)
#define CAFE_GLOBAL_RESET_SDH BIT(1)
#define CAFE_GLOBAL_RESET_NAND BIT(0)
#define CAFE_FIELD_PREP(reg, field, val) FIELD_PREP(CAFE_##reg##_##field, val)
#define CAFE_FIELD_GET(reg, field, val) FIELD_GET(CAFE_##reg##_##field, val)
struct cafe_priv {
struct nand_controller base;
struct nand_chip nand;
struct pci_dev *pdev;
void __iomem *mmio;
struct rs_control *rs;
u32 ctl2;
bool usedma;
dma_addr_t dmaaddr;
unsigned char *dmabuf;
};
static int usedma = 1;
module_param(usedma, int, 0644);
static int skipbbt = 0;
module_param(skipbbt, int, 0644);
static int regdebug = 0;
module_param(regdebug, int, 0644);
static int checkecc = 1;
module_param(checkecc, int, 0644);
static unsigned int numtimings;
static int timing[3];
module_param_array(timing, int, &numtimings, 0644);
static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
static int cafe_nand_write_oob(struct nand_chip *chip, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
mtd->oobsize);
}
/* Don't use -- use nand_read_oob_std for now */
static int cafe_nand_read_oob(struct nand_chip *chip, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
}
/*
* The hw generator calculates the error syndrome automatically. Therefore
* we need a special oob layout and handling.
*/
static int cafe_nand_read_page(struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct cafe_priv *cafe = nand_get_controller_data(chip);
void *pagebuf = nand_get_data_buf(chip);
unsigned int max_bitflips = 0;
u32 ecc_result;
dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
readl(cafe->mmio + CAFE_NAND_ECC_RESULT),
readl(cafe->mmio + CAFE_NAND_ECC_SYN_REG(0)));
nand_read_page_op(chip, page, 0, pagebuf,
mtd->writesize + mtd->oobsize);
if (buf != pagebuf)
memcpy(buf, pagebuf, mtd->writesize);
ecc_result = readl(cafe->mmio + CAFE_NAND_ECC_RESULT);
if (checkecc && (ecc_result & CAFE_NAND_ECC_RESULT_RS_ERRORS)) {
unsigned short syn[8], pat[4];
int pos[4];
u8 *oob = chip->oob_poi;
int i, n;
for (i=0; i<8; i+=2) {
u32 tmp = readl(cafe->mmio + CAFE_NAND_ECC_SYN_REG(i));
u16 idx;
idx = FIELD_GET(CAFE_NAND_ECC_SYN_FIELD(i), tmp);
syn[i] = cafe->rs->codec->index_of[idx];
idx = FIELD_GET(CAFE_NAND_ECC_SYN_FIELD(i + 1), tmp);
syn[i+1] = cafe->rs->codec->index_of[idx];
}
n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
pat);
for (i = 0; i < n; i++) {
int p = pos[i];
/* The 12-bit symbols are mapped to bytes here */
if (p > 1374) {
/* out of range */
n = -1374;
} else if (p == 0) {
/* high four bits do not correspond to data */
if (pat[i] > 0xff)
n = -2048;
else
buf[0] ^= pat[i];
} else if (p == 1365) {
buf[2047] ^= pat[i] >> 4;
oob[0] ^= pat[i] << 4;
} else if (p > 1365) {
if ((p & 1) == 1) {
oob[3*p/2 - 2048] ^= pat[i] >> 4;
oob[3*p/2 - 2047] ^= pat[i] << 4;
} else {
oob[3*p/2 - 2049] ^= pat[i] >> 8;
oob[3*p/2 - 2048] ^= pat[i];
}
} else if ((p & 1) == 1) {
buf[3*p/2] ^= pat[i] >> 4;
buf[3*p/2 + 1] ^= pat[i] << 4;
} else {
buf[3*p/2 - 1] ^= pat[i] >> 8;
buf[3*p/2] ^= pat[i];
}
}
if (n < 0) {
