blob: cc8131ff319f3f0d243a15c0ddd924c1a93b8147 [file] [log] [blame]
/*
* Copyright © 2006-2007 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*/
#include <linux/module.h>
#include <linux/input.h>
#include <linux/i2c.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include "drmP.h"
#include "intel_drv.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "drm_dp_helper.h"
#include "drm_crtc_helper.h"
#define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
static void intel_update_watermarks(struct drm_device *dev);
static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
typedef struct {
/* given values */
int n;
int m1, m2;
int p1, p2;
/* derived values */
int dot;
int vco;
int m;
int p;
} intel_clock_t;
typedef struct {
int min, max;
} intel_range_t;
typedef struct {
int dot_limit;
int p2_slow, p2_fast;
} intel_p2_t;
#define INTEL_P2_NUM 2
typedef struct intel_limit intel_limit_t;
struct intel_limit {
intel_range_t dot, vco, n, m, m1, m2, p, p1;
intel_p2_t p2;
bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
int, int, intel_clock_t *);
};
#define I8XX_DOT_MIN 25000
#define I8XX_DOT_MAX 350000
#define I8XX_VCO_MIN 930000
#define I8XX_VCO_MAX 1400000
#define I8XX_N_MIN 3
#define I8XX_N_MAX 16
#define I8XX_M_MIN 96
#define I8XX_M_MAX 140
#define I8XX_M1_MIN 18
#define I8XX_M1_MAX 26
#define I8XX_M2_MIN 6
#define I8XX_M2_MAX 16
#define I8XX_P_MIN 4
#define I8XX_P_MAX 128
#define I8XX_P1_MIN 2
#define I8XX_P1_MAX 33
#define I8XX_P1_LVDS_MIN 1
#define I8XX_P1_LVDS_MAX 6
#define I8XX_P2_SLOW 4
#define I8XX_P2_FAST 2
#define I8XX_P2_LVDS_SLOW 14
#define I8XX_P2_LVDS_FAST 7
#define I8XX_P2_SLOW_LIMIT 165000
#define I9XX_DOT_MIN 20000
#define I9XX_DOT_MAX 400000
#define I9XX_VCO_MIN 1400000
#define I9XX_VCO_MAX 2800000
#define PINEVIEW_VCO_MIN 1700000
#define PINEVIEW_VCO_MAX 3500000
#define I9XX_N_MIN 1
#define I9XX_N_MAX 6
/* Pineview's Ncounter is a ring counter */
#define PINEVIEW_N_MIN 3
#define PINEVIEW_N_MAX 6
#define I9XX_M_MIN 70
#define I9XX_M_MAX 120
#define PINEVIEW_M_MIN 2
#define PINEVIEW_M_MAX 256
#define I9XX_M1_MIN 10
#define I9XX_M1_MAX 22
#define I9XX_M2_MIN 5
#define I9XX_M2_MAX 9
/* Pineview M1 is reserved, and must be 0 */
#define PINEVIEW_M1_MIN 0
#define PINEVIEW_M1_MAX 0
#define PINEVIEW_M2_MIN 0
#define PINEVIEW_M2_MAX 254
#define I9XX_P_SDVO_DAC_MIN 5
#define I9XX_P_SDVO_DAC_MAX 80
#define I9XX_P_LVDS_MIN 7
#define I9XX_P_LVDS_MAX 98
#define PINEVIEW_P_LVDS_MIN 7
#define PINEVIEW_P_LVDS_MAX 112
#define I9XX_P1_MIN 1
#define I9XX_P1_MAX 8
#define I9XX_P2_SDVO_DAC_SLOW 10
#define I9XX_P2_SDVO_DAC_FAST 5
#define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
#define I9XX_P2_LVDS_SLOW 14
#define I9XX_P2_LVDS_FAST 7
#define I9XX_P2_LVDS_SLOW_LIMIT 112000
/*The parameter is for SDVO on G4x platform*/
#define G4X_DOT_SDVO_MIN 25000
#define G4X_DOT_SDVO_MAX 270000
#define G4X_VCO_MIN 1750000
#define G4X_VCO_MAX 3500000
#define G4X_N_SDVO_MIN 1
#define G4X_N_SDVO_MAX 4
#define G4X_M_SDVO_MIN 104
#define G4X_M_SDVO_MAX 138
#define G4X_M1_SDVO_MIN 17
#define G4X_M1_SDVO_MAX 23
#define G4X_M2_SDVO_MIN 5
#define G4X_M2_SDVO_MAX 11
#define G4X_P_SDVO_MIN 10
#define G4X_P_SDVO_MAX 30
#define G4X_P1_SDVO_MIN 1
#define G4X_P1_SDVO_MAX 3
#define G4X_P2_SDVO_SLOW 10
#define G4X_P2_SDVO_FAST 10
#define G4X_P2_SDVO_LIMIT 270000
/*The parameter is for HDMI_DAC on G4x platform*/
#define G4X_DOT_HDMI_DAC_MIN 22000
#define G4X_DOT_HDMI_DAC_MAX 400000
#define G4X_N_HDMI_DAC_MIN 1
#define G4X_N_HDMI_DAC_MAX 4
#define G4X_M_HDMI_DAC_MIN 104
#define G4X_M_HDMI_DAC_MAX 138
#define G4X_M1_HDMI_DAC_MIN 16
#define G4X_M1_HDMI_DAC_MAX 23
#define G4X_M2_HDMI_DAC_MIN 5
#define G4X_M2_HDMI_DAC_MAX 11
#define G4X_P_HDMI_DAC_MIN 5
#define G4X_P_HDMI_DAC_MAX 80
#define G4X_P1_HDMI_DAC_MIN 1
#define G4X_P1_HDMI_DAC_MAX 8
#define G4X_P2_HDMI_DAC_SLOW 10
#define G4X_P2_HDMI_DAC_FAST 5
#define G4X_P2_HDMI_DAC_LIMIT 165000
/*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
#define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
#define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
#define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
#define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
#define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
#define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
#define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
#define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
#define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
#define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
#define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
#define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
#define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
#define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
#define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
#define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
#define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
/*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
#define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
#define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
#define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
#define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
#define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
#define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
#define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
#define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
#define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
#define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
#define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
#define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
#define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
#define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
#define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
#define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
#define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
/*The parameter is for DISPLAY PORT on G4x platform*/
#define G4X_DOT_DISPLAY_PORT_MIN 161670
#define G4X_DOT_DISPLAY_PORT_MAX 227000
#define G4X_N_DISPLAY_PORT_MIN 1
#define G4X_N_DISPLAY_PORT_MAX 2
#define G4X_M_DISPLAY_PORT_MIN 97
#define G4X_M_DISPLAY_PORT_MAX 108
#define G4X_M1_DISPLAY_PORT_MIN 0x10
#define G4X_M1_DISPLAY_PORT_MAX 0x12
#define G4X_M2_DISPLAY_PORT_MIN 0x05
#define G4X_M2_DISPLAY_PORT_MAX 0x06
#define G4X_P_DISPLAY_PORT_MIN 10
#define G4X_P_DISPLAY_PORT_MAX 20
#define G4X_P1_DISPLAY_PORT_MIN 1
#define G4X_P1_DISPLAY_PORT_MAX 2
#define G4X_P2_DISPLAY_PORT_SLOW 10
#define G4X_P2_DISPLAY_PORT_FAST 10
#define G4X_P2_DISPLAY_PORT_LIMIT 0
/* Ironlake / Sandybridge */
/* as we calculate clock using (register_value + 2) for
N/M1/M2, so here the range value for them is (actual_value-2).
