blob: a6f572a40deb3bb1e3aaa64d03c53a7e0372c46f [file] [log] [blame]
/*
* Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
*
* Parts came from builtin-{top,stat,record}.c, see those files for further
* copyright notes.
*
* Released under the GPL v2. (and only v2, not any later version)
*/
#include <byteswap.h>
#include <errno.h>
#include <inttypes.h>
#include <linux/bitops.h>
#include <api/fs/fs.h>
#include <api/fs/tracing_path.h>
#include <traceevent/event-parse.h>
#include <linux/hw_breakpoint.h>
#include <linux/perf_event.h>
#include <linux/compiler.h>
#include <linux/err.h>
#include <sys/ioctl.h>
#include <sys/resource.h>
#include <sys/types.h>
#include <dirent.h>
#include "asm/bug.h"
#include "callchain.h"
#include "cgroup.h"
#include "event.h"
#include "evsel.h"
#include "evlist.h"
#include "util.h"
#include "cpumap.h"
#include "thread_map.h"
#include "target.h"
#include "perf_regs.h"
#include "debug.h"
#include "trace-event.h"
#include "stat.h"
#include "memswap.h"
#include "util/parse-branch-options.h"
#include "sane_ctype.h"
struct perf_missing_features perf_missing_features;
static clockid_t clockid;
static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
{
return 0;
}
void __weak test_attr__ready(void) { }
static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
{
}
static struct {
size_t size;
int (*init)(struct perf_evsel *evsel);
void (*fini)(struct perf_evsel *evsel);
} perf_evsel__object = {
.size = sizeof(struct perf_evsel),
.init = perf_evsel__no_extra_init,
.fini = perf_evsel__no_extra_fini,
};
int perf_evsel__object_config(size_t object_size,
int (*init)(struct perf_evsel *evsel),
void (*fini)(struct perf_evsel *evsel))
{
if (object_size == 0)
goto set_methods;
if (perf_evsel__object.size > object_size)
return -EINVAL;
perf_evsel__object.size = object_size;
set_methods:
if (init != NULL)
perf_evsel__object.init = init;
if (fini != NULL)
perf_evsel__object.fini = fini;
return 0;
}
#define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
int __perf_evsel__sample_size(u64 sample_type)
{
u64 mask = sample_type & PERF_SAMPLE_MASK;
int size = 0;
int i;
for (i = 0; i < 64; i++) {
if (mask & (1ULL << i))
size++;
}
size *= sizeof(u64);
return size;
}
/**
* __perf_evsel__calc_id_pos - calculate id_pos.
* @sample_type: sample type
*
* This function returns the position of the event id (PERF_SAMPLE_ID or
* PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
* sample_event.
*/
static int __perf_evsel__calc_id_pos(u64 sample_type)
{
int idx = 0;
if (sample_type & PERF_SAMPLE_IDENTIFIER)
return 0;
if (!(sample_type & PERF_SAMPLE_ID))
return -1;
if (sample_type & PERF_SAMPLE_IP)
idx += 1;
if (sample_type & PERF_SAMPLE_TID)
idx += 1;
if (sample_type & PERF_SAMPLE_TIME)
idx += 1;
if (sample_type & PERF_SAMPLE_ADDR)
idx += 1;
return idx;
}
/**
* __perf_evsel__calc_is_pos - calculate is_pos.
* @sample_type: sample type
*
* This function returns the position (counting backwards) of the event id
* (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
* sample_id_all is used there is an id sample appended to non-sample events.
*/
static int __perf_evsel__calc_is_pos(u64 sample_type)
{
int idx = 1;
if (sample_type & PERF_SAMPLE_IDENTIFIER)
return 1;
if (!(sample_type & PERF_SAMPLE_ID))
return -1;
if (sample_type & PERF_SAMPLE_CPU)
idx += 1;
if (sample_type & PERF_SAMPLE_STREAM_ID)
idx += 1;
return idx;
}
void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
{
evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
}
void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
enum perf_event_sample_format bit)
{
if (!(evsel->attr.sample_type & bit)) {
evsel->attr.sample_type |= bit;
evsel->sample_size += sizeof(u64);
perf_evsel__calc_id_pos(evsel);
}
}
void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
enum perf_event_sample_format bit)
{
if (evsel->attr.sample_type & bit) {
evsel->attr.sample_type &= ~bit;
evsel->sample_size -= sizeof(u64);
perf_evsel__calc_id_pos(evsel);
}
}
void perf_evsel__set_sample_id(struct perf_evsel *evsel,
bool can_sample_identifier)
{
if (can_sample_identifier) {
perf_evsel__reset_sample_bit(evsel, ID);
perf_evsel__set_sample_bit(evsel, IDENTIFIER);
} else {
perf_evsel__set_sample_bit(evsel, ID);
}
evsel->attr.read_format |= PERF_FORMAT_ID;
}
/**
* perf_evsel__is_function_event - Return whether given evsel is a function
* trace event
*
* @evsel - evsel selector to be tested
*
* Return %true if event is function trace event
*/
bool perf_evsel__is_function_event(struct perf_evsel *evsel)
{
#define FUNCTION_EVENT "ftrace:function"
return evsel->name &&
!strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
#undef FUNCTION_EVENT
}
void perf_evsel__init(struct perf_evsel *evsel,
struct perf_event_attr *attr, int idx)
{
evsel->idx = idx;
evsel->tracking = !idx;
evsel->attr = *attr;
evsel->leader = evsel;
evsel->unit = "";
evsel->scale = 1.0;
evsel->max_events = ULONG_MAX;
evsel->evlist = NULL;
evsel->bpf_fd = -1;
INIT_LIST_HEAD(&evsel->node);
INIT_LIST_HEAD(&evsel->config_terms);
perf_evsel__object.init(evsel);
evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
perf_evsel__calc_id_pos(evsel);
evsel->cmdline_group_boundary = false;
evsel->metric_expr = NULL;
evsel->metric_name = NULL;
evsel->metric_events = NULL;
evsel->collect_stat = false;
evsel->pmu_name = NULL;
}
struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
{
struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
if (!evsel)
return NULL;
perf_evsel__init(evsel, attr, idx);
if (perf_evsel__is_bpf_output(evsel)) {
evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
evsel->attr.sample_period = 1;
}
if (perf_evsel__is_clock(evsel)) {
/*
* The evsel->unit points to static alias->unit
* so it's ok to use static string in here.
*/
static const char *unit = "msec";
evsel->unit = unit;
evsel->scale = 1e-6;
}
return evsel;
}
static bool perf_event_can_profile_kernel(void)
{
return geteuid() == 0 || perf_event_paranoid() == -1;
}
struct perf_evsel *perf_evsel__new_cycles(bool precise)
{
struct perf_event_attr attr = {
.type = PERF_TYPE_HARDWARE,
.config = PERF_COUNT_HW_CPU_CYCLES,
.exclude_kernel = !perf_event_can_profile_kernel(),
};
struct perf_evsel *evsel;
event_attr_init(&attr);
if (!precise)
goto new_event;
/*
* Now let the usual logic to set up the perf_event_attr defaults
* to kick in when we return and before perf_evsel__open() is called.
*/
new_event:
evsel = perf_evsel__new(&attr);
if (evsel == NULL)
goto out;
evsel->precise_max = true;
/* use asprintf() because free(evsel) assumes name is allocated */
if (asprintf(&evsel->name, "cycles%s%s%.*s",
(attr.precise_ip || attr.exclude_kernel) ? ":" : "",
attr.exclude_kernel ? "u" : "",
attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
goto error_free;
out:
return evsel;
error_free:
perf_evsel__delete(evsel);
evsel = NULL;
goto out;
}
/*
* Returns pointer with encoded error via <linux/err.h> interface.