dev_dbg(&cafe->pdev->dev,
"Failed to correct ECC at %08x\n",
readl(cafe->mmio + CAFE_NAND_ADDR2) * 2048);
for (i = 0; i < 0x5c; i += 4)
dev_dbg(&cafe->pdev->dev,
"Register %x: %08x\n", i,
readl(cafe->mmio + i));
mtd->ecc_stats.failed++;
} else {
dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
mtd->ecc_stats.corrected += n;
max_bitflips = max_t(unsigned int, max_bitflips, n);
}
}
return max_bitflips;
}
static int cafe_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (section)
return -ERANGE;
oobregion->offset = 0;
oobregion->length = chip->ecc.total;
return 0;
}
static int cafe_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (section)
return -ERANGE;
oobregion->offset = chip->ecc.total;
oobregion->length = mtd->oobsize - chip->ecc.total;
return 0;
}
static const struct mtd_ooblayout_ops cafe_ooblayout_ops = {
.ecc = cafe_ooblayout_ecc,
.free = cafe_ooblayout_free,
};
/* Ick. The BBT code really ought to be able to work this bit out
for itself from the above, at least for the 2KiB case */
static u8 cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
static u8 cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
static u8 cafe_bbt_pattern_512[] = { 0xBB };
static u8 cafe_mirror_pattern_512[] = { 0xBC };
static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION,
.offs = 14,
.len = 4,
.veroffs = 18,
.maxblocks = 4,
.pattern = cafe_bbt_pattern_2048
};
static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION,
.offs = 14,
.len = 4,
.veroffs = 18,
.maxblocks = 4,
.pattern = cafe_mirror_pattern_2048
};
static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION,
.offs = 14,
.len = 1,
.veroffs = 15,
.maxblocks = 4,
.pattern = cafe_bbt_pattern_512
};
static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION,
.offs = 14,
.len = 1,
.veroffs = 15,
.maxblocks = 4,
.pattern = cafe_mirror_pattern_512
};
static int cafe_nand_write_page(struct nand_chip *chip,
const u8 *buf, int oob_required,
int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct cafe_priv *cafe = nand_get_controller_data(chip);
void *pagebuf = nand_get_data_buf(chip);
int ret;
if (pagebuf != buf)
memcpy(pagebuf, buf, mtd->writesize);
/* Set up ECC autogeneration */
cafe->ctl2 |= CAFE_NAND_CTRL2_AUTO_WRITE_ECC;
ret = nand_prog_page_op(chip, page, 0, pagebuf,
mtd->writesize + mtd->oobsize);
/*
* And clear it before returning so that following write operations
* that do not involve ECC don't generate ECC bytes.
*/
cafe->ctl2 &= ~CAFE_NAND_CTRL2_AUTO_WRITE_ECC;
return ret;
}
/* F_2[X]/(X**6+X+1) */
static unsigned short gf64_mul(u8 a, u8 b)
{
u8 c;
unsigned int i;
c = 0;
for (i = 0; i < 6; i++) {
if (a & 1)
c ^= b;
a >>= 1;
b <<= 1;
if ((b & 0x40) != 0)
b ^= 0x43;
}
return c;
}
/* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X] */
static u16 gf4096_mul(u16 a, u16 b)
{
u8 ah, al, bh, bl, ch, cl;
ah = a >> 6;
al = a & 0x3f;
bh = b >> 6;
bl = b & 0x3f;
ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
return (ch << 6) ^ cl;
