blob: 3cb63886195ff5a684ec1a4f4f5a7fc46a9ac897 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
//
// Driver for Microchip I2S Multi-channel controller
//
// Copyright (C) 2018 Microchip Technology Inc. and its subsidiaries
//
// Author: Codrin Ciubotariu <codrin.ciubotariu@microchip.com>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/mfd/syscon.h>
#include <linux/lcm.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/soc.h>
#include <sound/dmaengine_pcm.h>
/*
* ---- I2S Controller Register map ----
*/
#define MCHP_I2SMCC_CR 0x0000 /* Control Register */
#define MCHP_I2SMCC_MRA 0x0004 /* Mode Register A */
#define MCHP_I2SMCC_MRB 0x0008 /* Mode Register B */
#define MCHP_I2SMCC_SR 0x000C /* Status Register */
#define MCHP_I2SMCC_IERA 0x0010 /* Interrupt Enable Register A */
#define MCHP_I2SMCC_IDRA 0x0014 /* Interrupt Disable Register A */
#define MCHP_I2SMCC_IMRA 0x0018 /* Interrupt Mask Register A */
#define MCHP_I2SMCC_ISRA 0X001C /* Interrupt Status Register A */
#define MCHP_I2SMCC_IERB 0x0020 /* Interrupt Enable Register B */
#define MCHP_I2SMCC_IDRB 0x0024 /* Interrupt Disable Register B */
#define MCHP_I2SMCC_IMRB 0x0028 /* Interrupt Mask Register B */
#define MCHP_I2SMCC_ISRB 0X002C /* Interrupt Status Register B */
#define MCHP_I2SMCC_RHR 0x0030 /* Receiver Holding Register */
#define MCHP_I2SMCC_THR 0x0034 /* Transmitter Holding Register */
#define MCHP_I2SMCC_RHL0R 0x0040 /* Receiver Holding Left 0 Register */
#define MCHP_I2SMCC_RHR0R 0x0044 /* Receiver Holding Right 0 Register */
#define MCHP_I2SMCC_RHL1R 0x0048 /* Receiver Holding Left 1 Register */
#define MCHP_I2SMCC_RHR1R 0x004C /* Receiver Holding Right 1 Register */
#define MCHP_I2SMCC_RHL2R 0x0050 /* Receiver Holding Left 2 Register */
#define MCHP_I2SMCC_RHR2R 0x0054 /* Receiver Holding Right 2 Register */
#define MCHP_I2SMCC_RHL3R 0x0058 /* Receiver Holding Left 3 Register */
#define MCHP_I2SMCC_RHR3R 0x005C /* Receiver Holding Right 3 Register */
#define MCHP_I2SMCC_THL0R 0x0060 /* Transmitter Holding Left 0 Register */
#define MCHP_I2SMCC_THR0R 0x0064 /* Transmitter Holding Right 0 Register */
#define MCHP_I2SMCC_THL1R 0x0068 /* Transmitter Holding Left 1 Register */
#define MCHP_I2SMCC_THR1R 0x006C /* Transmitter Holding Right 1 Register */
#define MCHP_I2SMCC_THL2R 0x0070 /* Transmitter Holding Left 2 Register */
#define MCHP_I2SMCC_THR2R 0x0074 /* Transmitter Holding Right 2 Register */
#define MCHP_I2SMCC_THL3R 0x0078 /* Transmitter Holding Left 3 Register */
#define MCHP_I2SMCC_THR3R 0x007C /* Transmitter Holding Right 3 Register */
#define MCHP_I2SMCC_VERSION 0x00FC /* Version Register */
/*
* ---- Control Register (Write-only) ----