*/
struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
{
struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
int err = -ENOMEM;
if (evsel == NULL) {
goto out_err;
} else {
struct perf_event_attr attr = {
.type = PERF_TYPE_TRACEPOINT,
.sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
};
if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
goto out_free;
evsel->tp_format = trace_event__tp_format(sys, name);
if (IS_ERR(evsel->tp_format)) {
err = PTR_ERR(evsel->tp_format);
goto out_free;
}
event_attr_init(&attr);
attr.config = evsel->tp_format->id;
attr.sample_period = 1;
perf_evsel__init(evsel, &attr, idx);
}
return evsel;
out_free:
zfree(&evsel->name);
free(evsel);
out_err:
return ERR_PTR(err);
}
const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
"cycles",
"instructions",
"cache-references",
"cache-misses",
"branches",
"branch-misses",
"bus-cycles",
"stalled-cycles-frontend",
"stalled-cycles-backend",
"ref-cycles",
};
static const char *__perf_evsel__hw_name(u64 config)
{
if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
return perf_evsel__hw_names[config];
return "unknown-hardware";
}
static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
{
int colon = 0, r = 0;
struct perf_event_attr *attr = &evsel->attr;
bool exclude_guest_default = false;
#define MOD_PRINT(context, mod) do { \
if (!attr->exclude_##context) { \
if (!colon) colon = ++r; \
r += scnprintf(bf + r, size - r, "%c", mod); \
} } while(0)
if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
MOD_PRINT(kernel, 'k');
MOD_PRINT(user, 'u');
MOD_PRINT(hv, 'h');
exclude_guest_default = true;
}
if (attr->precise_ip) {
if (!colon)
colon = ++r;
r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
exclude_guest_default = true;
}
if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
MOD_PRINT(host, 'H');
MOD_PRINT(guest, 'G');
}
#undef MOD_PRINT
if (colon)
bf[colon - 1] = ':';
return r;
}
static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
{
int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
}
const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
"cpu-clock",
"task-clock",
"page-faults",
"context-switches",
"cpu-migrations",
"minor-faults",
"major-faults",
"alignment-faults",
"emulation-faults",
"dummy",
};
static const char *__perf_evsel__sw_name(u64 config)
{
if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
return perf_evsel__sw_names[config];
return "unknown-software";
}
static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
{
int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
}
static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
{
int r;
r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
if (type & HW_BREAKPOINT_R)
r += scnprintf(bf + r, size - r, "r");
if (type & HW_BREAKPOINT_W)
r += scnprintf(bf + r, size - r, "w");
if (type & HW_BREAKPOINT_X)
r += scnprintf(bf + r, size - r, "x");
return r;
}
static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
{
struct perf_event_attr *attr = &evsel->attr;
int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
}
const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
[PERF_EVSEL__MAX_ALIASES] = {
{ "L1-dcache", "l1-d", "l1d", "L1-data", },
{ "L1-icache", "l1-i", "l1i", "L1-instruction", },
{ "LLC", "L2", },
{ "dTLB", "d-tlb", "Data-TLB", },
{ "iTLB", "i-tlb", "Instruction-TLB", },
{ "branch", "branches", "bpu", "btb", "bpc", },
{ "node", },
};
const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_EVSEL__MAX_ALIASES] = {
{ "load", "loads", "read", },
{ "store", "stores", "write", },
{ "prefetch", "prefetches", "speculative-read", "speculative-load", },
};
const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
[PERF_EVSEL__MAX_ALIASES] = {
{ "refs", "Reference", "ops", "access", },
{ "misses", "miss", },
};
#define C(x) PERF_COUNT_HW_CACHE_##x
#define CACHE_READ (1 << C(OP_READ))
#define CACHE_WRITE (1 << C(OP_WRITE))
#define CACHE_PREFETCH (1 << C(OP_PREFETCH))
#define COP(x) (1 << x)
/*
* cache operartion stat
* L1I : Read and prefetch only
* ITLB and BPU : Read-only
*/
static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
[C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
[C(L1I)] = (CACHE_READ | CACHE_PREFETCH),
[C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
[C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
[C(ITLB)] = (CACHE_READ),
[C(BPU)] = (CACHE_READ),
[C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
};
bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
{
if (perf_evsel__hw_cache_stat[type] & COP(op))
return true; /* valid */
else
return false; /* invalid */
}
int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
char *bf, size_t size)
{
if (result) {
return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
perf_evsel__hw_cache_op[op][0],
perf_evsel__hw_cache_result[result][0]);
}
return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
perf_evsel__hw_cache_op[op][1]);
}
static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
{
u8 op, result, type = (config >> 0) & 0xff;
const char *err = "unknown-ext-hardware-cache-type";
if (type >= PERF_COUNT_HW_CACHE_MAX)
goto out_err;
op = (config >> 8) & 0xff;
err = "unknown-ext-hardware-cache-op";
if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
goto out_err;
result = (config >> 16) & 0xff;
err = "unknown-ext-hardware-cache-result";
if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
goto out_err;
err = "invalid-cache";
if (!perf_evsel__is_cache_op_valid(type, op))
goto out_err;
return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
out_err:
return scnprintf(bf, size, "%s", err);
}
static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
{
int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
}
static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
{
int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
}
static int perf_evsel__tool_name(char *bf, size_t size)
{
int ret = scnprintf(bf, size, "duration_time");
return ret;
}
const char *perf_evsel__name(struct perf_evsel *evsel)
{
char bf[128];
if (evsel->name)
return evsel->name;
switch (evsel->attr.type) {
case PERF_TYPE_RAW:
perf_evsel__raw_name(evsel, bf, sizeof(bf));
break;
case PERF_TYPE_HARDWARE:
perf_evsel__hw_name(evsel, bf, sizeof(bf));
break;
case PERF_TYPE_HW_CACHE:
perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
break;
case PERF_TYPE_SOFTWARE:
if (evsel->tool_event)
perf_evsel__tool_name(bf, sizeof(bf));
else
perf_evsel__sw_name(evsel, bf, sizeof(bf));
break;
case PERF_TYPE_TRACEPOINT:
scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
break;
case PERF_TYPE_BREAKPOINT:
perf_evsel__bp_name(evsel, bf, sizeof(bf));
break;
default:
scnprintf(bf, sizeof(bf), "unknown attr type: %d",
evsel->attr.type);
break;
}
evsel->name = strdup(bf);
return evsel->name ?: "unknown";
}
const char *perf_evsel__group_name(struct perf_evsel *evsel)
{
return evsel->group_name ?: "anon group";
}
/*
* Returns the group details for the specified leader,
* with following rules.