}
static int cafe_mul(int x)
{
if (x == 0)
return 1;
return gf4096_mul(x, 0xe01);
}
static int cafe_nand_attach_chip(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct cafe_priv *cafe = nand_get_controller_data(chip);
int err = 0;
cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112,
&cafe->dmaaddr, GFP_KERNEL);
if (!cafe->dmabuf)
return -ENOMEM;
/* Set up DMA address */
writel(lower_32_bits(cafe->dmaaddr), cafe->mmio + CAFE_NAND_DMA_ADDR0);
writel(upper_32_bits(cafe->dmaaddr), cafe->mmio + CAFE_NAND_DMA_ADDR1);
dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
readl(cafe->mmio + CAFE_NAND_DMA_ADDR0), cafe->dmabuf);
/* Restore the DMA flag */
cafe->usedma = usedma;
cafe->ctl2 = CAFE_NAND_CTRL2_ECC_ALG_RS |
CAFE_FIELD_PREP(NAND_CTRL2, PAGE_SIZE,
mtd->writesize / 1024);
/* Set up ECC according to the type of chip we found */
mtd_set_ooblayout(mtd, &cafe_ooblayout_ops);
if (mtd->writesize == 2048) {
cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
} else if (mtd->writesize == 512) {
cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
} else {
dev_warn(&cafe->pdev->dev,
"Unexpected NAND flash writesize %d. Aborting\n",
mtd->writesize);
err = -ENOTSUPP;
goto out_free_dma;
}
cafe->nand.ecc.mode = NAND_ECC_HW;
cafe->nand.ecc.algo = NAND_ECC_RS;
cafe->nand.ecc.size = mtd->writesize;
cafe->nand.ecc.bytes = 14;
cafe->nand.ecc.strength = 4;
cafe->nand.ecc.write_page = cafe_nand_write_page;
cafe->nand.ecc.write_oob = cafe_nand_write_oob;
cafe->nand.ecc.read_page = cafe_nand_read_page;
cafe->nand.ecc.read_oob = cafe_nand_read_oob;
return 0;
out_free_dma:
dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
return err;
}
static void cafe_nand_detach_chip(struct nand_chip *chip)
{
struct cafe_priv *cafe = nand_get_controller_data(chip);
dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
}
static void cafe_data_out(struct cafe_priv *cafe, bool usedma,
const void *buf, unsigned int len)
{
if (usedma)
memcpy(cafe->dmabuf, buf, len);
else
memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA, buf, len);
}
static void cafe_data_in(struct cafe_priv *cafe, bool usedma,
void *buf, unsigned int len)
{
if (usedma)
memcpy(buf, cafe->dmabuf, len);
else
memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA, len);
}
static int cafe_nand_exec_subop(struct nand_chip *chip,
const struct nand_subop *subop)
{
struct cafe_priv *cafe = nand_get_controller_data(chip);
u32 ctrl1 = 0, ctrl2 = cafe->ctl2, addr1 = 0, addr2 = 0;
u32 status, dmactrl = 0, wait = CAFE_NAND_IRQ_CMD_DONE;
int ret, data_instr = -1;
bool waitrdy = false;
bool usedma = false;
unsigned int i, j;
ctrl1 |= CAFE_FIELD_PREP(NAND_CTRL1, CE, subop->cs);
for (i = 0; i < subop->ninstrs; i++) {
const struct nand_op_instr *instr = &subop->instrs[i];
switch (instr->type) {
case NAND_OP_CMD_INSTR:
if (!(ctrl1 & CAFE_NAND_CTRL1_HAS_CMD))
ctrl1 |= CAFE_NAND_CTRL1_HAS_CMD |
CAFE_FIELD_PREP(NAND_CTRL1, CMD,
instr->ctx.cmd.opcode);
else