*/
#define IRONLAKE_DOT_MIN 25000
#define IRONLAKE_DOT_MAX 350000
#define IRONLAKE_VCO_MIN 1760000
#define IRONLAKE_VCO_MAX 3510000
#define IRONLAKE_M1_MIN 12
#define IRONLAKE_M1_MAX 22
#define IRONLAKE_M2_MIN 5
#define IRONLAKE_M2_MAX 9
#define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
/* We have parameter ranges for different type of outputs. */
/* DAC & HDMI Refclk 120Mhz */
#define IRONLAKE_DAC_N_MIN 1
#define IRONLAKE_DAC_N_MAX 5
#define IRONLAKE_DAC_M_MIN 79
#define IRONLAKE_DAC_M_MAX 127
#define IRONLAKE_DAC_P_MIN 5
#define IRONLAKE_DAC_P_MAX 80
#define IRONLAKE_DAC_P1_MIN 1
#define IRONLAKE_DAC_P1_MAX 8
#define IRONLAKE_DAC_P2_SLOW 10
#define IRONLAKE_DAC_P2_FAST 5
/* LVDS single-channel 120Mhz refclk */
#define IRONLAKE_LVDS_S_N_MIN 1
#define IRONLAKE_LVDS_S_N_MAX 3
#define IRONLAKE_LVDS_S_M_MIN 79
#define IRONLAKE_LVDS_S_M_MAX 118
#define IRONLAKE_LVDS_S_P_MIN 28
#define IRONLAKE_LVDS_S_P_MAX 112
#define IRONLAKE_LVDS_S_P1_MIN 2
#define IRONLAKE_LVDS_S_P1_MAX 8
#define IRONLAKE_LVDS_S_P2_SLOW 14
#define IRONLAKE_LVDS_S_P2_FAST 14
/* LVDS dual-channel 120Mhz refclk */
#define IRONLAKE_LVDS_D_N_MIN 1
#define IRONLAKE_LVDS_D_N_MAX 3
#define IRONLAKE_LVDS_D_M_MIN 79
#define IRONLAKE_LVDS_D_M_MAX 127
#define IRONLAKE_LVDS_D_P_MIN 14
#define IRONLAKE_LVDS_D_P_MAX 56
#define IRONLAKE_LVDS_D_P1_MIN 2
#define IRONLAKE_LVDS_D_P1_MAX 8
#define IRONLAKE_LVDS_D_P2_SLOW 7
#define IRONLAKE_LVDS_D_P2_FAST 7
/* LVDS single-channel 100Mhz refclk */
#define IRONLAKE_LVDS_S_SSC_N_MIN 1
#define IRONLAKE_LVDS_S_SSC_N_MAX 2
#define IRONLAKE_LVDS_S_SSC_M_MIN 79
#define IRONLAKE_LVDS_S_SSC_M_MAX 126
#define IRONLAKE_LVDS_S_SSC_P_MIN 28
#define IRONLAKE_LVDS_S_SSC_P_MAX 112
#define IRONLAKE_LVDS_S_SSC_P1_MIN 2
#define IRONLAKE_LVDS_S_SSC_P1_MAX 8
#define IRONLAKE_LVDS_S_SSC_P2_SLOW 14
#define IRONLAKE_LVDS_S_SSC_P2_FAST 14
/* LVDS dual-channel 100Mhz refclk */
#define IRONLAKE_LVDS_D_SSC_N_MIN 1
#define IRONLAKE_LVDS_D_SSC_N_MAX 3
#define IRONLAKE_LVDS_D_SSC_M_MIN 79
#define IRONLAKE_LVDS_D_SSC_M_MAX 126
#define IRONLAKE_LVDS_D_SSC_P_MIN 14
#define IRONLAKE_LVDS_D_SSC_P_MAX 42
#define IRONLAKE_LVDS_D_SSC_P1_MIN 2
#define IRONLAKE_LVDS_D_SSC_P1_MAX 6
#define IRONLAKE_LVDS_D_SSC_P2_SLOW 7
#define IRONLAKE_LVDS_D_SSC_P2_FAST 7
/* DisplayPort */
#define IRONLAKE_DP_N_MIN 1
#define IRONLAKE_DP_N_MAX 2
#define IRONLAKE_DP_M_MIN 81
#define IRONLAKE_DP_M_MAX 90
#define IRONLAKE_DP_P_MIN 10
#define IRONLAKE_DP_P_MAX 20
#define IRONLAKE_DP_P2_FAST 10
#define IRONLAKE_DP_P2_SLOW 10
#define IRONLAKE_DP_P2_LIMIT 0
#define IRONLAKE_DP_P1_MIN 1
#define IRONLAKE_DP_P1_MAX 2
static bool
intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock);
static bool
intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock);
static bool
intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock);
static bool
intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock);
static const intel_limit_t intel_limits_i8xx_dvo = {
.dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
.vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
.n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
.m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
.m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
.m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
.p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
.p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
.p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
.p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
.find_pll = intel_find_best_PLL,
};
static const intel_limit_t intel_limits_i8xx_lvds = {
.dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
.vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
.n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
.m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
.m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
.m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
.p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
.p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
.p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
.p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
.find_pll = intel_find_best_PLL,
};
static const intel_limit_t intel_limits_i9xx_sdvo = {
.dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
.vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
.n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
.m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
.m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
.m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
.p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
.p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
.p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
.p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
.find_pll = intel_find_best_PLL,
};
static const intel_limit_t intel_limits_i9xx_lvds = {
.dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
.vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
.n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
.m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
.m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
.m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
.p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
.p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
/* The single-channel range is 25-112Mhz, and dual-channel
* is 80-224Mhz. Prefer single channel as much as possible.
*/
.p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
.p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
.find_pll = intel_find_best_PLL,
};
/* below parameter and function is for G4X Chipset Family*/
static const intel_limit_t intel_limits_g4x_sdvo = {
.dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
.vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
.n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
.m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
.m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
.m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
.p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
.p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
.p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
.p2_slow = G4X_P2_SDVO_SLOW,
.p2_fast = G4X_P2_SDVO_FAST
},
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_g4x_hdmi = {
.dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
.vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
.n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
.m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
.m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
.m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
.p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
.p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
.p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
.p2_slow = G4X_P2_HDMI_DAC_SLOW,
.p2_fast = G4X_P2_HDMI_DAC_FAST
},
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
.dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
.max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
.vco = { .min = G4X_VCO_MIN,
.max = G4X_VCO_MAX },
.n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
.max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
.m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
.max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
.m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
.max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
.m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
.max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
.p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
.max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
.p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
.max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
.p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
.p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
.p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
},
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
.dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
.max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
.vco = { .min = G4X_VCO_MIN,
.max = G4X_VCO_MAX },
.n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
.max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
.m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
.max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
.m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
.max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
.m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
.max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
.p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
.max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
.p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
.max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
.p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
.p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
.p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
},
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_g4x_display_port = {
.dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
.max = G4X_DOT_DISPLAY_PORT_MAX },
.vco = { .min = G4X_VCO_MIN,
.max = G4X_VCO_MAX},
.n = { .min = G4X_N_DISPLAY_PORT_MIN,
.max = G4X_N_DISPLAY_PORT_MAX },
.m = { .min = G4X_M_DISPLAY_PORT_MIN,
.max = G4X_M_DISPLAY_PORT_MAX },
.m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
.max = G4X_M1_DISPLAY_PORT_MAX },
.m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
.max = G4X_M2_DISPLAY_PORT_MAX },
.p = { .min = G4X_P_DISPLAY_PORT_MIN,
.max = G4X_P_DISPLAY_PORT_MAX },
.p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
.max = G4X_P1_DISPLAY_PORT_MAX},
.p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
.p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
.p2_fast = G4X_P2_DISPLAY_PORT_FAST },
.find_pll = intel_find_pll_g4x_dp,
};
static const intel_limit_t intel_limits_pineview_sdvo = {
.dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
.vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
.n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
.m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
.m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