*
* For record -e '{cycles,instructions}'
* 'anon group { cycles:u, instructions:u }'
*
* For record -e 'cycles,instructions' and report --group
* 'cycles:u, instructions:u'
*/
int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
{
int ret = 0;
struct perf_evsel *pos;
const char *group_name = perf_evsel__group_name(evsel);
if (!evsel->forced_leader)
ret = scnprintf(buf, size, "%s { ", group_name);
ret += scnprintf(buf + ret, size - ret, "%s",
perf_evsel__name(evsel));
for_each_group_member(pos, evsel)
ret += scnprintf(buf + ret, size - ret, ", %s",
perf_evsel__name(pos));
if (!evsel->forced_leader)
ret += scnprintf(buf + ret, size - ret, " }");
return ret;
}
static void __perf_evsel__config_callchain(struct perf_evsel *evsel,
struct record_opts *opts,
struct callchain_param *param)
{
bool function = perf_evsel__is_function_event(evsel);
struct perf_event_attr *attr = &evsel->attr;
perf_evsel__set_sample_bit(evsel, CALLCHAIN);
attr->sample_max_stack = param->max_stack;
if (param->record_mode == CALLCHAIN_LBR) {
if (!opts->branch_stack) {
if (attr->exclude_user) {
pr_warning("LBR callstack option is only available "
"to get user callchain information. "
"Falling back to framepointers.\n");
} else {
perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
PERF_SAMPLE_BRANCH_CALL_STACK |
PERF_SAMPLE_BRANCH_NO_CYCLES |
PERF_SAMPLE_BRANCH_NO_FLAGS;
}
} else
pr_warning("Cannot use LBR callstack with branch stack. "
"Falling back to framepointers.\n");
}
if (param->record_mode == CALLCHAIN_DWARF) {
if (!function) {
perf_evsel__set_sample_bit(evsel, REGS_USER);
perf_evsel__set_sample_bit(evsel, STACK_USER);
attr->sample_regs_user |= PERF_REGS_MASK;
attr->sample_stack_user = param->dump_size;
attr->exclude_callchain_user = 1;
} else {
pr_info("Cannot use DWARF unwind for function trace event,"
" falling back to framepointers.\n");
}
}
if (function) {
pr_info("Disabling user space callchains for function trace event.\n");
attr->exclude_callchain_user = 1;
}
}
void perf_evsel__config_callchain(struct perf_evsel *evsel,
struct record_opts *opts,
struct callchain_param *param)
{
if (param->enabled)
return __perf_evsel__config_callchain(evsel, opts, param);
}
static void
perf_evsel__reset_callgraph(struct perf_evsel *evsel,
struct callchain_param *param)
{
struct perf_event_attr *attr = &evsel->attr;
perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
if (param->record_mode == CALLCHAIN_LBR) {
perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
PERF_SAMPLE_BRANCH_CALL_STACK);
}
if (param->record_mode == CALLCHAIN_DWARF) {
perf_evsel__reset_sample_bit(evsel, REGS_USER);
perf_evsel__reset_sample_bit(evsel, STACK_USER);
}
}
static void apply_config_terms(struct perf_evsel *evsel,
struct record_opts *opts, bool track)
{
struct perf_evsel_config_term *term;
struct list_head *config_terms = &evsel->config_terms;
struct perf_event_attr *attr = &evsel->attr;
/* callgraph default */
struct callchain_param param = {
.record_mode = callchain_param.record_mode,
};
u32 dump_size = 0;
int max_stack = 0;
const char *callgraph_buf = NULL;
list_for_each_entry(term, config_terms, list) {
switch (term->type) {
case PERF_EVSEL__CONFIG_TERM_PERIOD:
if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
attr->sample_period = term->val.period;
attr->freq = 0;
perf_evsel__reset_sample_bit(evsel, PERIOD);
}
break;
case PERF_EVSEL__CONFIG_TERM_FREQ:
if (!(term->weak && opts->user_freq != UINT_MAX)) {
attr->sample_freq = term->val.freq;
attr->freq = 1;
perf_evsel__set_sample_bit(evsel, PERIOD);
}
break;
case PERF_EVSEL__CONFIG_TERM_TIME:
if (term->val.time)
perf_evsel__set_sample_bit(evsel, TIME);
else
perf_evsel__reset_sample_bit(evsel, TIME);
break;
case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
callgraph_buf = term->val.callgraph;
break;
case PERF_EVSEL__CONFIG_TERM_BRANCH:
if (term->val.branch && strcmp(term->val.branch, "no")) {
perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
parse_branch_str(term->val.branch,
&attr->branch_sample_type);
} else
perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
break;
case PERF_EVSEL__CONFIG_TERM_STACK_USER:
dump_size = term->val.stack_user;
break;
case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
max_stack = term->val.max_stack;
break;
case PERF_EVSEL__CONFIG_TERM_MAX_EVENTS:
evsel->max_events = term->val.max_events;
break;
case PERF_EVSEL__CONFIG_TERM_INHERIT:
/*
* attr->inherit should has already been set by
* perf_evsel__config. If user explicitly set
* inherit using config terms, override global
* opt->no_inherit setting.
*/
attr->inherit = term->val.inherit ? 1 : 0;
break;
case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
attr->write_backward = term->val.overwrite ? 1 : 0;
break;
case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
break;
case PERF_EVSEL__CONFIG_TERM_PERCORE:
break;
default:
break;
}
}
/* User explicitly set per-event callgraph, clear the old setting and reset. */
if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
bool sample_address = false;
if (max_stack) {
param.max_stack = max_stack;
if (callgraph_buf == NULL)
callgraph_buf = "fp";
}
/* parse callgraph parameters */
if (callgraph_buf != NULL) {
if (!strcmp(callgraph_buf, "no")) {
param.enabled = false;
param.record_mode = CALLCHAIN_NONE;
} else {
param.enabled = true;
if (parse_callchain_record(callgraph_buf, &param)) {
pr_err("per-event callgraph setting for %s failed. "
"Apply callgraph global setting for it\n",
evsel->name);
return;
}
if (param.record_mode == CALLCHAIN_DWARF)
sample_address = true;
}
}
if (dump_size > 0) {
dump_size = round_up(dump_size, sizeof(u64));
param.dump_size = dump_size;
}
/* If global callgraph set, clear it */
if (callchain_param.enabled)
perf_evsel__reset_callgraph(evsel, &callchain_param);
/* set perf-event callgraph */
if (param.enabled) {
if (sample_address) {
perf_evsel__set_sample_bit(evsel, ADDR);
perf_evsel__set_sample_bit(evsel, DATA_SRC);
evsel->attr.mmap_data = track;
}
perf_evsel__config_callchain(evsel, opts, &param);
}
}
}
static bool is_dummy_event(struct perf_evsel *evsel)
{
return (evsel->attr.type == PERF_TYPE_SOFTWARE) &&
(evsel->attr.config == PERF_COUNT_SW_DUMMY);
}
/*
* The enable_on_exec/disabled value strategy:
*
* 1) For any type of traced program:
* - all independent events and group leaders are disabled
* - all group members are enabled
*
* Group members are ruled by group leaders. They need to
* be enabled, because the group scheduling relies on that.
*
* 2) For traced programs executed by perf:
* - all independent events and group leaders have
* enable_on_exec set
* - we don't specifically enable or disable any event during
* the record command
*
* Independent events and group leaders are initially disabled
* and get enabled by exec. Group members are ruled by group
* leaders as stated in 1).
*
* 3) For traced programs attached by perf (pid/tid):
* - we specifically enable or disable all events during
* the record command
*
* When attaching events to already running traced we
* enable/disable events specifically, as there's no
* initial traced exec call.
*/
void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
struct callchain_param *callchain)
{
struct perf_evsel *leader = evsel->leader;
struct perf_event_attr *attr = &evsel->attr;
int track = evsel->tracking;
bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
attr->inherit = !opts->no_inherit;
attr->write_backward = opts->overwrite ? 1 : 0;
perf_evsel__set_sample_bit(evsel, IP);
perf_evsel__set_sample_bit(evsel, TID);
if (evsel->sample_read) {
perf_evsel__set_sample_bit(evsel, READ);
/*
* We need ID even in case of single event, because
* PERF_SAMPLE_READ process ID specific data.
*/
perf_evsel__set_sample_id(evsel, false);
/*
* Apply group format only if we belong to group
* with more than one members.
*/
if (leader->nr_members > 1) {
attr->read_format |= PERF_FORMAT_GROUP;
attr->inherit = 0;
}
}
/*
* We default some events to have a default interval. But keep
* it a weak assumption overridable by the user.
*/
if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
opts->user_interval != ULLONG_MAX)) {
if (opts->freq) {
perf_evsel__set_sample_bit(evsel, PERIOD);
attr->freq = 1;
attr->sample_freq = opts->freq;
} else {
attr->sample_period = opts->default_interval;
}
}
/*
* Disable sampling for all group members other
* than leader in case leader 'leads' the sampling.
*/
if ((leader != evsel) && leader->sample_read) {
attr->freq = 0;
attr->sample_freq = 0;
attr->sample_period = 0;
attr->write_backward = 0;
/*
* We don't get sample for slave events, we make them
* when delivering group leader sample. Set the slave
* event to follow the master sample_type to ease up
* report.
*/
attr->sample_type = leader->attr.sample_type;
}
if (opts->no_samples)
attr->sample_freq = 0;
if (opts->inherit_stat) {
evsel->attr.read_format |=
PERF_FORMAT_TOTAL_TIME_ENABLED |
PERF_FORMAT_TOTAL_TIME_RUNNING |
PERF_FORMAT_ID;
attr->inherit_stat = 1;
}
if (opts->sample_address) {
perf_evsel__set_sample_bit(evsel, ADDR);
attr->mmap_data = track;
}
/*
* We don't allow user space callchains for function trace
* event, due to issues with page faults while tracing page
* fault handler and its overall trickiness nature.