ctrl2 |= CAFE_NAND_CTRL2_HAS_CMD2 |
CAFE_FIELD_PREP(NAND_CTRL2, CMD2,
instr->ctx.cmd.opcode);
break;
case NAND_OP_ADDR_INSTR:
for (j = nand_subop_get_addr_start_off(subop, i);
j < nand_subop_get_num_addr_cyc(subop, i); j++) {
u32 addr = instr->ctx.addr.addrs[j];
if (j < 2)
addr1 |= addr << (8 * j);
else
addr2 |= addr << (8 * (j - 2));
}
ctrl1 |= CAFE_NAND_CTRL1_HAS_ADDR |
CAFE_FIELD_PREP(NAND_CTRL1, NUM_ADDR_CYC,
instr->ctx.addr.naddrs - 1);
writel(addr1, cafe->mmio + CAFE_NAND_ADDR1);
writel(addr2, cafe->mmio + CAFE_NAND_ADDR2);
break;
case NAND_OP_DATA_IN_INSTR:
data_instr = i;
if (ctrl1 & CAFE_NAND_CTRL1_HAS_ADDR) {
ctrl1 |= CAFE_NAND_CTRL1_HAS_DATA_IN;
} else {
ctrl1 |= CAFE_FIELD_PREP(NAND_CTRL1, NUM_NONMEM_READ_LOW,
instr->ctx.data.len & 1) |
CAFE_FIELD_PREP(NAND_CTRL1, NUM_NONMEM_READ_HIGH,
instr->ctx.data.len >> 1);
}
break;
case NAND_OP_DATA_OUT_INSTR:
data_instr = i;
ctrl1 |= CAFE_NAND_CTRL1_HAS_DATA_OUT;
break;
case NAND_OP_WAITRDY_INSTR:
wait |= CAFE_NAND_IRQ_FLASH_RDY;
waitrdy = true;
break;
}
}
if (data_instr >= 0) {
writel(nand_subop_get_data_len(subop, data_instr),
cafe->mmio + CAFE_NAND_DATA_LEN);
}
/*
* Apparently we can't use DMA if there's not at least one address
* cycle. We should probably also condition the use of DMA on the
* amount of data to transfer.
*/
if (cafe->usedma && data_instr >= 0 &&
(ctrl1 & CAFE_NAND_CTRL1_HAS_ADDR)) {
dmactrl |= CAFE_NAND_DMA_CTRL_ENABLE |
CAFE_NAND_DMA_CTRL_RESERVED |
CAFE_FIELD_PREP(NAND_DMA_CTRL, DATA_LEN,
nand_subop_get_data_len(subop,
data_instr));
if (ctrl1 & CAFE_NAND_CTRL1_HAS_DATA_IN)
dmactrl |= CAFE_NAND_DMA_CTRL_DATA_IN;
/*
* If the last instruction is a data transfer and we're using
* DMA, we should wait on DMA_DONE only, otherwise, keep
* waiting on CMD_DONE.
*/
if (data_instr == subop->ninstrs - 1) {
wait &= ~CAFE_NAND_IRQ_CMD_DONE;
wait |= CAFE_NAND_IRQ_DMA_DONE;
}
usedma = true;
}
if (ctrl1 & CAFE_NAND_CTRL1_HAS_DATA_OUT) {
cafe_data_out(cafe, usedma,
subop->instrs[data_instr].ctx.data.buf.out +
nand_subop_get_data_start_off(subop, data_instr),
nand_subop_get_data_len(subop, data_instr));
}
/* Clear pending interrupts before starting the operation. */
writel(wait, cafe->mmio + CAFE_NAND_IRQ);
writel(dmactrl, cafe->mmio + CAFE_NAND_DMA_CTRL);
writel(ctrl2, cafe->mmio + CAFE_NAND_CTRL2);
writel(ctrl1, cafe->mmio + CAFE_NAND_CTRL1);
ret = readl_poll_timeout_atomic(cafe->mmio + CAFE_NAND_IRQ, status,
(status & wait) == wait, 1,
USEC_PER_SEC);
if (ret)
return ret;
if (ctrl1 & CAFE_NAND_CTRL1_HAS_DATA_IN) {
if (ctrl1 & CAFE_NAND_CTRL1_HAS_ADDR) {
cafe_data_in(cafe, usedma,
subop->instrs[data_instr].ctx.data.buf.in +
nand_subop_get_data_start_off(subop, data_instr),
nand_subop_get_data_len(subop, data_instr));
} else {
u32 rd = readl(cafe->mmio + CAFE_NAND_NONMEM_READ_DATA);
unsigned int len = subop->instrs[data_instr].ctx.data.len;
memcpy(subop->instrs[data_instr].ctx.data.buf.in, &rd,
min_t(unsigned int, len, 4));
}
}
return 0;
}