.m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
.p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
.p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
.p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
.p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
.find_pll = intel_find_best_PLL,
};
static const intel_limit_t intel_limits_pineview_lvds = {
.dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
.vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
.n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
.m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
.m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
.m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
.p = { .min = PINEVIEW_P_LVDS_MIN, .max = PINEVIEW_P_LVDS_MAX },
.p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
/* Pineview only supports single-channel mode. */
.p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
.p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
.find_pll = intel_find_best_PLL,
};
static const intel_limit_t intel_limits_ironlake_dac = {
.dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
.vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
.n = { .min = IRONLAKE_DAC_N_MIN, .max = IRONLAKE_DAC_N_MAX },
.m = { .min = IRONLAKE_DAC_M_MIN, .max = IRONLAKE_DAC_M_MAX },
.m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
.m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
.p = { .min = IRONLAKE_DAC_P_MIN, .max = IRONLAKE_DAC_P_MAX },
.p1 = { .min = IRONLAKE_DAC_P1_MIN, .max = IRONLAKE_DAC_P1_MAX },
.p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
.p2_slow = IRONLAKE_DAC_P2_SLOW,
.p2_fast = IRONLAKE_DAC_P2_FAST },
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_ironlake_single_lvds = {
.dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
.vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
.n = { .min = IRONLAKE_LVDS_S_N_MIN, .max = IRONLAKE_LVDS_S_N_MAX },
.m = { .min = IRONLAKE_LVDS_S_M_MIN, .max = IRONLAKE_LVDS_S_M_MAX },
.m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
.m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
.p = { .min = IRONLAKE_LVDS_S_P_MIN, .max = IRONLAKE_LVDS_S_P_MAX },
.p1 = { .min = IRONLAKE_LVDS_S_P1_MIN, .max = IRONLAKE_LVDS_S_P1_MAX },
.p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
.p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
.p2_fast = IRONLAKE_LVDS_S_P2_FAST },
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_ironlake_dual_lvds = {
.dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
.vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
.n = { .min = IRONLAKE_LVDS_D_N_MIN, .max = IRONLAKE_LVDS_D_N_MAX },
.m = { .min = IRONLAKE_LVDS_D_M_MIN, .max = IRONLAKE_LVDS_D_M_MAX },
.m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
.m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
.p = { .min = IRONLAKE_LVDS_D_P_MIN, .max = IRONLAKE_LVDS_D_P_MAX },
.p1 = { .min = IRONLAKE_LVDS_D_P1_MIN, .max = IRONLAKE_LVDS_D_P1_MAX },
.p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
.p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
.p2_fast = IRONLAKE_LVDS_D_P2_FAST },
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
.dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
.vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
.n = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
.m = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
.m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
.m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
.p = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
.p1 = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
.p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
.p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
.p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
.dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
.vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
.n = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
.m = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
.m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
.m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
.p = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
.p1 = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
.p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
.p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
.p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_ironlake_display_port = {
.dot = { .min = IRONLAKE_DOT_MIN,
.max = IRONLAKE_DOT_MAX },
.vco = { .min = IRONLAKE_VCO_MIN,
.max = IRONLAKE_VCO_MAX},
.n = { .min = IRONLAKE_DP_N_MIN,
.max = IRONLAKE_DP_N_MAX },
.m = { .min = IRONLAKE_DP_M_MIN,
.max = IRONLAKE_DP_M_MAX },
.m1 = { .min = IRONLAKE_M1_MIN,
.max = IRONLAKE_M1_MAX },
.m2 = { .min = IRONLAKE_M2_MIN,
.max = IRONLAKE_M2_MAX },
.p = { .min = IRONLAKE_DP_P_MIN,
.max = IRONLAKE_DP_P_MAX },
.p1 = { .min = IRONLAKE_DP_P1_MIN,
.max = IRONLAKE_DP_P1_MAX},
.p2 = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
.p2_slow = IRONLAKE_DP_P2_SLOW,
.p2_fast = IRONLAKE_DP_P2_FAST },
.find_pll = intel_find_pll_ironlake_dp,
};
static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
const intel_limit_t *limit;
int refclk = 120;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
refclk = 100;
if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
LVDS_CLKB_POWER_UP) {
/* LVDS dual channel */
if (refclk == 100)
limit = &intel_limits_ironlake_dual_lvds_100m;
else
limit = &intel_limits_ironlake_dual_lvds;
} else {
if (refclk == 100)
limit = &intel_limits_ironlake_single_lvds_100m;
else
limit = &intel_limits_ironlake_single_lvds;
}
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
HAS_eDP)
limit = &intel_limits_ironlake_display_port;
else
limit = &intel_limits_ironlake_dac;
return limit;
}
static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
const intel_limit_t *limit;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
LVDS_CLKB_POWER_UP)
/* LVDS with dual channel */
limit = &intel_limits_g4x_dual_channel_lvds;
else
/* LVDS with dual channel */
limit = &intel_limits_g4x_single_channel_lvds;
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
limit = &intel_limits_g4x_hdmi;
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
limit = &intel_limits_g4x_sdvo;
} else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
limit = &intel_limits_g4x_display_port;
} else /* The option is for other outputs */
limit = &intel_limits_i9xx_sdvo;
return limit;
}
static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
const intel_limit_t *limit;
if (HAS_PCH_SPLIT(dev))
limit = intel_ironlake_limit(crtc);
else if (IS_G4X(dev)) {
limit = intel_g4x_limit(crtc);
} else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) {
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
limit = &intel_limits_i9xx_lvds;
else
limit = &intel_limits_i9xx_sdvo;
} else if (IS_PINEVIEW(dev)) {
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
limit = &intel_limits_pineview_lvds;
else
limit = &intel_limits_pineview_sdvo;
} else {
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
limit = &intel_limits_i8xx_lvds;
else
limit = &intel_limits_i8xx_dvo;
}
return limit;
}
/* m1 is reserved as 0 in Pineview, n is a ring counter */
static void pineview_clock(int refclk, intel_clock_t *clock)
{
clock->m = clock->m2 + 2;
clock->p = clock->p1 * clock->p2;
clock->vco = refclk * clock->m / clock->n;
clock->dot = clock->vco / clock->p;
}
static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
{
if (IS_PINEVIEW(dev)) {
pineview_clock(refclk, clock);
return;
}
clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
clock->p = clock->p1 * clock->p2;
clock->vco = refclk * clock->m / (clock->n + 2);
clock->dot = clock->vco / clock->p;
}
/**
* Returns whether any output on the specified pipe is of the specified type
*/
bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
{
struct drm_device *dev = crtc->dev;
struct drm_mode_config *mode_config = &dev->mode_config;
struct drm_encoder *l_entry;
list_for_each_entry(l_entry, &mode_config->encoder_list, head) {
if (l_entry && l_entry->crtc == crtc) {
struct intel_encoder *intel_encoder = enc_to_intel_encoder(l_entry);
if (intel_encoder->type == type)
return true;
}
}
return false;
}
#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
/**
* Returns whether the given set of divisors are valid for a given refclk with
* the given connectors.
*/
static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
{
const intel_limit_t *limit = intel_limit (crtc);
struct drm_device *dev = crtc->dev;
if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
INTELPllInvalid ("p1 out of range\n");
if (clock->p < limit->p.min || limit->p.max < clock->p)
INTELPllInvalid ("p out of range\n");
if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
INTELPllInvalid ("m2 out of range\n");
if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
INTELPllInvalid ("m1 out of range\n");
if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
INTELPllInvalid ("m1 <= m2\n");
if (clock->m < limit->m.min || limit->m.max < clock->m)
INTELPllInvalid ("m out of range\n");
if (clock->n < limit->n.min || limit->n.max < clock->n)
INTELPllInvalid ("n out of range\n");
if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
INTELPllInvalid ("vco out of range\n");
/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
* connector, etc., rather than just a single range.
*/
if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
INTELPllInvalid ("dot out of range\n");
return true;
}
static bool
intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
intel_clock_t clock;
int err = target;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
(I915_READ(LVDS)) != 0) {
/*
* For LVDS, if the panel is on, just rely on its current
* settings for dual-channel. We haven't figured out how to
* reliably set up different single/dual channel state, if we
* even can.
*/
if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
LVDS_CLKB_POWER_UP)
clock.p2 = limit->p2.p2_fast;
else
clock.p2 = limit->p2.p2_slow;
} else {
if (target < limit->p2.dot_limit)
clock.p2 = limit->p2.p2_slow;
else
clock.p2 = limit->p2.p2_fast;
}
memset (best_clock, 0, sizeof (*best_clock));
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
clock.m1++) {
for (clock.m2 = limit->m2.min;
clock.m2 <= limit->m2.max; clock.m2++) {