*/
#define MCHP_I2SMCC_CR_RXEN BIT(0) /* Receiver Enable */
#define MCHP_I2SMCC_CR_RXDIS BIT(1) /* Receiver Disable */
#define MCHP_I2SMCC_CR_CKEN BIT(2) /* Clock Enable */
#define MCHP_I2SMCC_CR_CKDIS BIT(3) /* Clock Disable */
#define MCHP_I2SMCC_CR_TXEN BIT(4) /* Transmitter Enable */
#define MCHP_I2SMCC_CR_TXDIS BIT(5) /* Transmitter Disable */
#define MCHP_I2SMCC_CR_SWRST BIT(7) /* Software Reset */
/*
* ---- Mode Register A (Read/Write) ----
*/
#define MCHP_I2SMCC_MRA_MODE_MASK GENMASK(0, 0)
#define MCHP_I2SMCC_MRA_MODE_SLAVE (0 << 0)
#define MCHP_I2SMCC_MRA_MODE_MASTER (1 << 0)
#define MCHP_I2SMCC_MRA_DATALENGTH_MASK GENMASK(3, 1)
#define MCHP_I2SMCC_MRA_DATALENGTH_32_BITS (0 << 1)
#define MCHP_I2SMCC_MRA_DATALENGTH_24_BITS (1 << 1)
#define MCHP_I2SMCC_MRA_DATALENGTH_20_BITS (2 << 1)
#define MCHP_I2SMCC_MRA_DATALENGTH_18_BITS (3 << 1)
#define MCHP_I2SMCC_MRA_DATALENGTH_16_BITS (4 << 1)
#define MCHP_I2SMCC_MRA_DATALENGTH_16_BITS_COMPACT (5 << 1)
#define MCHP_I2SMCC_MRA_DATALENGTH_8_BITS (6 << 1)
#define MCHP_I2SMCC_MRA_DATALENGTH_8_BITS_COMPACT (7 << 1)
#define MCHP_I2SMCC_MRA_WIRECFG_MASK GENMASK(5, 4)
#define MCHP_I2SMCC_MRA_WIRECFG_I2S_1_TDM_0 (0 << 4)
#define MCHP_I2SMCC_MRA_WIRECFG_I2S_2_TDM_1 (1 << 4)
#define MCHP_I2SMCC_MRA_WIRECFG_I2S_4_TDM_2 (2 << 4)
#define MCHP_I2SMCC_MRA_WIRECFG_TDM_3 (3 << 4)
#define MCHP_I2SMCC_MRA_FORMAT_MASK GENMASK(7, 6)
#define MCHP_I2SMCC_MRA_FORMAT_I2S (0 << 6)
#define MCHP_I2SMCC_MRA_FORMAT_LJ (1 << 6) /* Left Justified */
#define MCHP_I2SMCC_MRA_FORMAT_TDM (2 << 6)
#define MCHP_I2SMCC_MRA_FORMAT_TDMLJ (3 << 6)
/* Transmitter uses one DMA channel ... */
/* Left audio samples duplicated to right audio channel */
#define MCHP_I2SMCC_MRA_RXMONO BIT(8)
/* I2SDO output of I2SC is internally connected to I2SDI input */
#define MCHP_I2SMCC_MRA_RXLOOP BIT(9)
/* Receiver uses one DMA channel ... */
/* Left audio samples duplicated to right audio channel */
#define MCHP_I2SMCC_MRA_TXMONO BIT(10)
/* x sample transmitted when underrun */
#define MCHP_I2SMCC_MRA_TXSAME_ZERO (0 << 11) /* Zero sample */
#define MCHP_I2SMCC_MRA_TXSAME_PREVIOUS (1 << 11) /* Previous sample */
/* select between peripheral clock and generated clock */
#define MCHP_I2SMCC_MRA_SRCCLK_PCLK (0 << 12)
#define MCHP_I2SMCC_MRA_SRCCLK_GCLK (1 << 12)
/* Number of TDM Channels - 1 */
#define MCHP_I2SMCC_MRA_NBCHAN_MASK GENMASK(15, 13)
#define MCHP_I2SMCC_MRA_NBCHAN(ch) \
((((ch) - 1) << 13) & MCHP_I2SMCC_MRA_NBCHAN_MASK)
/* Selected Clock to I2SMCC Master Clock ratio */
#define MCHP_I2SMCC_MRA_IMCKDIV_MASK GENMASK(21, 16)
#define MCHP_I2SMCC_MRA_IMCKDIV(div) \
(((div) << 16) & MCHP_I2SMCC_MRA_IMCKDIV_MASK)