static const struct nand_op_parser cafe_nand_op_parser = NAND_OP_PARSER(
NAND_OP_PARSER_PATTERN(cafe_nand_exec_subop,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_ADDR_ELEM(false, 5),
NAND_OP_PARSER_PAT_CMD_ELEM(true),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 2112)),
NAND_OP_PARSER_PATTERN(cafe_nand_exec_subop,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_ADDR_ELEM(false, 5),
NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, 2112),
NAND_OP_PARSER_PAT_CMD_ELEM(true),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
NAND_OP_PARSER_PATTERN(cafe_nand_exec_subop,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 4),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true))
);
static int cafe_nand_exec_op(struct nand_chip *chip,
const struct nand_operation *op,
bool check_only)
{
return nand_op_parser_exec_op(chip, &cafe_nand_op_parser, op,
check_only);
}
static const struct nand_controller_ops cafe_nand_controller_ops = {
.attach_chip = cafe_nand_attach_chip,
.detach_chip = cafe_nand_detach_chip,
.exec_op = cafe_nand_exec_op,
};
static void cafe_nand_init(struct cafe_priv *cafe)
{
u32 ctrl;
/* Start off by resetting the NAND controller completely */
writel(CAFE_GLOBAL_RESET_NAND, cafe->mmio + CAFE_GLOBAL_RESET);
writel(0, cafe->mmio + CAFE_GLOBAL_RESET);
writel(0xffffffff, cafe->mmio + CAFE_NAND_IRQ_MASK);
/* Restore timing configuration */
writel(timing[0], cafe->mmio + CAFE_NAND_TIMING1);
writel(timing[1], cafe->mmio + CAFE_NAND_TIMING2);
writel(timing[2], cafe->mmio + CAFE_NAND_TIMING3);
/* Disable master reset, enable NAND clock */
ctrl = readl(cafe->mmio + CAFE_GLOBAL_CTRL);
ctrl &= ~(CAFE_GLOBAL_SW_RESET_SET |
CAFE_GLOBAL_SW_RESET_CLEAR |
CAFE_GLOBAL_MASTER_RESET_SET |
CAFE_GLOBAL_MASTER_RESET_CLEAR |
CAFE_GLOBAL_NAND_CLK_ENABLE);
ctrl |= CAFE_GLOBAL_NAND_CLK_ENABLE |
CAFE_GLOBAL_SDH_CLK_ENABLE |
CAFE_GLOBAL_CCIC_CLK_ENABLE;
writel(ctrl | CAFE_GLOBAL_MASTER_RESET_SET | CAFE_GLOBAL_SW_RESET_SET,
cafe->mmio + CAFE_GLOBAL_CTRL);
writel(ctrl | CAFE_GLOBAL_MASTER_RESET_CLEAR |
CAFE_GLOBAL_SW_RESET_CLEAR,
cafe->mmio + CAFE_GLOBAL_CTRL);
writel(0, cafe->mmio + CAFE_NAND_DMA_CTRL);
writel(CAFE_GLOBAL_NAND_CLK_ENABLE | CAFE_GLOBAL_SDH_CLK_ENABLE |
CAFE_GLOBAL_CCIC_CLK_ENABLE | CAFE_GLOBAL_MASTER_RESET_SET |
CAFE_GLOBAL_SW_RESET_CLEAR,
cafe->mmio + CAFE_GLOBAL_CTRL);
writel(CAFE_GLOBAL_NAND_CLK_ENABLE | CAFE_GLOBAL_SDH_CLK_ENABLE |
CAFE_GLOBAL_CCIC_CLK_ENABLE | CAFE_GLOBAL_MASTER_RESET_CLEAR |
CAFE_GLOBAL_SW_RESET_CLEAR,
cafe->mmio + CAFE_GLOBAL_CTRL);
/* Set up DMA address */
writel(lower_32_bits(cafe->dmaaddr), cafe->mmio + CAFE_NAND_DMA_ADDR0);
writel(upper_32_bits(cafe->dmaaddr), cafe->mmio + CAFE_NAND_DMA_ADDR1);
}
static int cafe_nand_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct mtd_info *mtd;
struct cafe_priv *cafe;
int err = 0;
/* Very old versions shared the same PCI ident for all three
functions on the chip. Verify the class too... */
if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