*/
if (perf_evsel__is_function_event(evsel))
evsel->attr.exclude_callchain_user = 1;
if (callchain && callchain->enabled && !evsel->no_aux_samples)
perf_evsel__config_callchain(evsel, opts, callchain);
if (opts->sample_intr_regs) {
attr->sample_regs_intr = opts->sample_intr_regs;
perf_evsel__set_sample_bit(evsel, REGS_INTR);
}
if (opts->sample_user_regs) {
attr->sample_regs_user |= opts->sample_user_regs;
perf_evsel__set_sample_bit(evsel, REGS_USER);
}
if (target__has_cpu(&opts->target) || opts->sample_cpu)
perf_evsel__set_sample_bit(evsel, CPU);
/*
* When the user explicitly disabled time don't force it here.
*/
if (opts->sample_time &&
(!perf_missing_features.sample_id_all &&
(!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
opts->sample_time_set)))
perf_evsel__set_sample_bit(evsel, TIME);
if (opts->raw_samples && !evsel->no_aux_samples) {
perf_evsel__set_sample_bit(evsel, TIME);
perf_evsel__set_sample_bit(evsel, RAW);
perf_evsel__set_sample_bit(evsel, CPU);
}
if (opts->sample_address)
perf_evsel__set_sample_bit(evsel, DATA_SRC);
if (opts->sample_phys_addr)
perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
if (opts->no_buffering) {
attr->watermark = 0;
attr->wakeup_events = 1;
}
if (opts->branch_stack && !evsel->no_aux_samples) {
perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
attr->branch_sample_type = opts->branch_stack;
}
if (opts->sample_weight)
perf_evsel__set_sample_bit(evsel, WEIGHT);
attr->task = track;
attr->mmap = track;
attr->mmap2 = track && !perf_missing_features.mmap2;
attr->comm = track;
attr->ksymbol = track && !perf_missing_features.ksymbol;
attr->bpf_event = track && !opts->no_bpf_event &&
!perf_missing_features.bpf_event;
if (opts->record_namespaces)
attr->namespaces = track;
if (opts->record_switch_events)
attr->context_switch = track;
if (opts->sample_transaction)
perf_evsel__set_sample_bit(evsel, TRANSACTION);
if (opts->running_time) {
evsel->attr.read_format |=
PERF_FORMAT_TOTAL_TIME_ENABLED |
PERF_FORMAT_TOTAL_TIME_RUNNING;
}
/*
* XXX see the function comment above
*
* Disabling only independent events or group leaders,
* keeping group members enabled.
*/
if (perf_evsel__is_group_leader(evsel))
attr->disabled = 1;
/*
* Setting enable_on_exec for independent events and
* group leaders for traced executed by perf.
*/
if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
!opts->initial_delay)
attr->enable_on_exec = 1;
if (evsel->immediate) {
attr->disabled = 0;
attr->enable_on_exec = 0;
}
clockid = opts->clockid;
if (opts->use_clockid) {
attr->use_clockid = 1;
attr->clockid = opts->clockid;
}
if (evsel->precise_max)
attr->precise_ip = 3;
if (opts->all_user) {
attr->exclude_kernel = 1;
attr->exclude_user = 0;
}
if (opts->all_kernel) {
attr->exclude_kernel = 0;
attr->exclude_user = 1;
}
if (evsel->own_cpus || evsel->unit)
evsel->attr.read_format |= PERF_FORMAT_ID;
/*
* Apply event specific term settings,
* it overloads any global configuration.
*/
apply_config_terms(evsel, opts, track);
evsel->ignore_missing_thread = opts->ignore_missing_thread;
/* The --period option takes the precedence. */
if (opts->period_set) {
if (opts->period)
perf_evsel__set_sample_bit(evsel, PERIOD);
else
perf_evsel__reset_sample_bit(evsel, PERIOD);
}
/*
* For initial_delay, a dummy event is added implicitly.
* The software event will trigger -EOPNOTSUPP error out,
* if BRANCH_STACK bit is set.
*/
if (opts->initial_delay && is_dummy_event(evsel))
perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
}
static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
{
if (evsel->system_wide)
nthreads = 1;
evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
if (evsel->fd) {
int cpu, thread;
for (cpu = 0; cpu < ncpus; cpu++) {
for (thread = 0; thread < nthreads; thread++) {
FD(evsel, cpu, thread) = -1;
}
}
}
return evsel->fd != NULL ? 0 : -ENOMEM;
}
static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
int ioc, void *arg)
{
int cpu, thread;
for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
int fd = FD(evsel, cpu, thread),
err = ioctl(fd, ioc, arg);
if (err)
return err;
}
}
return 0;
}
int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
{
return perf_evsel__run_ioctl(evsel,
PERF_EVENT_IOC_SET_FILTER,
(void *)filter);
}
int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
{
char *new_filter = strdup(filter);
if (new_filter != NULL) {
free(evsel->filter);
evsel->filter = new_filter;
return 0;
}
return -1;
}
static int perf_evsel__append_filter(struct perf_evsel *evsel,
const char *fmt, const char *filter)
{
char *new_filter;
if (evsel->filter == NULL)
return perf_evsel__set_filter(evsel, filter);
if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
free(evsel->filter);
evsel->filter = new_filter;
return 0;
}
return -1;
}
int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
{
return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
}
int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
{
return perf_evsel__append_filter(evsel, "%s,%s", filter);
}
int perf_evsel__enable(struct perf_evsel *evsel)
{
int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_ENABLE, 0);
if (!err)
evsel->disabled = false;
return err;
}
int perf_evsel__disable(struct perf_evsel *evsel)
{
int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_DISABLE, 0);
/*
* We mark it disabled here so that tools that disable a event can
* ignore events after they disable it. I.e. the ring buffer may have
* already a few more events queued up before the kernel got the stop
* request.
*/
if (!err)
evsel->disabled = true;
return err;
}
int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
{
if (ncpus == 0 || nthreads == 0)
return 0;
if (evsel->system_wide)
nthreads = 1;
evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
if (evsel->sample_id == NULL)
return -ENOMEM;
evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
if (evsel->id == NULL) {
xyarray__delete(evsel->sample_id);
evsel->sample_id = NULL;
return -ENOMEM;
}
return 0;
}
static void perf_evsel__free_fd(struct perf_evsel *evsel)
{
xyarray__delete(evsel->fd);
evsel->fd = NULL;
}
static void perf_evsel__free_id(struct perf_evsel *evsel)
{
xyarray__delete(evsel->sample_id);
evsel->sample_id = NULL;
zfree(&evsel->id);
}
static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
{
struct perf_evsel_config_term *term, *h;
list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
list_del(&term->list);
free(term);
}
}
void perf_evsel__close_fd(struct perf_evsel *evsel)
{
int cpu, thread;
for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
close(FD(evsel, cpu, thread));
FD(evsel, cpu, thread) = -1;
}
}
void perf_evsel__exit(struct perf_evsel *evsel)
{
assert(list_empty(&evsel->node));
assert(evsel->evlist == NULL);
perf_evsel__free_counts(evsel);
perf_evsel__free_fd(evsel);
perf_evsel__free_id(evsel);
perf_evsel__free_config_terms(evsel);
cgroup__put(evsel->cgrp);
cpu_map__put(evsel->cpus);
cpu_map__put(evsel->own_cpus);
thread_map__put(evsel->threads);
zfree(&evsel->group_name);
zfree(&evsel->name);
perf_evsel__object.fini(evsel);
}
void perf_evsel__delete(struct perf_evsel *evsel)
{
perf_evsel__exit(evsel);
free(evsel);
}
void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
struct perf_counts_values *count)
{
struct perf_counts_values tmp;
if (!evsel->prev_raw_counts)
return;
if (cpu == -1) {
tmp = evsel->prev_raw_counts->aggr;
evsel->prev_raw_counts->aggr = *count;
} else {
tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
}
count->val = count->val - tmp.val;
count->ena = count->ena - tmp.ena;
count->run = count->run - tmp.run;
}
void perf_counts_values__scale(struct perf_counts_values *count,
bool scale, s8 *pscaled)
{
s8 scaled = 0;
if (scale) {
if (count->run == 0) {
scaled = -1;
count->val = 0;
} else if (count->run < count->ena) {
scaled = 1;
count->val = (u64)((double) count->val * count->ena / count->run);
}
}
if (pscaled)
*pscaled = scaled;
}
static int perf_evsel__read_size(struct perf_evsel *evsel)
{
u64 read_format = evsel->attr.read_format;