/* m1 is always 0 in Pineview */
if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
break;
for (clock.n = limit->n.min;
clock.n <= limit->n.max; clock.n++) {
for (clock.p1 = limit->p1.min;
clock.p1 <= limit->p1.max; clock.p1++) {
int this_err;
intel_clock(dev, refclk, &clock);
if (!intel_PLL_is_valid(crtc, &clock))
continue;
this_err = abs(clock.dot - target);
if (this_err < err) {
*best_clock = clock;
err = this_err;
}
}
}
}
}
return (err != target);
}
static bool
intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
intel_clock_t clock;
int max_n;
bool found;
/* approximately equals target * 0.00488 */
int err_most = (target >> 8) + (target >> 10);
found = false;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
int lvds_reg;
if (HAS_PCH_SPLIT(dev))
lvds_reg = PCH_LVDS;
else
lvds_reg = LVDS;
if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
LVDS_CLKB_POWER_UP)
clock.p2 = limit->p2.p2_fast;
else
clock.p2 = limit->p2.p2_slow;
} else {
if (target < limit->p2.dot_limit)
clock.p2 = limit->p2.p2_slow;
else
clock.p2 = limit->p2.p2_fast;
}
memset(best_clock, 0, sizeof(*best_clock));
max_n = limit->n.max;
/* based on hardware requirement, prefer smaller n to precision */
for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
/* based on hardware requirement, prefere larger m1,m2 */
for (clock.m1 = limit->m1.max;
clock.m1 >= limit->m1.min; clock.m1--) {
for (clock.m2 = limit->m2.max;
clock.m2 >= limit->m2.min; clock.m2--) {
for (clock.p1 = limit->p1.max;
clock.p1 >= limit->p1.min; clock.p1--) {
int this_err;
intel_clock(dev, refclk, &clock);
if (!intel_PLL_is_valid(crtc, &clock))
continue;
this_err = abs(clock.dot - target) ;
if (this_err < err_most) {
*best_clock = clock;
err_most = this_err;
max_n = clock.n;
found = true;
}
}
}
}
}
return found;
}
static bool
intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock)
{
struct drm_device *dev = crtc->dev;
intel_clock_t clock;
/* return directly when it is eDP */
if (HAS_eDP)
return true;
if (target < 200000) {
clock.n = 1;
clock.p1 = 2;
clock.p2 = 10;
clock.m1 = 12;
clock.m2 = 9;
} else {
clock.n = 2;
clock.p1 = 1;
clock.p2 = 10;
clock.m1 = 14;
clock.m2 = 8;
}
intel_clock(dev, refclk, &clock);
memcpy(best_clock, &clock, sizeof(intel_clock_t));
return true;
}
/* DisplayPort has only two frequencies, 162MHz and 270MHz */
static bool
intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock)
{
intel_clock_t clock;
if (target < 200000) {
clock.p1 = 2;
clock.p2 = 10;
clock.n = 2;
clock.m1 = 23;
clock.m2 = 8;
} else {
clock.p1 = 1;
clock.p2 = 10;
clock.n = 1;
clock.m1 = 14;
clock.m2 = 2;
}
clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
clock.p = (clock.p1 * clock.p2);
clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
clock.vco = 0;
memcpy(best_clock, &clock, sizeof(intel_clock_t));
return true;
}
void
intel_wait_for_vblank(struct drm_device *dev)
{
/* Wait for 20ms, i.e. one cycle at 50hz. */
msleep(20);
}
/* Parameters have changed, update FBC info */
static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_framebuffer *fb = crtc->fb;
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int plane, i;
u32 fbc_ctl, fbc_ctl2;
dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
if (fb->pitch < dev_priv->cfb_pitch)
dev_priv->cfb_pitch = fb->pitch;
/* FBC_CTL wants 64B units */
dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
dev_priv->cfb_fence = obj_priv->fence_reg;
dev_priv->cfb_plane = intel_crtc->plane;
plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
/* Clear old tags */
for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
I915_WRITE(FBC_TAG + (i * 4), 0);
/* Set it up... */
fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
if (obj_priv->tiling_mode != I915_TILING_NONE)
fbc_ctl2 |= FBC_CTL_CPU_FENCE;
I915_WRITE(FBC_CONTROL2, fbc_ctl2);
I915_WRITE(FBC_FENCE_OFF, crtc->y);
/* enable it... */
fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
if (IS_I945GM(dev))
fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
if (obj_priv->tiling_mode != I915_TILING_NONE)
fbc_ctl |= dev_priv->cfb_fence;
I915_WRITE(FBC_CONTROL, fbc_ctl);
DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
}
void i8xx_disable_fbc(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long timeout = jiffies + msecs_to_jiffies(1);
u32 fbc_ctl;
if (!I915_HAS_FBC(dev))
return;
if (!(I915_READ(FBC_CONTROL) & FBC_CTL_EN))
return; /* Already off, just return */
/* Disable compression */
fbc_ctl = I915_READ(FBC_CONTROL);
fbc_ctl &= ~FBC_CTL_EN;
I915_WRITE(FBC_CONTROL, fbc_ctl);
/* Wait for compressing bit to clear */
while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) {
if (time_after(jiffies, timeout)) {
DRM_DEBUG_DRIVER("FBC idle timed out\n");
break;
}
; /* do nothing */
}
intel_wait_for_vblank(dev);
DRM_DEBUG_KMS("disabled FBC\n");
}
static bool i8xx_fbc_enabled(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
}
static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_framebuffer *fb = crtc->fb;
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
DPFC_CTL_PLANEB);
unsigned long stall_watermark = 200;
u32 dpfc_ctl;
dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
dev_priv->cfb_fence = obj_priv->fence_reg;
dev_priv->cfb_plane = intel_crtc->plane;
dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
if (obj_priv->tiling_mode != I915_TILING_NONE) {
dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
} else {
I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
}
I915_WRITE(DPFC_CONTROL, dpfc_ctl);
I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
(stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
(interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
/* enable it... */
I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
}
void g4x_disable_fbc(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpfc_ctl;
/* Disable compression */
dpfc_ctl = I915_READ(DPFC_CONTROL);
dpfc_ctl &= ~DPFC_CTL_EN;
I915_WRITE(DPFC_CONTROL, dpfc_ctl);
intel_wait_for_vblank(dev);
DRM_DEBUG_KMS("disabled FBC\n");
}
static bool g4x_fbc_enabled(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
}
bool intel_fbc_enabled(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (!dev_priv->display.fbc_enabled)
return false;
return dev_priv->display.fbc_enabled(dev);
}
void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
{
struct drm_i915_private *dev_priv = crtc->dev->dev_private;
if (!dev_priv->display.enable_fbc)
return;
dev_priv->display.enable_fbc(crtc, interval);
}
void intel_disable_fbc(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (!dev_priv->display.disable_fbc)
return;
dev_priv->display.disable_fbc(dev);
}
/**
* intel_update_fbc - enable/disable FBC as needed
* @crtc: CRTC to point the compressor at
* @mode: mode in use
*
* Set up the framebuffer compression hardware at mode set time. We
* enable it if possible:
* - plane A only (on pre-965)
* - no pixel mulitply/line duplication
* - no alpha buffer discard
* - no dual wide
* - framebuffer <= 2048 in width, 1536 in height
*
* We can't assume that any compression will take place (worst case),
* so the compressed buffer has to be the same size as the uncompressed
* one. It also must reside (along with the line length buffer) in
* stolen memory.
*
* We need to enable/disable FBC on a global basis.
*/
static void intel_update_fbc(struct drm_crtc *crtc,
struct drm_display_mode *mode)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_framebuffer *fb = crtc->fb;
struct intel_framebuffer *intel_fb;
struct drm_i915_gem_object *obj_priv;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int plane = intel_crtc->plane;
if (!i915_powersave)
return;
if (!I915_HAS_FBC(dev))
return;
if (!crtc->fb)
return;
intel_fb = to_intel_framebuffer(fb);
obj_priv = to_intel_bo(intel_fb->obj);
/*
* If FBC is already on, we just have to verify that we can
* keep it that way...
* Need to disable if:
* - changing FBC params (stride, fence, mode)
* - new fb is too large to fit in compressed buffer
* - going to an unsupported config (interlace, pixel multiply, etc.)
*/
if (intel_fb->obj->size > dev_priv->cfb_size) {
DRM_DEBUG_KMS("framebuffer too large, disabling "
"compression\n");
dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
goto out_disable;
}
if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
(mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
DRM_DEBUG_KMS("mode incompatible with compression, "
"disabling\n");
dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
goto out_disable;
}
if ((mode->hdisplay > 2048) ||
(mode->vdisplay > 1536)) {
DRM_DEBUG_KMS("mode too large for compression, disabling\n");
dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
goto out_disable;
}
if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
DRM_DEBUG_KMS("plane not 0, disabling compression\n");
dev_priv->no_fbc_reason = FBC_BAD_PLANE;
goto out_disable;
}
if (obj_priv->tiling_mode != I915_TILING_X) {
DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
dev_priv->no_fbc_reason = FBC_NOT_TILED;
goto out_disable;
}
if (intel_fbc_enabled(dev)) {
/* We can re-enable it in this case, but need to update pitch */
if ((fb->pitch > dev_priv->cfb_pitch) ||
(obj_priv->fence_reg != dev_priv->cfb_fence) ||
(plane != dev_priv->cfb_plane))
intel_disable_fbc(dev);
}
/* Now try to turn it back on if possible */
if (!intel_fbc_enabled(dev))
intel_enable_fbc(crtc, 500);
return;
out_disable:
/* Multiple disables should be harmless */
if (intel_fbc_enabled(dev)) {
DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
intel_disable_fbc(dev);
}
}
static int
intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj)
{
struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
u32 alignment;
int ret;
switch (obj_priv->tiling_mode) {
case I915_TILING_NONE:
alignment = 64 * 1024;
break;
case I915_TILING_X:
/* pin() will align the object as required by fence */
alignment = 0;
break;
case I915_TILING_Y:
/* FIXME: Is this true? */
DRM_ERROR("Y tiled not allowed for scan out buffers\n");
return -EINVAL;
default:
BUG();
}
ret = i915_gem_object_pin(obj, alignment);
if (ret != 0)
return ret;
/* Install a fence for tiled scan-out. Pre-i965 always needs a
* fence, whereas 965+ only requires a fence if using
* framebuffer compression. For simplicity, we always install
* a fence as the cost is not that onerous.
