blob: 5551c36adbdf173b7df20629c36b065551f9d4ba [file] [log] [blame]
/*
* Copyright (C) 2009-2010, Lars-Peter Clausen <lars@metafoo.de>
* JZ4740 SoC NAND controller driver
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*
*/
#include <linux/ioport.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/gpio.h>
#include <asm/mach-jz4740/gpio.h>
#include <asm/mach-jz4740/jz4740_nand.h>
#define JZ_REG_NAND_CTRL 0x50
#define JZ_REG_NAND_ECC_CTRL 0x100
#define JZ_REG_NAND_DATA 0x104
#define JZ_REG_NAND_PAR0 0x108
#define JZ_REG_NAND_PAR1 0x10C
#define JZ_REG_NAND_PAR2 0x110
#define JZ_REG_NAND_IRQ_STAT 0x114
#define JZ_REG_NAND_IRQ_CTRL 0x118
#define JZ_REG_NAND_ERR(x) (0x11C + ((x) << 2))
#define JZ_NAND_ECC_CTRL_PAR_READY BIT(4)
#define JZ_NAND_ECC_CTRL_ENCODING BIT(3)
#define JZ_NAND_ECC_CTRL_RS BIT(2)
#define JZ_NAND_ECC_CTRL_RESET BIT(1)
#define JZ_NAND_ECC_CTRL_ENABLE BIT(0)
#define JZ_NAND_STATUS_ERR_COUNT (BIT(31) | BIT(30) | BIT(29))
#define JZ_NAND_STATUS_PAD_FINISH BIT(4)
#define JZ_NAND_STATUS_DEC_FINISH BIT(3)
#define JZ_NAND_STATUS_ENC_FINISH BIT(2)
#define JZ_NAND_STATUS_UNCOR_ERROR BIT(1)
#define JZ_NAND_STATUS_ERROR BIT(0)
#define JZ_NAND_CTRL_ENABLE_CHIP(x) BIT((x) << 1)
#define JZ_NAND_CTRL_ASSERT_CHIP(x) BIT(((x) << 1) + 1)
#define JZ_NAND_CTRL_ASSERT_CHIP_MASK 0xaa
#define JZ_NAND_MEM_CMD_OFFSET 0x08000
#define JZ_NAND_MEM_ADDR_OFFSET 0x10000
struct jz_nand {
struct nand_chip chip;
void __iomem *base;
struct resource *mem;
unsigned char banks[JZ_NAND_NUM_BANKS];
void __iomem *bank_base[JZ_NAND_NUM_BANKS];
struct resource *bank_mem[JZ_NAND_NUM_BANKS];
int selected_bank;
struct gpio_desc *busy_gpio;
bool is_reading;
};
static inline struct jz_nand *mtd_to_jz_nand(struct mtd_info *mtd)
{
return container_of(mtd_to_nand(mtd), struct jz_nand, chip);
}
static void jz_nand_select_chip(struct mtd_info *mtd, int chipnr)
{
struct jz_nand *nand = mtd_to_jz_nand(mtd);
struct nand_chip *chip = mtd_to_nand(mtd);
uint32_t ctrl;
int banknr;
ctrl = readl(nand->base + JZ_REG_NAND_CTRL);
ctrl &= ~JZ_NAND_CTRL_ASSERT_CHIP_MASK;
if (chipnr == -1) {
banknr = -1;
} else {
banknr = nand->banks[chipnr] - 1;
chip->IO_ADDR_R = nand->bank_base[banknr];
chip->IO_ADDR_W = nand->bank_base[banknr];
}
writel(ctrl, nand->base + JZ_REG_NAND_CTRL);
nand->selected_bank = banknr;
}
static void jz_nand_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
{
struct jz_nand *nand = mtd_to_jz_nand(mtd);
struct nand_chip *chip = mtd_to_nand(mtd);
uint32_t reg;
void __iomem *bank_base = nand->bank_base[nand->selected_bank];
BUG_ON(nand->selected_bank < 0);
if (ctrl & NAND_CTRL_CHANGE) {
BUG_ON((ctrl & NAND_ALE) && (ctrl & NAND_CLE));
if (ctrl & NAND_ALE)
bank_base += JZ_NAND_MEM_ADDR_OFFSET;
else if (ctrl & NAND_CLE)
bank_base += JZ_NAND_MEM_CMD_OFFSET;
chip->IO_ADDR_W = bank_base;
reg = readl(nand->base + JZ_REG_NAND_CTRL);
if (ctrl & NAND_NCE)
reg |= JZ_NAND_CTRL_ASSERT_CHIP(nand->selected_bank);
else
reg &= ~JZ_NAND_CTRL_ASSERT_CHIP(nand->selected_bank);
writel(reg, nand->base + JZ_REG_NAND_CTRL);
}
if (dat != NAND_CMD_NONE)
writeb(dat, chip->IO_ADDR_W);
}
static int jz_nand_dev_ready(struct mtd_info *mtd)
{
struct jz_nand *nand = mtd_to_jz_nand(mtd);
return gpiod_get_value_cansleep(nand->busy_gpio);
}
static void jz_nand_hwctl(struct mtd_info *mtd, int mode)
{
struct jz_nand *nand = mtd_to_jz_nand(mtd);
uint32_t reg;
writel(0, nand->base + JZ_REG_NAND_IRQ_STAT);
reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL);
reg |= JZ_NAND_ECC_CTRL_RESET;
reg |= JZ_NAND_ECC_CTRL_ENABLE;
reg |= JZ_NAND_ECC_CTRL_RS;
switch (mode) {
case NAND_ECC_READ:
reg &= ~JZ_NAND_ECC_CTRL_ENCODING;