int entry = sizeof(u64); /* value */
int size = 0;
int nr = 1;
if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
size += sizeof(u64);
if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
size += sizeof(u64);
if (read_format & PERF_FORMAT_ID)
entry += sizeof(u64);
if (read_format & PERF_FORMAT_GROUP) {
nr = evsel->nr_members;
size += sizeof(u64);
}
size += entry * nr;
return size;
}
int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
struct perf_counts_values *count)
{
size_t size = perf_evsel__read_size(evsel);
memset(count, 0, sizeof(*count));
if (FD(evsel, cpu, thread) < 0)
return -EINVAL;
if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
return -errno;
return 0;
}
static int
perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
{
struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
return perf_evsel__read(evsel, cpu, thread, count);
}
static void
perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
u64 val, u64 ena, u64 run)
{
struct perf_counts_values *count;
count = perf_counts(counter->counts, cpu, thread);
count->val = val;
count->ena = ena;
count->run = run;
count->loaded = true;
}
static int
perf_evsel__process_group_data(struct perf_evsel *leader,
int cpu, int thread, u64 *data)
{
u64 read_format = leader->attr.read_format;
struct sample_read_value *v;
u64 nr, ena = 0, run = 0, i;
nr = *data++;
if (nr != (u64) leader->nr_members)
return -EINVAL;
if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
ena = *data++;
if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
run = *data++;
v = (struct sample_read_value *) data;
perf_evsel__set_count(leader, cpu, thread,
v[0].value, ena, run);
for (i = 1; i < nr; i++) {
struct perf_evsel *counter;
counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
if (!counter)
return -EINVAL;
perf_evsel__set_count(counter, cpu, thread,
v[i].value, ena, run);
}
return 0;
}
static int
perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
{
struct perf_stat_evsel *ps = leader->stats;
u64 read_format = leader->attr.read_format;
int size = perf_evsel__read_size(leader);
u64 *data = ps->group_data;
if (!(read_format & PERF_FORMAT_ID))
return -EINVAL;
if (!perf_evsel__is_group_leader(leader))
return -EINVAL;
if (!data) {
data = zalloc(size);
if (!data)
return -ENOMEM;
ps->group_data = data;
}
if (FD(leader, cpu, thread) < 0)
return -EINVAL;
if (readn(FD(leader, cpu, thread), data, size) <= 0)
return -errno;
return perf_evsel__process_group_data(leader, cpu, thread, data);
}
int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
{
u64 read_format = evsel->attr.read_format;
if (read_format & PERF_FORMAT_GROUP)
return perf_evsel__read_group(evsel, cpu, thread);
else
return perf_evsel__read_one(evsel, cpu, thread);
}
int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
int cpu, int thread, bool scale)
{
struct perf_counts_values count;
size_t nv = scale ? 3 : 1;
if (FD(evsel, cpu, thread) < 0)
return -EINVAL;
if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
return -ENOMEM;
if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
return -errno;
perf_evsel__compute_deltas(evsel, cpu, thread, &count);
perf_counts_values__scale(&count, scale, NULL);
*perf_counts(evsel->counts, cpu, thread) = count;
return 0;
}
static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
{
struct perf_evsel *leader = evsel->leader;
int fd;
if (perf_evsel__is_group_leader(evsel))
return -1;
/*
* Leader must be already processed/open,
* if not it's a bug.
*/
BUG_ON(!leader->fd);
fd = FD(leader, cpu, thread);
BUG_ON(fd == -1);
return fd;
}
struct bit_names {
int bit;
const char *name;
};
static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
{
bool first_bit = true;
int i = 0;
do {
if (value & bits[i].bit) {
buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
first_bit = false;
}
} while (bits[++i].name != NULL);
}
static void __p_sample_type(char *buf, size_t size, u64 value)
{
#define bit_name(n) { PERF_SAMPLE_##n, #n }
struct bit_names bits[] = {
bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
bit_name(WEIGHT), bit_name(PHYS_ADDR),
{ .name = NULL, }
};
#undef bit_name
__p_bits(buf, size, value, bits);
}
static void __p_branch_sample_type(char *buf, size_t size, u64 value)
{
#define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
struct bit_names bits[] = {
bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
{ .name = NULL, }
};
#undef bit_name
__p_bits(buf, size, value, bits);
}
static void __p_read_format(char *buf, size_t size, u64 value)
{
#define bit_name(n) { PERF_FORMAT_##n, #n }
struct bit_names bits[] = {
bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
bit_name(ID), bit_name(GROUP),
{ .name = NULL, }
};
#undef bit_name
__p_bits(buf, size, value, bits);
}
#define BUF_SIZE 1024
#define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
#define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
#define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
#define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val)
#define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
#define p_read_format(val) __p_read_format(buf, BUF_SIZE, val)
#define PRINT_ATTRn(_n, _f, _p) \
do { \
if (attr->_f) { \
_p(attr->_f); \
ret += attr__fprintf(fp, _n, buf, priv);\
} \
} while (0)
#define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p)
int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
attr__fprintf_f attr__fprintf, void *priv)
{
char buf[BUF_SIZE];
int ret = 0;
PRINT_ATTRf(type, p_unsigned);
PRINT_ATTRf(size, p_unsigned);
PRINT_ATTRf(config, p_hex);
PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
PRINT_ATTRf(sample_type, p_sample_type);
PRINT_ATTRf(read_format, p_read_format);
PRINT_ATTRf(disabled, p_unsigned);
PRINT_ATTRf(inherit, p_unsigned);
PRINT_ATTRf(pinned, p_unsigned);
PRINT_ATTRf(exclusive, p_unsigned);
PRINT_ATTRf(exclude_user, p_unsigned);
PRINT_ATTRf(exclude_kernel, p_unsigned);
PRINT_ATTRf(exclude_hv, p_unsigned);
PRINT_ATTRf(exclude_idle, p_unsigned);
PRINT_ATTRf(mmap, p_unsigned);
PRINT_ATTRf(comm, p_unsigned);
PRINT_ATTRf(freq, p_unsigned);
PRINT_ATTRf(inherit_stat, p_unsigned);
PRINT_ATTRf(enable_on_exec, p_unsigned);
PRINT_ATTRf(task, p_unsigned);
PRINT_ATTRf(watermark, p_unsigned);
PRINT_ATTRf(precise_ip, p_unsigned);
PRINT_ATTRf(mmap_data, p_unsigned);
PRINT_ATTRf(sample_id_all, p_unsigned);
PRINT_ATTRf(exclude_host, p_unsigned);
PRINT_ATTRf(exclude_guest, p_unsigned);
PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
PRINT_ATTRf(exclude_callchain_user, p_unsigned);
PRINT_ATTRf(mmap2, p_unsigned);
PRINT_ATTRf(comm_exec, p_unsigned);
PRINT_ATTRf(use_clockid, p_unsigned);
PRINT_ATTRf(context_switch, p_unsigned);
PRINT_ATTRf(write_backward, p_unsigned);
PRINT_ATTRf(namespaces, p_unsigned);
PRINT_ATTRf(ksymbol, p_unsigned);
PRINT_ATTRf(bpf_event, p_unsigned);
PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
PRINT_ATTRf(bp_type, p_unsigned);
PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
PRINT_ATTRf(sample_regs_user, p_hex);
PRINT_ATTRf(sample_stack_user, p_unsigned);
PRINT_ATTRf(clockid, p_signed);
PRINT_ATTRf(sample_regs_intr, p_hex);
PRINT_ATTRf(aux_watermark, p_unsigned);
PRINT_ATTRf(sample_max_stack, p_unsigned);
return ret;
}
static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
void *priv __maybe_unused)
{
return fprintf(fp, " %-32s %s\n", name, val);
}
static void perf_evsel__remove_fd(struct perf_evsel *pos,
int nr_cpus, int nr_threads,
int thread_idx)
{
for (int cpu = 0; cpu < nr_cpus; cpu++)
for (int thread = thread_idx; thread < nr_threads - 1; thread++)
FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
}
static int update_fds(struct perf_evsel *evsel,
int nr_cpus, int cpu_idx,
int nr_threads, int thread_idx)
{
struct perf_evsel *pos;
if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
return -EINVAL;
evlist__for_each_entry(evsel->evlist, pos) {
nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
/*
* Since fds for next evsel has not been created,
* there is no need to iterate whole event list.