*/
if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
obj_priv->tiling_mode != I915_TILING_NONE) {
ret = i915_gem_object_get_fence_reg(obj);
if (ret != 0) {
i915_gem_object_unpin(obj);
return ret;
}
}
return 0;
}
static int
intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
struct drm_framebuffer *old_fb)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_master_private *master_priv;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_framebuffer *intel_fb;
struct drm_i915_gem_object *obj_priv;
struct drm_gem_object *obj;
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
unsigned long Start, Offset;
int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
u32 dspcntr;
int ret;
/* no fb bound */
if (!crtc->fb) {
DRM_DEBUG_KMS("No FB bound\n");
return 0;
}
switch (plane) {
case 0:
case 1:
break;
default:
DRM_ERROR("Can't update plane %d in SAREA\n", plane);
return -EINVAL;
}
intel_fb = to_intel_framebuffer(crtc->fb);
obj = intel_fb->obj;
obj_priv = to_intel_bo(obj);
mutex_lock(&dev->struct_mutex);
ret = intel_pin_and_fence_fb_obj(dev, obj);
if (ret != 0) {
mutex_unlock(&dev->struct_mutex);
return ret;
}
ret = i915_gem_object_set_to_display_plane(obj);
if (ret != 0) {
i915_gem_object_unpin(obj);
mutex_unlock(&dev->struct_mutex);
return ret;
}
dspcntr = I915_READ(dspcntr_reg);
/* Mask out pixel format bits in case we change it */
dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
switch (crtc->fb->bits_per_pixel) {
case 8:
dspcntr |= DISPPLANE_8BPP;
break;
case 16:
if (crtc->fb->depth == 15)
dspcntr |= DISPPLANE_15_16BPP;
else
dspcntr |= DISPPLANE_16BPP;
break;
case 24:
case 32:
if (crtc->fb->depth == 30)
dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
else
dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
break;
default:
DRM_ERROR("Unknown color depth\n");
i915_gem_object_unpin(obj);
mutex_unlock(&dev->struct_mutex);
return -EINVAL;
}
if (IS_I965G(dev)) {
if (obj_priv->tiling_mode != I915_TILING_NONE)
dspcntr |= DISPPLANE_TILED;
else
dspcntr &= ~DISPPLANE_TILED;
}
if (HAS_PCH_SPLIT(dev))
/* must disable */
dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
I915_WRITE(dspcntr_reg, dspcntr);
Start = obj_priv->gtt_offset;
Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
Start, Offset, x, y, crtc->fb->pitch);
I915_WRITE(dspstride, crtc->fb->pitch);
if (IS_I965G(dev)) {
I915_WRITE(dspbase, Offset);
I915_READ(dspbase);
I915_WRITE(dspsurf, Start);
I915_READ(dspsurf);
I915_WRITE(dsptileoff, (y << 16) | x);
} else {
I915_WRITE(dspbase, Start + Offset);
I915_READ(dspbase);
}
if ((IS_I965G(dev) || plane == 0))
intel_update_fbc(crtc, &crtc->mode);
intel_wait_for_vblank(dev);
if (old_fb) {
intel_fb = to_intel_framebuffer(old_fb);
obj_priv = to_intel_bo(intel_fb->obj);
i915_gem_object_unpin(intel_fb->obj);
}
intel_increase_pllclock(crtc, true);
mutex_unlock(&dev->struct_mutex);
if (!dev->primary->master)
return 0;
master_priv = dev->primary->master->driver_priv;
if (!master_priv->sarea_priv)
return 0;
if (pipe) {
master_priv->sarea_priv->pipeB_x = x;
master_priv->sarea_priv->pipeB_y = y;
} else {
master_priv->sarea_priv->pipeA_x = x;
master_priv->sarea_priv->pipeA_y = y;
}
return 0;
}
/* Disable the VGA plane that we never use */
static void i915_disable_vga (struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u8 sr1;
u32 vga_reg;
if (HAS_PCH_SPLIT(dev))
vga_reg = CPU_VGACNTRL;
else
vga_reg = VGACNTRL;
if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
return;
I915_WRITE8(VGA_SR_INDEX, 1);
sr1 = I915_READ8(VGA_SR_DATA);
I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
udelay(100);
I915_WRITE(vga_reg, VGA_DISP_DISABLE);
}
static void ironlake_disable_pll_edp (struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpa_ctl;
DRM_DEBUG_KMS("\n");
dpa_ctl = I915_READ(DP_A);
dpa_ctl &= ~DP_PLL_ENABLE;
I915_WRITE(DP_A, dpa_ctl);
}
static void ironlake_enable_pll_edp (struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpa_ctl;
dpa_ctl = I915_READ(DP_A);
dpa_ctl |= DP_PLL_ENABLE;
I915_WRITE(DP_A, dpa_ctl);
udelay(200);
}
static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpa_ctl;
DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
dpa_ctl = I915_READ(DP_A);
dpa_ctl &= ~DP_PLL_FREQ_MASK;
if (clock < 200000) {
u32 temp;
dpa_ctl |= DP_PLL_FREQ_160MHZ;
/* workaround for 160Mhz:
1) program 0x4600c bits 15:0 = 0x8124
2) program 0x46010 bit 0 = 1
3) program 0x46034 bit 24 = 1
4) program 0x64000 bit 14 = 1
*/
temp = I915_READ(0x4600c);
temp &= 0xffff0000;
I915_WRITE(0x4600c, temp | 0x8124);
temp = I915_READ(0x46010);
I915_WRITE(0x46010, temp | 1);
temp = I915_READ(0x46034);
I915_WRITE(0x46034, temp | (1 << 24));
} else {
dpa_ctl |= DP_PLL_FREQ_270MHZ;
}
I915_WRITE(DP_A, dpa_ctl);
udelay(500);
}
/* The FDI link training functions for ILK/Ibexpeak. */
static void ironlake_fdi_link_train(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
u32 temp, tries = 0;
/* enable CPU FDI TX and PCH FDI RX */
temp = I915_READ(fdi_tx_reg);
temp |= FDI_TX_ENABLE;
temp &= ~(7 << 19);
temp |= (intel_crtc->fdi_lanes - 1) << 19;
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
I915_WRITE(fdi_tx_reg, temp);
I915_READ(fdi_tx_reg);
temp = I915_READ(fdi_rx_reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
I915_READ(fdi_rx_reg);
udelay(150);
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
for train result */
temp = I915_READ(fdi_rx_imr_reg);
temp &= ~FDI_RX_SYMBOL_LOCK;
temp &= ~FDI_RX_BIT_LOCK;
I915_WRITE(fdi_rx_imr_reg, temp);
I915_READ(fdi_rx_imr_reg);
udelay(150);
for (;;) {
temp = I915_READ(fdi_rx_iir_reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if ((temp & FDI_RX_BIT_LOCK)) {
DRM_DEBUG_KMS("FDI train 1 done.\n");
I915_WRITE(fdi_rx_iir_reg,
temp | FDI_RX_BIT_LOCK);
break;
}
tries++;
if (tries > 5) {
DRM_DEBUG_KMS("FDI train 1 fail!\n");
break;
}
}
/* Train 2 */
temp = I915_READ(fdi_tx_reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_2;
I915_WRITE(fdi_tx_reg, temp);
temp = I915_READ(fdi_rx_reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_2;
I915_WRITE(fdi_rx_reg, temp);
udelay(150);
tries = 0;
for (;;) {
temp = I915_READ(fdi_rx_iir_reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_SYMBOL_LOCK) {
I915_WRITE(fdi_rx_iir_reg,
temp | FDI_RX_SYMBOL_LOCK);
DRM_DEBUG_KMS("FDI train 2 done.\n");
break;
}
tries++;
if (tries > 5) {
DRM_DEBUG_KMS("FDI train 2 fail!\n");
break;
}
}
DRM_DEBUG_KMS("FDI train done\n");
}
static int snb_b_fdi_train_param [] = {
FDI_LINK_TRAIN_400MV_0DB_SNB_B,
FDI_LINK_TRAIN_400MV_6DB_SNB_B,
FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
FDI_LINK_TRAIN_800MV_0DB_SNB_B,
};
/* The FDI link training functions for SNB/Cougarpoint. */
static void gen6_fdi_link_train(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
u32 temp, i;
/* enable CPU FDI TX and PCH FDI RX */
temp = I915_READ(fdi_tx_reg);
temp |= FDI_TX_ENABLE;
temp &= ~(7 << 19);
temp |= (intel_crtc->fdi_lanes - 1) << 19;
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
/* SNB-B */
temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
I915_WRITE(fdi_tx_reg, temp);
I915_READ(fdi_tx_reg);
temp = I915_READ(fdi_rx_reg);
if (HAS_PCH_CPT(dev)) {
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
}
I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
I915_READ(fdi_rx_reg);
udelay(150);
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
for train result */
temp = I915_READ(fdi_rx_imr_reg);
temp &= ~FDI_RX_SYMBOL_LOCK;
temp &= ~FDI_RX_BIT_LOCK;
I915_WRITE(fdi_rx_imr_reg, temp);
I915_READ(fdi_rx_imr_reg);
udelay(150);
for (i = 0; i < 4; i++ ) {
temp = I915_READ(fdi_tx_reg);
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
temp |= snb_b_fdi_train_param[i];
I915_WRITE(fdi_tx_reg, temp);
udelay(500);
temp = I915_READ(fdi_rx_iir_reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_BIT_LOCK) {
I915_WRITE(fdi_rx_iir_reg,
temp | FDI_RX_BIT_LOCK);
DRM_DEBUG_KMS("FDI train 1 done.\n");
break;
}
}
if (i == 4)
DRM_DEBUG_KMS("FDI train 1 fail!\n");
/* Train 2 */
temp = I915_READ(fdi_tx_reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_2;
if (IS_GEN6(dev)) {
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
/* SNB-B */
temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
}
I915_WRITE(fdi_tx_reg, temp);
temp = I915_READ(fdi_rx_reg);
if (HAS_PCH_CPT(dev)) {
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_2;
}
I915_WRITE(fdi_rx_reg, temp);
udelay(150);
for (i = 0; i < 4; i++ ) {
temp = I915_READ(fdi_tx_reg);
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
temp |= snb_b_fdi_train_param[i];
I915_WRITE(fdi_tx_reg, temp);
udelay(500);
temp = I915_READ(fdi_rx_iir_reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_SYMBOL_LOCK) {
I915_WRITE(fdi_rx_iir_reg,
temp | FDI_RX_SYMBOL_LOCK);
DRM_DEBUG_KMS("FDI train 2 done.\n");
break;
}
}
if (i == 4)
DRM_DEBUG_KMS("FDI train 2 fail!\n");
DRM_DEBUG_KMS("FDI train done.\n");
}
static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
int trans_dpll_sel = (pipe == 0) ? 0 : 1;
u32 temp;
int n;
u32 pipe_bpc;
temp = I915_READ(pipeconf_reg);
pipe_bpc = temp & PIPE_BPC_MASK;
/* XXX: When our outputs are all unaware of DPMS modes other than off
* and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
*/
switch (mode) {
case DRM_MODE_DPMS_ON:
case DRM_MODE_DPMS_STANDBY:
case DRM_MODE_DPMS_SUSPEND:
DRM_DEBUG_KMS("crtc %d dpms on\n", pipe);
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
temp = I915_READ(PCH_LVDS);
if ((temp & LVDS_PORT_EN) == 0) {
I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
POSTING_READ(PCH_LVDS);
}
}
if (HAS_eDP) {
/* enable eDP PLL */
ironlake_enable_pll_edp(crtc);
} else {
/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
temp = I915_READ(fdi_rx_reg);
/*
* make the BPC in FDI Rx be consistent with that in
* pipeconf reg.