/* TDM Frame Synchronization */
#define MCHP_I2SMCC_MRA_TDMFS_MASK GENMASK(23, 22)
#define MCHP_I2SMCC_MRA_TDMFS_SLOT (0 << 22)
#define MCHP_I2SMCC_MRA_TDMFS_HALF (1 << 22)
#define MCHP_I2SMCC_MRA_TDMFS_BIT (2 << 22)
/* Selected Clock to I2SMC Serial Clock ratio */
#define MCHP_I2SMCC_MRA_ISCKDIV_MASK GENMASK(29, 24)
#define MCHP_I2SMCC_MRA_ISCKDIV(div) \
(((div) << 24) & MCHP_I2SMCC_MRA_ISCKDIV_MASK)
/* Master Clock mode */
#define MCHP_I2SMCC_MRA_IMCKMODE_MASK GENMASK(30, 30)
/* 0: No master clock generated*/
#define MCHP_I2SMCC_MRA_IMCKMODE_NONE (0 << 30)
/* 1: master clock generated (internally generated clock drives I2SMCK pin) */
#define MCHP_I2SMCC_MRA_IMCKMODE_GEN (1 << 30)
/* Slot Width */
/* 0: slot is 32 bits wide for DATALENGTH = 18/20/24 bits. */
/* 1: slot is 24 bits wide for DATALENGTH = 18/20/24 bits. */
#define MCHP_I2SMCC_MRA_IWS BIT(31)
/*
* ---- Mode Register B (Read/Write) ----
*/
/* all enabled I2S left channels are filled first, then I2S right channels */
#define MCHP_I2SMCC_MRB_CRAMODE_LEFT_FIRST (0 << 0)
/*
* an enabled I2S left channel is filled, then the corresponding right
* channel, until all channels are filled
*/
#define MCHP_I2SMCC_MRB_CRAMODE_REGULAR (1 << 0)
#define MCHP_I2SMCC_MRB_FIFOEN BIT(1)
#define MCHP_I2SMCC_MRB_DMACHUNK_MASK GENMASK(9, 8)
#define MCHP_I2SMCC_MRB_DMACHUNK(no_words) \
(((fls(no_words) - 1) << 8) & MCHP_I2SMCC_MRB_DMACHUNK_MASK)
#define MCHP_I2SMCC_MRB_CLKSEL_MASK GENMASK(16, 16)
#define MCHP_I2SMCC_MRB_CLKSEL_EXT (0 << 16)
#define MCHP_I2SMCC_MRB_CLKSEL_INT (1 << 16)
/*
* ---- Status Registers (Read-only) ----
*/
#define MCHP_I2SMCC_SR_RXEN BIT(0) /* Receiver Enabled */
#define MCHP_I2SMCC_SR_TXEN BIT(4) /* Transmitter Enabled */
/*
* ---- Interrupt Enable/Disable/Mask/Status Registers A ----
*/
#define MCHP_I2SMCC_INT_TXRDY_MASK(ch) GENMASK((ch) - 1, 0)
#define MCHP_I2SMCC_INT_TXRDYCH(ch) BIT(ch)
#define MCHP_I2SMCC_INT_TXUNF_MASK(ch) GENMASK((ch) + 7, 8)
#define MCHP_I2SMCC_INT_TXUNFCH(ch) BIT((ch) + 8)
#define MCHP_I2SMCC_INT_RXRDY_MASK(ch) GENMASK((ch) + 15, 16)
#define MCHP_I2SMCC_INT_RXRDYCH(ch) BIT((ch) + 16)
#define MCHP_I2SMCC_INT_RXOVF_MASK(ch) GENMASK((ch) + 23, 24)
#define MCHP_I2SMCC_INT_RXOVFCH(ch) BIT((ch) + 24)
/*
* ---- Interrupt Enable/Disable/Mask/Status Registers B ----
*/
#define MCHP_I2SMCC_INT_WERR BIT(0)
#define MCHP_I2SMCC_INT_TXFFRDY BIT(8)
#define MCHP_I2SMCC_INT_TXFFEMP BIT(9)
#define MCHP_I2SMCC_INT_RXFFRDY BIT(12)
#define MCHP_I2SMCC_INT_RXFFFUL BIT(13)
/*
* ---- Version Register (Read-only) ----
*/
#define MCHP_I2SMCC_VERSION_MASK GENMASK(11, 0)
#define MCHP_I2SMCC_MAX_CHANNELS 8
#define MCHP_I2MCC_TDM_SLOT_WIDTH 32