*/
if (pos == evsel)
break;
}
return 0;
}
static bool ignore_missing_thread(struct perf_evsel *evsel,
int nr_cpus, int cpu,
struct thread_map *threads,
int thread, int err)
{
pid_t ignore_pid = thread_map__pid(threads, thread);
if (!evsel->ignore_missing_thread)
return false;
/* The system wide setup does not work with threads. */
if (evsel->system_wide)
return false;
/* The -ESRCH is perf event syscall errno for pid's not found. */
if (err != -ESRCH)
return false;
/* If there's only one thread, let it fail. */
if (threads->nr == 1)
return false;
/*
* We should remove fd for missing_thread first
* because thread_map__remove() will decrease threads->nr.
*/
if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
return false;
if (thread_map__remove(threads, thread))
return false;
pr_warning("WARNING: Ignored open failure for pid %d\n",
ignore_pid);
return true;
}
static void display_attr(struct perf_event_attr *attr)
{
if (verbose >= 2) {
fprintf(stderr, "%.60s\n", graph_dotted_line);
fprintf(stderr, "perf_event_attr:\n");
perf_event_attr__fprintf(stderr, attr, __open_attr__fprintf, NULL);
fprintf(stderr, "%.60s\n", graph_dotted_line);
}
}
static int perf_event_open(struct perf_evsel *evsel,
pid_t pid, int cpu, int group_fd,
unsigned long flags)
{
int precise_ip = evsel->attr.precise_ip;
int fd;
while (1) {
pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx",
pid, cpu, group_fd, flags);
fd = sys_perf_event_open(&evsel->attr, pid, cpu, group_fd, flags);
if (fd >= 0)
break;
/*
* Do quick precise_ip fallback if:
* - there is precise_ip set in perf_event_attr
* - maximum precise is requested
* - sys_perf_event_open failed with ENOTSUP error,
* which is associated with wrong precise_ip
*/
if (!precise_ip || !evsel->precise_max || (errno != ENOTSUP))
break;
/*
* We tried all the precise_ip values, and it's
* still failing, so leave it to standard fallback.
*/
if (!evsel->attr.precise_ip) {
evsel->attr.precise_ip = precise_ip;
break;
}
pr_debug2("\nsys_perf_event_open failed, error %d\n", -ENOTSUP);
evsel->attr.precise_ip--;
pr_debug2("decreasing precise_ip by one (%d)\n", evsel->attr.precise_ip);
display_attr(&evsel->attr);
}
return fd;
}
int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
struct thread_map *threads)
{
int cpu, thread, nthreads;
unsigned long flags = PERF_FLAG_FD_CLOEXEC;
int pid = -1, err;
enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
if (perf_missing_features.write_backward && evsel->attr.write_backward)
return -EINVAL;
if (cpus == NULL) {
static struct cpu_map *empty_cpu_map;
if (empty_cpu_map == NULL) {
empty_cpu_map = cpu_map__dummy_new();
if (empty_cpu_map == NULL)
return -ENOMEM;
}
cpus = empty_cpu_map;
}
if (threads == NULL) {
static struct thread_map *empty_thread_map;
if (empty_thread_map == NULL) {
empty_thread_map = thread_map__new_by_tid(-1);
if (empty_thread_map == NULL)
return -ENOMEM;
}
threads = empty_thread_map;
}
if (evsel->system_wide)
nthreads = 1;
else
nthreads = threads->nr;
if (evsel->fd == NULL &&
perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
return -ENOMEM;
if (evsel->cgrp) {
flags |= PERF_FLAG_PID_CGROUP;
pid = evsel->cgrp->fd;
}
fallback_missing_features:
if (perf_missing_features.clockid_wrong)
evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
if (perf_missing_features.clockid) {
evsel->attr.use_clockid = 0;
evsel->attr.clockid = 0;
}
if (perf_missing_features.cloexec)
flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
if (perf_missing_features.mmap2)
evsel->attr.mmap2 = 0;
if (perf_missing_features.exclude_guest)
evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
if (perf_missing_features.lbr_flags)
evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
PERF_SAMPLE_BRANCH_NO_CYCLES);
if (perf_missing_features.group_read && evsel->attr.inherit)
evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
if (perf_missing_features.ksymbol)
evsel->attr.ksymbol = 0;
if (perf_missing_features.bpf_event)
evsel->attr.bpf_event = 0;
retry_sample_id:
if (perf_missing_features.sample_id_all)
evsel->attr.sample_id_all = 0;
display_attr(&evsel->attr);
for (cpu = 0; cpu < cpus->nr; cpu++) {
for (thread = 0; thread < nthreads; thread++) {
int fd, group_fd;
if (!evsel->cgrp && !evsel->system_wide)
pid = thread_map__pid(threads, thread);
group_fd = get_group_fd(evsel, cpu, thread);
retry_open:
test_attr__ready();
fd = perf_event_open(evsel, pid, cpus->map[cpu],
group_fd, flags);
FD(evsel, cpu, thread) = fd;
if (fd < 0) {
err = -errno;
if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
/*
* We just removed 1 thread, so take a step
* back on thread index and lower the upper
* nthreads limit.
*/
nthreads--;
thread--;
/* ... and pretend like nothing have happened. */
err = 0;
continue;
}
pr_debug2("\nsys_perf_event_open failed, error %d\n",
err);
goto try_fallback;
}
pr_debug2(" = %d\n", fd);
if (evsel->bpf_fd >= 0) {
int evt_fd = fd;
int bpf_fd = evsel->bpf_fd;
err = ioctl(evt_fd,
PERF_EVENT_IOC_SET_BPF,
bpf_fd);
if (err && errno != EEXIST) {
pr_err("failed to attach bpf fd %d: %s\n",
bpf_fd, strerror(errno));
err = -EINVAL;
goto out_close;
}
}
set_rlimit = NO_CHANGE;
/*
* If we succeeded but had to kill clockid, fail and
* have perf_evsel__open_strerror() print us a nice
* error.
*/
if (perf_missing_features.clockid ||
perf_missing_features.clockid_wrong) {
err = -EINVAL;
goto out_close;
}
}
}
return 0;
try_fallback:
/*
* perf stat needs between 5 and 22 fds per CPU. When we run out
* of them try to increase the limits.
*/
if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
struct rlimit l;
int old_errno = errno;
if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
if (set_rlimit == NO_CHANGE)
l.rlim_cur = l.rlim_max;
else {
l.rlim_cur = l.rlim_max + 1000;
l.rlim_max = l.rlim_cur;
}
if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
set_rlimit++;
errno = old_errno;
goto retry_open;
}
}
errno = old_errno;
}
if (err != -EINVAL || cpu > 0 || thread > 0)
goto out_close;
/*
* Must probe features in the order they were added to the
* perf_event_attr interface.