*/
temp &= ~(0x7 << 16);
temp |= (pipe_bpc << 11);
temp &= ~(7 << 19);
temp |= (intel_crtc->fdi_lanes - 1) << 19;
I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
I915_READ(fdi_rx_reg);
udelay(200);
/* Switch from Rawclk to PCDclk */
temp = I915_READ(fdi_rx_reg);
I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
I915_READ(fdi_rx_reg);
udelay(200);
/* Enable CPU FDI TX PLL, always on for Ironlake */
temp = I915_READ(fdi_tx_reg);
if ((temp & FDI_TX_PLL_ENABLE) == 0) {
I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
I915_READ(fdi_tx_reg);
udelay(100);
}
}
/* Enable panel fitting for LVDS */
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
temp = I915_READ(pf_ctl_reg);
I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
/* currently full aspect */
I915_WRITE(pf_win_pos, 0);
I915_WRITE(pf_win_size,
(dev_priv->panel_fixed_mode->hdisplay << 16) |
(dev_priv->panel_fixed_mode->vdisplay));
}
/* Enable CPU pipe */
temp = I915_READ(pipeconf_reg);
if ((temp & PIPEACONF_ENABLE) == 0) {
I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
I915_READ(pipeconf_reg);
udelay(100);
}
/* configure and enable CPU plane */
temp = I915_READ(dspcntr_reg);
if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
/* Flush the plane changes */
I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
}
if (!HAS_eDP) {
/* For PCH output, training FDI link */
if (IS_GEN6(dev))
gen6_fdi_link_train(crtc);
else
ironlake_fdi_link_train(crtc);
/* enable PCH DPLL */
temp = I915_READ(pch_dpll_reg);
if ((temp & DPLL_VCO_ENABLE) == 0) {
I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
I915_READ(pch_dpll_reg);
}
udelay(200);
if (HAS_PCH_CPT(dev)) {
/* Be sure PCH DPLL SEL is set */
temp = I915_READ(PCH_DPLL_SEL);
if (trans_dpll_sel == 0 &&
(temp & TRANSA_DPLL_ENABLE) == 0)
temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
else if (trans_dpll_sel == 1 &&
(temp & TRANSB_DPLL_ENABLE) == 0)
temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
I915_WRITE(PCH_DPLL_SEL, temp);
I915_READ(PCH_DPLL_SEL);
}
/* set transcoder timing */
I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
/* enable normal train */
temp = I915_READ(fdi_tx_reg);
temp &= ~FDI_LINK_TRAIN_NONE;
I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
FDI_TX_ENHANCE_FRAME_ENABLE);
I915_READ(fdi_tx_reg);
temp = I915_READ(fdi_rx_reg);
if (HAS_PCH_CPT(dev)) {
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_NORMAL_CPT;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_NONE;
}
I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
I915_READ(fdi_rx_reg);
/* wait one idle pattern time */
udelay(100);
/* For PCH DP, enable TRANS_DP_CTL */
if (HAS_PCH_CPT(dev) &&
intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
int reg;
reg = I915_READ(trans_dp_ctl);
reg &= ~TRANS_DP_PORT_SEL_MASK;
reg = TRANS_DP_OUTPUT_ENABLE |
TRANS_DP_ENH_FRAMING |
TRANS_DP_VSYNC_ACTIVE_HIGH |
TRANS_DP_HSYNC_ACTIVE_HIGH;
switch (intel_trans_dp_port_sel(crtc)) {
case PCH_DP_B:
reg |= TRANS_DP_PORT_SEL_B;
break;
case PCH_DP_C:
reg |= TRANS_DP_PORT_SEL_C;
break;
case PCH_DP_D:
reg |= TRANS_DP_PORT_SEL_D;
break;
default:
DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
reg |= TRANS_DP_PORT_SEL_B;
break;
}
I915_WRITE(trans_dp_ctl, reg);
POSTING_READ(trans_dp_ctl);
}
/* enable PCH transcoder */
temp = I915_READ(transconf_reg);
/*
* make the BPC in transcoder be consistent with
* that in pipeconf reg.
*/
temp &= ~PIPE_BPC_MASK;
temp |= pipe_bpc;
I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
I915_READ(transconf_reg);
while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
;
}
intel_crtc_load_lut(crtc);
break;
case DRM_MODE_DPMS_OFF:
DRM_DEBUG_KMS("crtc %d dpms off\n", pipe);
drm_vblank_off(dev, pipe);
/* Disable display plane */
temp = I915_READ(dspcntr_reg);
if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
/* Flush the plane changes */
I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
I915_READ(dspbase_reg);
}
i915_disable_vga(dev);
/* disable cpu pipe, disable after all planes disabled */
temp = I915_READ(pipeconf_reg);
if ((temp & PIPEACONF_ENABLE) != 0) {
I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
I915_READ(pipeconf_reg);
n = 0;
/* wait for cpu pipe off, pipe state */
while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
n++;
if (n < 60) {
udelay(500);
continue;
} else {
DRM_DEBUG_KMS("pipe %d off delay\n",
pipe);
break;
}
}
} else
DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
udelay(100);
/* Disable PF */
temp = I915_READ(pf_ctl_reg);
if ((temp & PF_ENABLE) != 0) {
I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
I915_READ(pf_ctl_reg);
}
I915_WRITE(pf_win_size, 0);
POSTING_READ(pf_win_size);
/* disable CPU FDI tx and PCH FDI rx */
temp = I915_READ(fdi_tx_reg);
I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
I915_READ(fdi_tx_reg);
temp = I915_READ(fdi_rx_reg);
/* BPC in FDI rx is consistent with that in pipeconf */
temp &= ~(0x07 << 16);
temp |= (pipe_bpc << 11);
I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
I915_READ(fdi_rx_reg);
udelay(100);
/* still set train pattern 1 */
temp = I915_READ(fdi_tx_reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
I915_WRITE(fdi_tx_reg, temp);
POSTING_READ(fdi_tx_reg);
temp = I915_READ(fdi_rx_reg);
if (HAS_PCH_CPT(dev)) {
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
}
I915_WRITE(fdi_rx_reg, temp);
POSTING_READ(fdi_rx_reg);
udelay(100);
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
temp = I915_READ(PCH_LVDS);
I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
I915_READ(PCH_LVDS);
udelay(100);
}
/* disable PCH transcoder */
temp = I915_READ(transconf_reg);
if ((temp & TRANS_ENABLE) != 0) {
I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
I915_READ(transconf_reg);
n = 0;
/* wait for PCH transcoder off, transcoder state */
while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
n++;
if (n < 60) {
udelay(500);
continue;
} else {
DRM_DEBUG_KMS("transcoder %d off "
"delay\n", pipe);
break;
}
}
}
temp = I915_READ(transconf_reg);
/* BPC in transcoder is consistent with that in pipeconf */
temp &= ~PIPE_BPC_MASK;
temp |= pipe_bpc;
I915_WRITE(transconf_reg, temp);
I915_READ(transconf_reg);
udelay(100);
if (HAS_PCH_CPT(dev)) {
/* disable TRANS_DP_CTL */
int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
int reg;
reg = I915_READ(trans_dp_ctl);
reg &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
I915_WRITE(trans_dp_ctl, reg);
POSTING_READ(trans_dp_ctl);
/* disable DPLL_SEL */
temp = I915_READ(PCH_DPLL_SEL);
if (trans_dpll_sel == 0)
temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
else
temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
I915_WRITE(PCH_DPLL_SEL, temp);
I915_READ(PCH_DPLL_SEL);
}
/* disable PCH DPLL */
temp = I915_READ(pch_dpll_reg);
I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
I915_READ(pch_dpll_reg);
if (HAS_eDP) {
ironlake_disable_pll_edp(crtc);
}
/* Switch from PCDclk to Rawclk */
temp = I915_READ(fdi_rx_reg);
temp &= ~FDI_SEL_PCDCLK;
I915_WRITE(fdi_rx_reg, temp);
I915_READ(fdi_rx_reg);
/* Disable CPU FDI TX PLL */
temp = I915_READ(fdi_tx_reg);
I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
I915_READ(fdi_tx_reg);
udelay(100);
temp = I915_READ(fdi_rx_reg);
temp &= ~FDI_RX_PLL_ENABLE;
I915_WRITE(fdi_rx_reg, temp);
I915_READ(fdi_rx_reg);
/* Wait for the clocks to turn off. */
udelay(100);
break;
}
}
static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
{
struct intel_overlay *overlay;
int ret;
if (!enable && intel_crtc->overlay) {
overlay = intel_crtc->overlay;
mutex_lock(&overlay->dev->struct_mutex);
for (;;) {
ret = intel_overlay_switch_off(overlay);
if (ret == 0)
break;
ret = intel_overlay_recover_from_interrupt(overlay, 0);
if (ret != 0) {
/* overlay doesn't react anymore. Usually
* results in a black screen and an unkillable
* X server. */
BUG();
overlay->hw_wedged = HW_WEDGED;
break;
}
}
mutex_unlock(&overlay->dev->struct_mutex);
}
/* Let userspace switch the overlay on again. In most cases userspace
* has to recompute where to put it anyway. */
return;
}
static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
u32 temp;
/* XXX: When our outputs are all unaware of DPMS modes other than off
* and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
*/
switch (mode) {
case DRM_MODE_DPMS_ON:
case DRM_MODE_DPMS_STANDBY:
case DRM_MODE_DPMS_SUSPEND:
intel_update_watermarks(dev);
/* Enable the DPLL */
temp = I915_READ(dpll_reg);
if ((temp & DPLL_VCO_ENABLE) == 0) {
I915_WRITE(dpll_reg, temp);
I915_READ(dpll_reg);
/* Wait for the clocks to stabilize. */
udelay(150);
I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
I915_READ(dpll_reg);