return -ENODEV;
err = pci_enable_device(pdev);
if (err)
return err;
pci_set_master(pdev);
cafe = devm_kzalloc(&pdev->dev, sizeof(*cafe), GFP_KERNEL);
if (!cafe)
return -ENOMEM;
mtd = nand_to_mtd(&cafe->nand);
mtd->dev.parent = &pdev->dev;
nand_set_controller_data(&cafe->nand, cafe);
cafe->pdev = pdev;
cafe->mmio = pci_iomap(pdev, 0, 0);
if (!cafe->mmio) {
dev_warn(&pdev->dev, "failed to iomap\n");
return -ENOMEM;
}
cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
if (!cafe->rs) {
err = -ENOMEM;
goto out_ior;
}
/* Enable the following for a flash based bad block table */
cafe->nand.bbt_options = NAND_BBT_USE_FLASH;
if (skipbbt)
cafe->nand.options |= NAND_SKIP_BBTSCAN | NAND_NO_BBM_QUIRK;
if (numtimings && numtimings != 3) {
dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
}
if (numtimings == 3) {
dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
timing[0], timing[1], timing[2]);
} else {
timing[0] = readl(cafe->mmio + CAFE_NAND_TIMING1);
timing[1] = readl(cafe->mmio + CAFE_NAND_TIMING2);
timing[2] = readl(cafe->mmio + CAFE_NAND_TIMING3);
if (timing[0] | timing[1] | timing[2]) {
dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
timing[0], timing[1], timing[2]);
} else {
dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
timing[0] = timing[1] = timing[2] = 0xffffffff;
}
}
cafe_nand_init(cafe);
/* Do not use the DMA during the NAND identification */
cafe->usedma = 0;
/* Scan to find existence of the device */
nand_controller_init(&cafe->base);
cafe->base.ops = &cafe_nand_controller_ops;
cafe->nand.controller = &cafe->base;
err = nand_scan(&cafe->nand, 2);
if (err)
goto out_ior;
pci_set_drvdata(pdev, mtd);
mtd->name = "cafe_nand";
err = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
if (err)
goto out_cleanup_nand;
return 0;
out_cleanup_nand:
nand_cleanup(&cafe->nand);
out_ior:
pci_iounmap(pdev, cafe->mmio);
return err;
}
static void cafe_nand_remove(struct pci_dev *pdev)
{
struct mtd_info *mtd = pci_get_drvdata(pdev);
struct nand_chip *chip = mtd_to_nand(mtd);
struct cafe_priv *cafe = nand_get_controller_data(chip);
int ret;
ret = mtd_device_unregister(mtd);
WARN_ON(ret);
nand_cleanup(chip);
free_rs(cafe->rs);
pci_iounmap(pdev, cafe->mmio);
dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
}
static const struct pci_device_id cafe_nand_tbl[] = {
{ PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
PCI_ANY_ID, PCI_ANY_ID },
{ }
};
MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
static int cafe_nand_resume(struct pci_dev *pdev)
{
struct mtd_info *mtd = pci_get_drvdata(pdev);
struct nand_chip *chip = mtd_to_nand(mtd);
struct cafe_priv *cafe = nand_get_controller_data(chip);
cafe_nand_init(cafe);
return 0;
}
static struct pci_driver cafe_nand_pci_driver = {
.name = "CAFÉ NAND",
.id_table = cafe_nand_tbl,
.probe = cafe_nand_probe,
.remove = cafe_nand_remove,
.resume = cafe_nand_resume,
};
module_pci_driver(cafe_nand_pci_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");