*/
if (!perf_missing_features.bpf_event && evsel->attr.bpf_event) {
perf_missing_features.bpf_event = true;
pr_debug2("switching off bpf_event\n");
goto fallback_missing_features;
} else if (!perf_missing_features.ksymbol && evsel->attr.ksymbol) {
perf_missing_features.ksymbol = true;
pr_debug2("switching off ksymbol\n");
goto fallback_missing_features;
} else if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
perf_missing_features.write_backward = true;
pr_debug2("switching off write_backward\n");
goto out_close;
} else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
perf_missing_features.clockid_wrong = true;
pr_debug2("switching off clockid\n");
goto fallback_missing_features;
} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
perf_missing_features.clockid = true;
pr_debug2("switching off use_clockid\n");
goto fallback_missing_features;
} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
perf_missing_features.cloexec = true;
pr_debug2("switching off cloexec flag\n");
goto fallback_missing_features;
} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
perf_missing_features.mmap2 = true;
pr_debug2("switching off mmap2\n");
goto fallback_missing_features;
} else if (!perf_missing_features.exclude_guest &&
(evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
perf_missing_features.exclude_guest = true;
pr_debug2("switching off exclude_guest, exclude_host\n");
goto fallback_missing_features;
} else if (!perf_missing_features.sample_id_all) {
perf_missing_features.sample_id_all = true;
pr_debug2("switching off sample_id_all\n");
goto retry_sample_id;
} else if (!perf_missing_features.lbr_flags &&
(evsel->attr.branch_sample_type &
(PERF_SAMPLE_BRANCH_NO_CYCLES |
PERF_SAMPLE_BRANCH_NO_FLAGS))) {
perf_missing_features.lbr_flags = true;
pr_debug2("switching off branch sample type no (cycles/flags)\n");
goto fallback_missing_features;
} else if (!perf_missing_features.group_read &&
evsel->attr.inherit &&
(evsel->attr.read_format & PERF_FORMAT_GROUP) &&
perf_evsel__is_group_leader(evsel)) {
perf_missing_features.group_read = true;
pr_debug2("switching off group read\n");
goto fallback_missing_features;
}
out_close:
if (err)
threads->err_thread = thread;
do {
while (--thread >= 0) {
close(FD(evsel, cpu, thread));
FD(evsel, cpu, thread) = -1;
}
thread = nthreads;
} while (--cpu >= 0);
return err;
}
void perf_evsel__close(struct perf_evsel *evsel)
{
if (evsel->fd == NULL)
return;
perf_evsel__close_fd(evsel);
perf_evsel__free_fd(evsel);
}
int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
struct cpu_map *cpus)
{
return perf_evsel__open(evsel, cpus, NULL);
}
int perf_evsel__open_per_thread(struct perf_evsel *evsel,
struct thread_map *threads)
{
return perf_evsel__open(evsel, NULL, threads);
}
static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
const union perf_event *event,
struct perf_sample *sample)
{
u64 type = evsel->attr.sample_type;
const u64 *array = event->sample.array;
bool swapped = evsel->needs_swap;
union u64_swap u;
array += ((event->header.size -
sizeof(event->header)) / sizeof(u64)) - 1;
if (type & PERF_SAMPLE_IDENTIFIER) {
sample->id = *array;
array--;
}
if (type & PERF_SAMPLE_CPU) {
u.val64 = *array;
if (swapped) {
/* undo swap of u64, then swap on individual u32s */
u.val64 = bswap_64(u.val64);
u.val32[0] = bswap_32(u.val32[0]);
}
sample->cpu = u.val32[0];
array--;
}
if (type & PERF_SAMPLE_STREAM_ID) {
sample->stream_id = *array;
array--;
}
if (type & PERF_SAMPLE_ID) {
sample->id = *array;
array--;
}
if (type & PERF_SAMPLE_TIME) {
sample->time = *array;
array--;
}
if (type & PERF_SAMPLE_TID) {
u.val64 = *array;
if (swapped) {
/* undo swap of u64, then swap on individual u32s */
u.val64 = bswap_64(u.val64);
u.val32[0] = bswap_32(u.val32[0]);
u.val32[1] = bswap_32(u.val32[1]);
}
sample->pid = u.val32[0];
sample->tid = u.val32[1];
array--;
}
return 0;
}
static inline bool overflow(const void *endp, u16 max_size, const void *offset,
u64 size)
{
return size > max_size || offset + size > endp;
}
#define OVERFLOW_CHECK(offset, size, max_size) \
do { \
if (overflow(endp, (max_size), (offset), (size))) \
return -EFAULT; \
} while (0)
#define OVERFLOW_CHECK_u64(offset) \
OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
static int
perf_event__check_size(union perf_event *event, unsigned int sample_size)
{
/*
* The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
* up to PERF_SAMPLE_PERIOD. After that overflow() must be used to
* check the format does not go past the end of the event.
*/
if (sample_size + sizeof(event->header) > event->header.size)
return -EFAULT;
return 0;
}
int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
struct perf_sample *data)
{
u64 type = evsel->attr.sample_type;
bool swapped = evsel->needs_swap;
const u64 *array;
u16 max_size = event->header.size;
const void *endp = (void *)event + max_size;
u64 sz;
/*
* used for cross-endian analysis. See git commit 65014ab3
* for why this goofiness is needed.
*/
union u64_swap u;
memset(data, 0, sizeof(*data));
data->cpu = data->pid = data->tid = -1;
data->stream_id = data->id = data->time = -1ULL;
data->period = evsel->attr.sample_period;
data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
data->misc = event->header.misc;
data->id = -1ULL;
data->data_src = PERF_MEM_DATA_SRC_NONE;
if (event->header.type != PERF_RECORD_SAMPLE) {
if (!evsel->attr.sample_id_all)
return 0;
return perf_evsel__parse_id_sample(evsel, event, data);
}
array = event->sample.array;
if (perf_event__check_size(event, evsel->sample_size))
return -EFAULT;
if (type & PERF_SAMPLE_IDENTIFIER) {
data->id = *array;
array++;
}
if (type & PERF_SAMPLE_IP) {
data->ip = *array;
array++;
}
if (type & PERF_SAMPLE_TID) {
u.val64 = *array;
if (swapped) {
/* undo swap of u64, then swap on individual u32s */
u.val64 = bswap_64(u.val64);
u.val32[0] = bswap_32(u.val32[0]);
u.val32[1] = bswap_32(u.val32[1]);
}
data->pid = u.val32[0];
data->tid = u.val32[1];
array++;
}
if (type & PERF_SAMPLE_TIME) {
data->time = *array;
array++;
}
if (type & PERF_SAMPLE_ADDR) {
data->addr = *array;
array++;
}
if (type & PERF_SAMPLE_ID) {
data->id = *array;
array++;
}
if (type & PERF_SAMPLE_STREAM_ID) {
data->stream_id = *array;
array++;
}
if (type & PERF_SAMPLE_CPU) {
u.val64 = *array;
if (swapped) {
/* undo swap of u64, then swap on individual u32s */
u.val64 = bswap_64(u.val64);
u.val32[0] = bswap_32(u.val32[0]);
}
data->cpu = u.val32[0];
array++;
}
if (type & PERF_SAMPLE_PERIOD) {
data->period = *array;
array++;
}
if (type & PERF_SAMPLE_READ) {
u64 read_format = evsel->attr.read_format;
OVERFLOW_CHECK_u64(array);
if (read_format & PERF_FORMAT_GROUP)
data->read.group.nr = *array;
else
data->read.one.value = *array;
array++;
if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
OVERFLOW_CHECK_u64(array);
data->read.time_enabled = *array;
array++;
}
if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
OVERFLOW_CHECK_u64(array);
data->read.time_running = *array;
array++;
}
/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
if (read_format & PERF_FORMAT_GROUP) {
const u64 max_group_nr = UINT64_MAX /
sizeof(struct sample_read_value);
if (data->read.group.nr > max_group_nr)
return -EFAULT;
sz = data->read.group.nr *
sizeof(struct sample_read_value);
OVERFLOW_CHECK(array, sz, max_size);
data->read.group.values =
(struct sample_read_value *)array;
array = (void *)array + sz;
} else {
OVERFLOW_CHECK_u64(array);
data->read.one.id = *array;
array++;
}
}
if (evsel__has_callchain(evsel)) {
const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
OVERFLOW_CHECK_u64(array);
data->callchain = (struct ip_callchain *)array++;
if (data->callchain->nr > max_callchain_nr)
return -EFAULT;
sz = data->callchain->nr * sizeof(u64);
OVERFLOW_CHECK(array, sz, max_size);
array = (void *)array + sz;
}
if (type & PERF_SAMPLE_RAW) {
OVERFLOW_CHECK_u64(array);
u.val64 = *array;
/*
* Undo swap of u64, then swap on individual u32s,
* get the size of the raw area and undo all of the
* swap. The pevent interface handles endianity by
* itself.
*/
if (swapped) {
u.val64 = bswap_64(u.val64);
u.val32[0] = bswap_32(u.val32[0]);
u.val32[1] = bswap_32(u.val32[1]);
}
data->raw_size = u.val32[0];
/*
* The raw data is aligned on 64bits including the
* u32 size, so it's safe to use mem_bswap_64.