/* Wait for the clocks to stabilize. */
udelay(150);
I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
I915_READ(dpll_reg);
/* Wait for the clocks to stabilize. */
udelay(150);
}
/* Enable the pipe */
temp = I915_READ(pipeconf_reg);
if ((temp & PIPEACONF_ENABLE) == 0)
I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
/* Enable the plane */
temp = I915_READ(dspcntr_reg);
if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
/* Flush the plane changes */
I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
}
intel_crtc_load_lut(crtc);
if ((IS_I965G(dev) || plane == 0))
intel_update_fbc(crtc, &crtc->mode);
/* Give the overlay scaler a chance to enable if it's on this pipe */
intel_crtc_dpms_overlay(intel_crtc, true);
break;
case DRM_MODE_DPMS_OFF:
intel_update_watermarks(dev);
/* Give the overlay scaler a chance to disable if it's on this pipe */
intel_crtc_dpms_overlay(intel_crtc, false);
drm_vblank_off(dev, pipe);
if (dev_priv->cfb_plane == plane &&
dev_priv->display.disable_fbc)
dev_priv->display.disable_fbc(dev);
/* Disable the VGA plane that we never use */
i915_disable_vga(dev);
/* Disable display plane */
temp = I915_READ(dspcntr_reg);
if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
/* Flush the plane changes */
I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
I915_READ(dspbase_reg);
}
if (!IS_I9XX(dev)) {
/* Wait for vblank for the disable to take effect */
intel_wait_for_vblank(dev);
}
/* Next, disable display pipes */
temp = I915_READ(pipeconf_reg);
if ((temp & PIPEACONF_ENABLE) != 0) {
I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
I915_READ(pipeconf_reg);
}
/* Wait for vblank for the disable to take effect. */
intel_wait_for_vblank(dev);
temp = I915_READ(dpll_reg);
if ((temp & DPLL_VCO_ENABLE) != 0) {
I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
I915_READ(dpll_reg);
}
/* Wait for the clocks to turn off. */
udelay(150);
break;
}
}
/**
* Sets the power management mode of the pipe and plane.
*
* This code should probably grow support for turning the cursor off and back
* on appropriately at the same time as we're turning the pipe off/on.
*/
static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_master_private *master_priv;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
bool enabled;
dev_priv->display.dpms(crtc, mode);
intel_crtc->dpms_mode = mode;
if (!dev->primary->master)
return;
master_priv = dev->primary->master->driver_priv;
if (!master_priv->sarea_priv)
return;
enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
switch (pipe) {
case 0:
master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
break;
case 1:
master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
break;
default:
DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
break;
}
}
static void intel_crtc_prepare (struct drm_crtc *crtc)
{
struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
}
static void intel_crtc_commit (struct drm_crtc *crtc)
{
struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
}
void intel_encoder_prepare (struct drm_encoder *encoder)
{
struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
/* lvds has its own version of prepare see intel_lvds_prepare */
encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
}
void intel_encoder_commit (struct drm_encoder *encoder)
{
struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
/* lvds has its own version of commit see intel_lvds_commit */
encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
}
static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = crtc->dev;
if (HAS_PCH_SPLIT(dev)) {
/* FDI link clock is fixed at 2.7G */
if (mode->clock * 3 > 27000 * 4)
return MODE_CLOCK_HIGH;
}
drm_mode_set_crtcinfo(adjusted_mode, 0);
return true;
}
static int i945_get_display_clock_speed(struct drm_device *dev)
{
return 400000;
}
static int i915_get_display_clock_speed(struct drm_device *dev)
{
return 333000;
}
static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
{
return 200000;
}
static int i915gm_get_display_clock_speed(struct drm_device *dev)
{
u16 gcfgc = 0;
pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
return 133000;
else {
switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
case GC_DISPLAY_CLOCK_333_MHZ:
return 333000;
default:
case GC_DISPLAY_CLOCK_190_200_MHZ:
return 190000;
}
}
}
static int i865_get_display_clock_speed(struct drm_device *dev)
{
return 266000;
}
static int i855_get_display_clock_speed(struct drm_device *dev)
{
u16 hpllcc = 0;
/* Assume that the hardware is in the high speed state. This
* should be the default.
*/
switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
case GC_CLOCK_133_200:
case GC_CLOCK_100_200:
return 200000;
case GC_CLOCK_166_250:
return 250000;
case GC_CLOCK_100_133:
return 133000;
}
/* Shouldn't happen */
return 0;
}
static int i830_get_display_clock_speed(struct drm_device *dev)
{
return 133000;
}
/**
* Return the pipe currently connected to the panel fitter,
* or -1 if the panel fitter is not present or not in use
*/
int intel_panel_fitter_pipe (struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pfit_control;
/* i830 doesn't have a panel fitter */
if (IS_I830(dev))
return -1;
pfit_control = I915_READ(PFIT_CONTROL);
/* See if the panel fitter is in use */
if ((pfit_control & PFIT_ENABLE) == 0)
return -1;
/* 965 can place panel fitter on either pipe */
if (IS_I965G(dev))
return (pfit_control >> 29) & 0x3;
/* older chips can only use pipe 1 */
return 1;
}
struct fdi_m_n {
u32 tu;
u32 gmch_m;
u32 gmch_n;
u32 link_m;
u32 link_n;
};
static void
fdi_reduce_ratio(u32 *num, u32 *den)
{
while (*num > 0xffffff || *den > 0xffffff) {
*num >>= 1;
*den >>= 1;
}
}
#define DATA_N 0x800000
#define LINK_N 0x80000
static void
ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
int link_clock, struct fdi_m_n *m_n)
{
u64 temp;
m_n->tu = 64; /* default size */
temp = (u64) DATA_N * pixel_clock;
temp = div_u64(temp, link_clock);
m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
m_n->gmch_n = DATA_N;
fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
temp = (u64) LINK_N * pixel_clock;
m_n->link_m = div_u64(temp, link_clock);
m_n->link_n = LINK_N;
fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
}
struct intel_watermark_params {
unsigned long fifo_size;
unsigned long max_wm;
unsigned long default_wm;
unsigned long guard_size;
unsigned long cacheline_size;
};
/* Pineview has different values for various configs */
static struct intel_watermark_params pineview_display_wm = {
PINEVIEW_DISPLAY_FIFO,
PINEVIEW_MAX_WM,
PINEVIEW_DFT_WM,
PINEVIEW_GUARD_WM,
PINEVIEW_FIFO_LINE_SIZE
};
static struct intel_watermark_params pineview_display_hplloff_wm = {
PINEVIEW_DISPLAY_FIFO,
PINEVIEW_MAX_WM,
PINEVIEW_DFT_HPLLOFF_WM,
PINEVIEW_GUARD_WM,
PINEVIEW_FIFO_LINE_SIZE
};
static struct intel_watermark_params pineview_cursor_wm = {
PINEVIEW_CURSOR_FIFO,
PINEVIEW_CURSOR_MAX_WM,
PINEVIEW_CURSOR_DFT_WM,
PINEVIEW_CURSOR_GUARD_WM,
PINEVIEW_FIFO_LINE_SIZE,
};
static struct intel_watermark_params pineview_cursor_hplloff_wm = {
PINEVIEW_CURSOR_FIFO,
PINEVIEW_CURSOR_MAX_WM,
PINEVIEW_CURSOR_DFT_WM,
PINEVIEW_CURSOR_GUARD_WM,
PINEVIEW_FIFO_LINE_SIZE
};
static struct intel_watermark_params g4x_wm_info = {
G4X_FIFO_SIZE,
G4X_MAX_WM,
G4X_MAX_WM,
2,
G4X_FIFO_LINE_SIZE,
};
static struct intel_watermark_params i945_wm_info = {
I945_FIFO_SIZE,
I915_MAX_WM,
1,
2,
I915_FIFO_LINE_SIZE
};
static struct intel_watermark_params i915_wm_info = {
I915_FIFO_SIZE,
I915_MAX_WM,
1,
2,
I915_FIFO_LINE_SIZE
};
static struct intel_watermark_params i855_wm_info = {
I855GM_FIFO_SIZE,
I915_MAX_WM,
1,
2,
I830_FIFO_LINE_SIZE
};
static struct intel_watermark_params i830_wm_info = {
I830_FIFO_SIZE,
I915_MAX_WM,
1,
2,
I830_FIFO_LINE_SIZE
};
static struct intel_watermark_params ironlake_display_wm_info = {
ILK_DISPLAY_FIFO,
ILK_DISPLAY_MAXWM,
ILK_DISPLAY_DFTWM,
2,
ILK_FIFO_LINE_SIZE
};
static struct intel_watermark_params ironlake_display_srwm_info = {
ILK_DISPLAY_SR_FIFO,
ILK_DISPLAY_MAX_SRWM,
ILK_DISPLAY_DFT_SRWM,
2,
ILK_FIFO_LINE_SIZE
};
static struct intel_watermark_params ironlake_cursor_srwm_info = {
ILK_CURSOR_SR_FIFO,
ILK_CURSOR_MAX_SRWM,
ILK_CURSOR_DFT_SRWM,
2,
ILK_FIFO_LINE_SIZE
};
/**
* intel_calculate_wm - calculate watermark level
* @clock_in_khz: pixel clock
* @wm: chip FIFO params
* @pixel_size: display pixel size
* @latency_ns: memory latency for the platform
*
* Calculate the watermark level (the level at which the display plane will
* start fetching from memory again). Each chip has a different display
* FIFO size and allocation, so the caller needs to figure that out and pass
* in the correct intel_watermark_params structure.