static const struct regmap_config mchp_i2s_mcc_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = MCHP_I2SMCC_VERSION,
};
struct mchp_i2s_mcc_dev {
struct wait_queue_head wq_txrdy;
struct wait_queue_head wq_rxrdy;
struct device *dev;
struct regmap *regmap;
struct clk *pclk;
struct clk *gclk;
struct snd_dmaengine_dai_dma_data playback;
struct snd_dmaengine_dai_dma_data capture;
unsigned int fmt;
unsigned int sysclk;
unsigned int frame_length;
int tdm_slots;
int channels;
unsigned int gclk_use:1;
unsigned int gclk_running:1;
unsigned int tx_rdy:1;
unsigned int rx_rdy:1;
};
static irqreturn_t mchp_i2s_mcc_interrupt(int irq, void *dev_id)
{
struct mchp_i2s_mcc_dev *dev = dev_id;
u32 sra, imra, srb, imrb, pendinga, pendingb, idra = 0;
irqreturn_t ret = IRQ_NONE;
regmap_read(dev->regmap, MCHP_I2SMCC_IMRA, &imra);
regmap_read(dev->regmap, MCHP_I2SMCC_ISRA, &sra);
pendinga = imra & sra;
regmap_read(dev->regmap, MCHP_I2SMCC_IMRB, &imrb);
regmap_read(dev->regmap, MCHP_I2SMCC_ISRB, &srb);
pendingb = imrb & srb;
if (!pendinga && !pendingb)
return IRQ_NONE;
/*
* Tx/Rx ready interrupts are enabled when stopping only, to assure
* availability and to disable clocks if necessary
*/
idra |= pendinga & (MCHP_I2SMCC_INT_TXRDY_MASK(dev->channels) |
MCHP_I2SMCC_INT_RXRDY_MASK(dev->channels));
if (idra)
ret = IRQ_HANDLED;
if ((imra & MCHP_I2SMCC_INT_TXRDY_MASK(dev->channels)) &&
(imra & MCHP_I2SMCC_INT_TXRDY_MASK(dev->channels)) ==
(idra & MCHP_I2SMCC_INT_TXRDY_MASK(dev->channels))) {
dev->tx_rdy = 1;
wake_up_interruptible(&dev->wq_txrdy);
}
if ((imra & MCHP_I2SMCC_INT_RXRDY_MASK(dev->channels)) &&
(imra & MCHP_I2SMCC_INT_RXRDY_MASK(dev->channels)) ==
(idra & MCHP_I2SMCC_INT_RXRDY_MASK(dev->channels))) {
dev->rx_rdy = 1;
wake_up_interruptible(&dev->wq_rxrdy);
}
regmap_write(dev->regmap, MCHP_I2SMCC_IDRA, idra);
return ret;
}
static int mchp_i2s_mcc_set_sysclk(struct snd_soc_dai *dai,
int clk_id, unsigned int freq, int dir)
{
struct mchp_i2s_mcc_dev *dev = snd_soc_dai_get_drvdata(dai);
dev_dbg(dev->dev, "%s() clk_id=%d freq=%u dir=%d\n",
__func__, clk_id, freq, dir);
/* We do not need SYSCLK */
if (dir == SND_SOC_CLOCK_IN)
return 0;
dev->sysclk = freq;
return 0;
}
static int mchp_i2s_mcc_set_bclk_ratio(struct snd_soc_dai *dai,
unsigned int ratio)
{
struct mchp_i2s_mcc_dev *dev = snd_soc_dai_get_drvdata(dai);
dev_dbg(dev->dev, "%s() ratio=%u\n", __func__, ratio);
dev->frame_length = ratio;
return 0;
}
static int mchp_i2s_mcc_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct mchp_i2s_mcc_dev *dev = snd_soc_dai_get_drvdata(dai);
dev_dbg(dev->dev, "%s() fmt=%#x\n", __func__, fmt);
/* We don't support any kind of clock inversion */
if ((fmt & SND_SOC_DAIFMT_INV_MASK) != SND_SOC_DAIFMT_NB_NF)