nand->is_reading = true;
break;
case NAND_ECC_WRITE:
reg |= JZ_NAND_ECC_CTRL_ENCODING;
nand->is_reading = false;
break;
default:
break;
}
writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL);
}
static int jz_nand_calculate_ecc_rs(struct mtd_info *mtd, const uint8_t *dat,
uint8_t *ecc_code)
{
struct jz_nand *nand = mtd_to_jz_nand(mtd);
uint32_t reg, status;
int i;
unsigned int timeout = 1000;
static uint8_t empty_block_ecc[] = {0xcd, 0x9d, 0x90, 0x58, 0xf4,
0x8b, 0xff, 0xb7, 0x6f};
if (nand->is_reading)
return 0;
do {
status = readl(nand->base + JZ_REG_NAND_IRQ_STAT);
} while (!(status & JZ_NAND_STATUS_ENC_FINISH) && --timeout);
if (timeout == 0)
return -1;
reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL);
reg &= ~JZ_NAND_ECC_CTRL_ENABLE;
writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL);
for (i = 0; i < 9; ++i)
ecc_code[i] = readb(nand->base + JZ_REG_NAND_PAR0 + i);
/* If the written data is completly 0xff, we also want to write 0xff as
* ecc, otherwise we will get in trouble when doing subpage writes. */
if (memcmp(ecc_code, empty_block_ecc, 9) == 0)
memset(ecc_code, 0xff, 9);
return 0;
}
static void jz_nand_correct_data(uint8_t *dat, int index, int mask)
{
int offset = index & 0x7;
uint16_t data;
index += (index >> 3);
data = dat[index];
data |= dat[index+1] << 8;
mask ^= (data >> offset) & 0x1ff;
data &= ~(0x1ff << offset);
data |= (mask << offset);
dat[index] = data & 0xff;
dat[index+1] = (data >> 8) & 0xff;
}
static int jz_nand_correct_ecc_rs(struct mtd_info *mtd, uint8_t *dat,
uint8_t *read_ecc, uint8_t *calc_ecc)
{
struct jz_nand *nand = mtd_to_jz_nand(mtd);
int i, error_count, index;
uint32_t reg, status, error;
unsigned int timeout = 1000;
for (i = 0; i < 9; ++i)
writeb(read_ecc[i], nand->base + JZ_REG_NAND_PAR0 + i);
reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL);
reg |= JZ_NAND_ECC_CTRL_PAR_READY;
writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL);
do {
status = readl(nand->base + JZ_REG_NAND_IRQ_STAT);
} while (!(status & JZ_NAND_STATUS_DEC_FINISH) && --timeout);
if (timeout == 0)
return -ETIMEDOUT;
reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL);
reg &= ~JZ_NAND_ECC_CTRL_ENABLE;
writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL);
if (status & JZ_NAND_STATUS_ERROR) {
if (status & JZ_NAND_STATUS_UNCOR_ERROR)
return -EBADMSG;
error_count = (status & JZ_NAND_STATUS_ERR_COUNT) >> 29;
for (i = 0; i < error_count; ++i) {
error = readl(nand->base + JZ_REG_NAND_ERR(i));
index = ((error >> 16) & 0x1ff) - 1;
if (index >= 0 && index < 512)
jz_nand_correct_data(dat, index, error & 0x1ff);
}
return error_count;
}
return 0;
}
static int jz_nand_ioremap_resource(struct platform_device *pdev,
const char *name, struct resource **res, void *__iomem *base)
{
int ret;
*res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name);
if (!*res) {
dev_err(&pdev->dev, "Failed to get platform %s memory\n", name);
ret = -ENXIO;
goto err;
}
*res = request_mem_region((*res)->start, resource_size(*res),
pdev->name);
if (!*res) {
dev_err(&pdev->dev, "Failed to request %s memory region\n", name);
ret = -EBUSY;
goto err;
}
*base = ioremap((*res)->start, resource_size(*res));
if (!*base) {
dev_err(&pdev->dev, "Failed to ioremap %s memory region\n", name);
ret = -EBUSY;
goto err_release_mem;
}
return 0;
err_release_mem:
release_mem_region((*res)->start, resource_size(*res));
err:
*res = NULL;
*base = NULL;
return ret;
}
static inline void jz_nand_iounmap_resource(struct resource *res,
void __iomem *base)
{
iounmap(base);
release_mem_region(res->start, resource_size(res));
}
static int jz_nand_detect_bank(struct platform_device *pdev,