*
* As the pixel clock runs, the FIFO will be drained at a rate that depends
* on the pixel size. When it reaches the watermark level, it'll start
* fetching FIFO line sized based chunks from memory until the FIFO fills
* past the watermark point. If the FIFO drains completely, a FIFO underrun
* will occur, and a display engine hang could result.
*/
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
struct intel_watermark_params *wm,
int pixel_size,
unsigned long latency_ns)
{
long entries_required, wm_size;
/*
* Note: we need to make sure we don't overflow for various clock &
* latency values.
* clocks go from a few thousand to several hundred thousand.
* latency is usually a few thousand
*/
entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1000;
entries_required /= wm->cacheline_size;
DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
wm_size = wm->fifo_size - (entries_required + wm->guard_size);
DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
/* Don't promote wm_size to unsigned... */
if (wm_size > (long)wm->max_wm)
wm_size = wm->max_wm;
if (wm_size <= 0)
wm_size = wm->default_wm;
return wm_size;
}
struct cxsr_latency {
int is_desktop;
int is_ddr3;
unsigned long fsb_freq;
unsigned long mem_freq;
unsigned long display_sr;
unsigned long display_hpll_disable;
unsigned long cursor_sr;
unsigned long cursor_hpll_disable;
};
static struct cxsr_latency cxsr_latency_table[] = {
{1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
{1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
{1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
{1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
{1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
{1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
{1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
{1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
{1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
{1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
{1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
{1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
{1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
{1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
{1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
{0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
{0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
{0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
{0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
{0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
{0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
{0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
{0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
{0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
{0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
{0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
{0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
{0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
{0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
{0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
};
static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int is_ddr3,
int fsb, int mem)
{
int i;
struct cxsr_latency *latency;
if (fsb == 0 || mem == 0)
return NULL;
for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
latency = &cxsr_latency_table[i];
if (is_desktop == latency->is_desktop &&
is_ddr3 == latency->is_ddr3 &&
fsb == latency->fsb_freq && mem == latency->mem_freq)
return latency;
}
DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
return NULL;
}
static void pineview_disable_cxsr(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 reg;
/* deactivate cxsr */
reg = I915_READ(DSPFW3);
reg &= ~(PINEVIEW_SELF_REFRESH_EN);
I915_WRITE(DSPFW3, reg);
DRM_INFO("Big FIFO is disabled\n");
}
/*
* Latency for FIFO fetches is dependent on several factors:
* - memory configuration (speed, channels)
* - chipset
* - current MCH state
* It can be fairly high in some situations, so here we assume a fairly
* pessimal value. It's a tradeoff between extra memory fetches (if we
* set this value too high, the FIFO will fetch frequently to stay full)
* and power consumption (set it too low to save power and we might see
* FIFO underruns and display "flicker").
*
* A value of 5us seems to be a good balance; safe for very low end
* platforms but not overly aggressive on lower latency configs.
*/
static const int latency_ns = 5000;
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dsparb = I915_READ(DSPARB);
int size;
if (plane == 0)
size = dsparb & 0x7f;
else
size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
(dsparb & 0x7f);
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
plane ? "B" : "A", size);
return size;
}
static int i85x_get_fifo_size(struct drm_device *dev, int plane)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dsparb = I915_READ(DSPARB);
int size;
if (plane == 0)
size = dsparb & 0x1ff;
else
size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
(dsparb & 0x1ff);
size >>= 1; /* Convert to cachelines */
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
plane ? "B" : "A", size);
return size;
}
static int i845_get_fifo_size(struct drm_device *dev, int plane)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dsparb = I915_READ(DSPARB);
int size;
size = dsparb & 0x7f;
size >>= 2; /* Convert to cachelines */
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
plane ? "B" : "A",
size);
return size;
}
static int i830_get_fifo_size(struct drm_device *dev, int plane)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dsparb = I915_READ(DSPARB);
int size;
size = dsparb & 0x7f;
size >>= 1; /* Convert to cachelines */
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
plane ? "B" : "A", size);
return size;
}
static void pineview_update_wm(struct drm_device *dev, int planea_clock,
int planeb_clock, int sr_hdisplay, int pixel_size)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 reg;
unsigned long wm;
struct cxsr_latency *latency;
int sr_clock;
latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
dev_priv->fsb_freq, dev_priv->mem_freq);
if (!latency) {
DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
pineview_disable_cxsr(dev);
return;
}
if (!planea_clock || !planeb_clock) {
sr_clock = planea_clock ? planea_clock : planeb_clock;
/* Display SR */
wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
pixel_size, latency->display_sr);
reg = I915_READ(DSPFW1);
reg &= ~DSPFW_SR_MASK;
reg |= wm << DSPFW_SR_SHIFT;
I915_WRITE(DSPFW1, reg);
DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
/* cursor SR */
wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
pixel_size, latency->cursor_sr);
reg = I915_READ(DSPFW3);
reg &= ~DSPFW_CURSOR_SR_MASK;
reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
I915_WRITE(DSPFW3, reg);
/* Display HPLL off SR */
wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
pixel_size, latency->display_hpll_disable);
reg = I915_READ(DSPFW3);
reg &= ~DSPFW_HPLL_SR_MASK;
reg |= wm & DSPFW_HPLL_SR_MASK;
I915_WRITE(DSPFW3, reg);
/* cursor HPLL off SR */
wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
pixel_size, latency->cursor_hpll_disable);
reg = I915_READ(DSPFW3);
reg &= ~DSPFW_HPLL_CURSOR_MASK;
reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
I915_WRITE(DSPFW3, reg);
DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
/* activate cxsr */
reg = I915_READ(DSPFW3);
reg |= PINEVIEW_SELF_REFRESH_EN;
I915_WRITE(DSPFW3, reg);
DRM_DEBUG_KMS("Self-refresh is enabled\n");
} else {
pineview_disable_cxsr(dev);
DRM_DEBUG_KMS("Self-refresh is disabled\n");
}
}
static void g4x_update_wm(struct drm_device *dev, int planea_clock,
int planeb_clock, int sr_hdisplay, int pixel_size)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int total_size, cacheline_size;
int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
struct intel_watermark_params planea_params, planeb_params;
unsigned long line_time_us;
int sr_clock, sr_entries = 0, entries_required;
/* Create copies of the base settings for each pipe */
planea_params = planeb_params = g4x_wm_info;
/* Grab a couple of global values before we overwrite them */
total_size = planea_params.fifo_size;
cacheline_size = planea_params.cacheline_size;