*/
if (swapped)
mem_bswap_64((void *) array, data->raw_size);
array = (void *)array + sizeof(u32);
OVERFLOW_CHECK(array, data->raw_size, max_size);
data->raw_data = (void *)array;
array = (void *)array + data->raw_size;
}
if (type & PERF_SAMPLE_BRANCH_STACK) {
const u64 max_branch_nr = UINT64_MAX /
sizeof(struct branch_entry);
OVERFLOW_CHECK_u64(array);
data->branch_stack = (struct branch_stack *)array++;
if (data->branch_stack->nr > max_branch_nr)
return -EFAULT;
sz = data->branch_stack->nr * sizeof(struct branch_entry);
OVERFLOW_CHECK(array, sz, max_size);
array = (void *)array + sz;
}
if (type & PERF_SAMPLE_REGS_USER) {
OVERFLOW_CHECK_u64(array);
data->user_regs.abi = *array;
array++;
if (data->user_regs.abi) {
u64 mask = evsel->attr.sample_regs_user;
sz = hweight64(mask) * sizeof(u64);
OVERFLOW_CHECK(array, sz, max_size);
data->user_regs.mask = mask;
data->user_regs.regs = (u64 *)array;
array = (void *)array + sz;
}
}
if (type & PERF_SAMPLE_STACK_USER) {
OVERFLOW_CHECK_u64(array);
sz = *array++;
data->user_stack.offset = ((char *)(array - 1)
- (char *) event);
if (!sz) {
data->user_stack.size = 0;
} else {
OVERFLOW_CHECK(array, sz, max_size);
data->user_stack.data = (char *)array;
array = (void *)array + sz;
OVERFLOW_CHECK_u64(array);
data->user_stack.size = *array++;
if (WARN_ONCE(data->user_stack.size > sz,
"user stack dump failure\n"))
return -EFAULT;
}
}
if (type & PERF_SAMPLE_WEIGHT) {
OVERFLOW_CHECK_u64(array);
data->weight = *array;
array++;
}
if (type & PERF_SAMPLE_DATA_SRC) {
OVERFLOW_CHECK_u64(array);
data->data_src = *array;
array++;
}
if (type & PERF_SAMPLE_TRANSACTION) {
OVERFLOW_CHECK_u64(array);
data->transaction = *array;
array++;
}
data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
if (type & PERF_SAMPLE_REGS_INTR) {
OVERFLOW_CHECK_u64(array);
data->intr_regs.abi = *array;
array++;
if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
u64 mask = evsel->attr.sample_regs_intr;
sz = hweight64(mask) * sizeof(u64);
OVERFLOW_CHECK(array, sz, max_size);
data->intr_regs.mask = mask;
data->intr_regs.regs = (u64 *)array;
array = (void *)array + sz;
}
}
data->phys_addr = 0;
if (type & PERF_SAMPLE_PHYS_ADDR) {
data->phys_addr = *array;
array++;
}
return 0;
}
int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel,
union perf_event *event,
u64 *timestamp)
{
u64 type = evsel->attr.sample_type;
const u64 *array;
if (!(type & PERF_SAMPLE_TIME))
return -1;
if (event->header.type != PERF_RECORD_SAMPLE) {
struct perf_sample data = {
.time = -1ULL,
};
if (!evsel->attr.sample_id_all)
return -1;
if (perf_evsel__parse_id_sample(evsel, event, &data))
return -1;
*timestamp = data.time;
return 0;
}
array = event->sample.array;
if (perf_event__check_size(event, evsel->sample_size))
return -EFAULT;
if (type & PERF_SAMPLE_IDENTIFIER)
array++;
if (type & PERF_SAMPLE_IP)
array++;
if (type & PERF_SAMPLE_TID)
array++;
if (type & PERF_SAMPLE_TIME)
*timestamp = *array;
return 0;
}
size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
u64 read_format)
{
size_t sz, result = sizeof(struct sample_event);
if (type & PERF_SAMPLE_IDENTIFIER)
result += sizeof(u64);
if (type & PERF_SAMPLE_IP)
result += sizeof(u64);
if (type & PERF_SAMPLE_TID)
result += sizeof(u64);
if (type & PERF_SAMPLE_TIME)
result += sizeof(u64);
if (type & PERF_SAMPLE_ADDR)
result += sizeof(u64);
if (type & PERF_SAMPLE_ID)
result += sizeof(u64);
if (type & PERF_SAMPLE_STREAM_ID)
result += sizeof(u64);
if (type & PERF_SAMPLE_CPU)
result += sizeof(u64);
if (type & PERF_SAMPLE_PERIOD)
result += sizeof(u64);
if (type & PERF_SAMPLE_READ) {
result += sizeof(u64);
if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
result += sizeof(u64);
if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
result += sizeof(u64);
/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
if (read_format & PERF_FORMAT_GROUP) {
sz = sample->read.group.nr *
sizeof(struct sample_read_value);
result += sz;
} else {
result += sizeof(u64);
}
}
if (type & PERF_SAMPLE_CALLCHAIN) {
sz = (sample->callchain->nr + 1) * sizeof(u64);
result += sz;
}
if (type & PERF_SAMPLE_RAW) {
result += sizeof(u32);
result += sample->raw_size;
}
if (type & PERF_SAMPLE_BRANCH_STACK) {
sz = sample->branch_stack->nr * sizeof(struct branch_entry);
sz += sizeof(u64);
result += sz;
}
if (type & PERF_SAMPLE_REGS_USER) {
if (sample->user_regs.abi) {
result += sizeof(u64);
sz = hweight64(sample->user_regs.mask) * sizeof(u64);
result += sz;
} else {
result += sizeof(u64);
}
}
if (type & PERF_SAMPLE_STACK_USER) {
sz = sample->user_stack.size;
result += sizeof(u64);
if (sz) {
result += sz;
result += sizeof(u64);
}
}
if (type & PERF_SAMPLE_WEIGHT)
result += sizeof(u64);
if (type & PERF_SAMPLE_DATA_SRC)
result += sizeof(u64);
if (type & PERF_SAMPLE_TRANSACTION)
result += sizeof(u64);
if (type & PERF_SAMPLE_REGS_INTR) {
if (sample->intr_regs.abi) {
result += sizeof(u64);
sz = hweight64(sample->intr_regs.mask) * sizeof(u64);
result += sz;
} else {
result += sizeof(u64);
}
}
if (type & PERF_SAMPLE_PHYS_ADDR)
result += sizeof(u64);
return result;
}
int perf_event__synthesize_sample(union perf_event *event, u64 type,
u64 read_format,
const struct perf_sample *sample)
{
u64 *array;
size_t sz;
/*
* used for cross-endian analysis. See git commit 65014ab3
* for why this goofiness is needed.
*/
union u64_swap u;
array = event->sample.array;
if (type & PERF_SAMPLE_IDENTIFIER) {
*array = sample->id;
array++;
}
if (type & PERF_SAMPLE_IP) {
*array = sample->ip;
array++;
}
if (type & PERF_SAMPLE_TID) {
u.val32[0] = sample->pid;
u.val32[1] = sample->tid;
*array = u.val64;
array++;
}
if (type & PERF_SAMPLE_TIME) {
*array = sample->time;
array++;
}
if (type & PERF_SAMPLE_ADDR) {
*array = sample->addr;
array++;
}
if (type & PERF_SAMPLE_ID) {
*array = sample->id;
array++;
}
if (type & PERF_SAMPLE_STREAM_ID) {
*array = sample->stream_id;
array++;
}
if (type & PERF_SAMPLE_CPU) {
u.val32[0] = sample->cpu;
u.val32[1] = 0;
*array = u.val64;
array++;
}
if (type & PERF_SAMPLE_PERIOD) {
*array = sample->period;
array++;
}
if (type & PERF_SAMPLE_READ) {
if (read_format & PERF_FORMAT_GROUP)
*array = sample->read.group.nr;
else
*array = sample->read.one.value;
array++;
if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
*array = sample->read.time_enabled;
array++;
}
if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
*array = sample->read.time_running;
array++;
}
/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
if (read_format & PERF_FORMAT_GROUP) {
sz = sample->read.group.nr *
sizeof(struct sample_read_value);
memcpy(array, sample->read.group.values, sz);
array = (void *)array + sz;
} else {
*array = sample->read.one.id;
array++;
}
}
if (type & PERF_SAMPLE_CALLCHAIN) {
sz = (sample->callchain->nr + 1) * sizeof(u64);
memcpy(