struct jz_nand *nand, unsigned char bank,
size_t chipnr, uint8_t *nand_maf_id,
uint8_t *nand_dev_id)
{
int ret;
int gpio;
char gpio_name[9];
char res_name[6];
uint32_t ctrl;
struct nand_chip *chip = &nand->chip;
struct mtd_info *mtd = nand_to_mtd(chip);
/* Request GPIO port. */
gpio = JZ_GPIO_MEM_CS0 + bank - 1;
sprintf(gpio_name, "NAND CS%d", bank);
ret = gpio_request(gpio, gpio_name);
if (ret) {
dev_warn(&pdev->dev,
"Failed to request %s gpio %d: %d\n",
gpio_name, gpio, ret);
goto notfound_gpio;
}
/* Request I/O resource. */
sprintf(res_name, "bank%d", bank);
ret = jz_nand_ioremap_resource(pdev, res_name,
&nand->bank_mem[bank - 1],
&nand->bank_base[bank - 1]);
if (ret)
goto notfound_resource;
/* Enable chip in bank. */
jz_gpio_set_function(gpio, JZ_GPIO_FUNC_MEM_CS0);
ctrl = readl(nand->base + JZ_REG_NAND_CTRL);
ctrl |= JZ_NAND_CTRL_ENABLE_CHIP(bank - 1);
writel(ctrl, nand->base + JZ_REG_NAND_CTRL);
if (chipnr == 0) {
/* Detect first chip. */
ret = nand_scan_ident(mtd, 1, NULL);
if (ret)
goto notfound_id;
/* Retrieve the IDs from the first chip. */
chip->select_chip(mtd, 0);
chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
*nand_maf_id = chip->read_byte(mtd);
*nand_dev_id = chip->read_byte(mtd);
} else {
/* Detect additional chip. */
chip->select_chip(mtd, chipnr);
chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
if (*nand_maf_id != chip->read_byte(mtd)
|| *nand_dev_id != chip->read_byte(mtd)) {
ret = -ENODEV;
goto notfound_id;
}
/* Update size of the MTD. */
chip->numchips++;
mtd->size += chip->chipsize;
}
dev_info(&pdev->dev, "Found chip %i on bank %i\n", chipnr, bank);
return 0;
notfound_id:
dev_info(&pdev->dev, "No chip found on bank %i\n", bank);
ctrl &= ~(JZ_NAND_CTRL_ENABLE_CHIP(bank - 1));
writel(ctrl, nand->base + JZ_REG_NAND_CTRL);
jz_gpio_set_function(gpio, JZ_GPIO_FUNC_NONE);
jz_nand_iounmap_resource(nand->bank_mem[bank - 1],
nand->bank_base[bank - 1]);
notfound_resource:
gpio_free(gpio);
notfound_gpio:
return ret;
}
static int jz_nand_probe(struct platform_device *pdev)
{
int ret;
struct jz_nand *nand;
struct nand_chip *chip;
struct mtd_info *mtd;
struct jz_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
size_t chipnr, bank_idx;
uint8_t nand_maf_id = 0, nand_dev_id = 0;
nand = kzalloc(sizeof(*nand), GFP_KERNEL);
if (!nand)
return -ENOMEM;
ret = jz_nand_ioremap_resource(pdev, "mmio", &nand->mem, &nand->base);
if (ret)
goto err_free;
nand->busy_gpio = devm_gpiod_get_optional(&pdev->dev, "busy", GPIOD_IN);
if (IS_ERR(nand->busy_gpio)) {
ret = PTR_ERR(nand->busy_gpio);
dev_err(&pdev->dev, "Failed to request busy gpio %d\n",
ret);
goto err_iounmap_mmio;
}
chip = &nand->chip;
mtd = nand_to_mtd(chip);
mtd->dev.parent = &pdev->dev;
mtd->name = "jz4740-nand";
chip->ecc.hwctl = jz_nand_hwctl;
chip->ecc.calculate = jz_nand_calculate_ecc_rs;
chip->ecc.correct = jz_nand_correct_ecc_rs;
chip->ecc.mode = NAND_ECC_HW_OOB_FIRST;
chip->ecc.size = 512;
chip->ecc.bytes = 9;
chip->ecc.strength = 4;
chip->ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
chip->chip_delay = 50;
chip->cmd_ctrl = jz_nand_cmd_ctrl;
chip->select_chip = jz_nand_select_chip;
if (nand->busy_gpio)
chip->dev_ready = jz_nand_dev_ready;
platform_set_drvdata(pdev, nand);
/* We are going to autodetect NAND chips in the banks specified in the
* platform data. Although nand_scan_ident() can detect multiple chips,
* it requires those chips to be numbered consecuitively, which is not
* always the case for external memory banks. And a fixed chip-to-bank
* mapping is not practical either, since for example Dingoo units
* produced at different times have NAND chips in different banks.
*/
chipnr = 0;
for (bank_idx = 0; bank_idx < JZ_NAND_NUM_BANKS; bank_idx++) {
unsigned char bank;
/* If there is no platform data, look for NAND in bank 1,
* which is the most likely bank since it is the only one
* that can be booted from.
*/
bank = pdata ? pdata->banks[bank_idx] : bank_idx ^ 1;
if (bank == 0)
break;
if (bank > JZ_NAND_NUM_BANKS) {
dev_warn(&pdev->dev,
"Skipping non-existing bank: %d\n", bank);
continue;
}
/* The detection routine will directly or indirectly call
* jz_nand_select_chip(), so nand->banks has to contain the
* bank we're checking.
*/
nand->banks[chipnr] = bank;
if (jz_nand_detect_bank(pdev, nand, bank, chipnr,
&nand_maf_id, &nand_dev_id) == 0)
chipnr++;
else
nand->banks[chipnr] = 0;
}
if (chipnr == 0) {
dev_err(&pdev->dev, "No NAND chips found\n");
goto err_iounmap_mmio;
}
if (pdata && pdata->ident_callback) {
pdata->ident_callback(pdev, mtd, &pdata->partitions,
&pdata->num_partitions);
}
ret = nand_scan_tail(mtd);
if (ret) {
dev_err(&pdev->dev, "Failed to scan NAND\n");
goto err_unclaim_banks;
}
ret = mtd_device_parse_register(mtd, NULL, NULL,
pdata ? pdata->partitions : NULL,
pdata ? pdata->num_partitions : 0);
if (ret) {
dev_err(&pdev->dev, "Failed to add mtd device\n");
goto err_nand_release;
}
dev_info(&pdev->dev, "Successfully registered JZ4740 NAND driver\n");
return 0;
err_nand_release:
nand_release(mtd);
err_unclaim_banks:
while (chipnr--) {
unsigned char bank = nand->banks[chipnr];
gpio_free(JZ_GPIO_MEM_CS0 + bank - 1);
jz_nand_iounmap_resource(nand->bank_mem[bank - 1],
nand->bank_base[bank - 1]);
}
writel(0, nand->base + JZ_REG_NAND_CTRL);
err_iounmap_mmio:
jz_nand_iounmap_resource(nand->mem, nand->base);
err_free:
kfree(nand);
return ret;
}
static int jz_nand_remove(struct platform_device *pdev)
{
struct jz_nand *nand = platform_get_drvdata(pdev);
size_t i;
nand_release(nand_to_mtd(&nand->chip));
/* Deassert and disable all chips */
writel(0, nand->base + JZ_REG_NAND_CTRL);
for (i = 0; i < JZ_NAND_NUM_BANKS; ++i) {
unsigned char bank = nand->banks[i];
if (bank != 0) {
jz_nand_iounmap_resource(nand->bank_mem[bank - 1],
nand->bank_base[bank - 1]);
gpio_free(JZ_GPIO_MEM_CS0 + bank - 1);
}
}
jz_nand_iounmap_resource(nand->mem, nand->base);
kfree(nand);
return 0;
}
static struct platform_driver jz_nand_driver = {
.probe = jz_nand_probe,
.remove = jz_nand_remove,
.driver = {
.name = "jz4740-nand",
},
};
module_platform_driver(jz_nand_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
MODULE_DESCRIPTION("NAND controller driver for JZ4740 SoC");
MODULE_ALIAS("platform:jz4740-nand");