return -EINVAL;
/* We can't generate only FSYNC */
if ((fmt & SND_SOC_DAIFMT_MASTER_MASK) == SND_SOC_DAIFMT_CBM_CFS)
return -EINVAL;
/* We can only reconfigure the IP when it's stopped */
if (fmt & SND_SOC_DAIFMT_CONT)
return -EINVAL;
dev->fmt = fmt;
return 0;
}
static int mchp_i2s_mcc_set_dai_tdm_slot(struct snd_soc_dai *dai,
unsigned int tx_mask,
unsigned int rx_mask,
int slots, int slot_width)
{
struct mchp_i2s_mcc_dev *dev = snd_soc_dai_get_drvdata(dai);
dev_dbg(dev->dev,
"%s() tx_mask=0x%08x rx_mask=0x%08x slots=%d width=%d\n",
__func__, tx_mask, rx_mask, slots, slot_width);
if (slots < 0 || slots > MCHP_I2SMCC_MAX_CHANNELS ||
slot_width != MCHP_I2MCC_TDM_SLOT_WIDTH)
return -EINVAL;
if (slots) {
/* We do not support daisy chain */
if (rx_mask != GENMASK(slots - 1, 0) ||
rx_mask != tx_mask)
return -EINVAL;
}
dev->tdm_slots = slots;
dev->frame_length = slots * MCHP_I2MCC_TDM_SLOT_WIDTH;
return 0;
}
static int mchp_i2s_mcc_clk_get_rate_diff(struct clk *clk,
unsigned long rate,
struct clk **best_clk,
unsigned long *best_rate,
unsigned long *best_diff_rate)
{
long round_rate;
unsigned int diff_rate;
round_rate = clk_round_rate(clk, rate);
if (round_rate < 0)
return (int)round_rate;
diff_rate = abs(rate - round_rate);
if (diff_rate < *best_diff_rate) {
*best_clk = clk;
*best_diff_rate = diff_rate;
*best_rate = rate;
}
return 0;
}
static int mchp_i2s_mcc_config_divs(struct mchp_i2s_mcc_dev *dev,
unsigned int bclk, unsigned int *mra,
unsigned long *best_rate)
{
unsigned long clk_rate;
unsigned long lcm_rate;
unsigned long best_diff_rate = ~0;
unsigned int sysclk;
struct clk *best_clk = NULL;
int ret;
/* For code simplification */
if (!dev->sysclk)
sysclk = bclk;
else
sysclk = dev->sysclk;
/*
* MCLK is Selected CLK / (2 * IMCKDIV),
* BCLK is Selected CLK / (2 * ISCKDIV);
* if IMCKDIV or ISCKDIV are 0, MCLK or BCLK = Selected CLK
*/
lcm_rate = lcm(sysclk, bclk);
if ((lcm_rate / sysclk % 2 == 1 && lcm_rate / sysclk > 2) ||
(lcm_rate / bclk % 2 == 1 && lcm_rate / bclk > 2))
lcm_rate *= 2;
for (clk_rate = lcm_rate;
(clk_rate == sysclk || clk_rate / (sysclk * 2) <= GENMASK(5, 0)) &&
(clk_rate == bclk || clk_rate / (bclk * 2) <= GENMASK(5, 0));
clk_rate += lcm_rate) {
ret = mchp_i2s_mcc_clk_get_rate_diff(dev->gclk, clk_rate,
&best_clk, best_rate,
&best_diff_rate);
if (ret) {
dev_err(dev->dev, "gclk error for rate %lu: %d",
clk_rate, ret);
} else {
if (!best_diff_rate) {
dev_dbg(dev->dev, "found perfect rate on gclk: %lu\n",
clk_rate);
break;
}
}
ret = mchp_i2s_mcc_clk_get_rate_diff(dev->pclk, clk_rate,
&best_clk, best_rate,
&best_diff_rate);
if (ret) {
dev_err(dev->dev, "pclk error for rate %lu: %d",
clk_rate, ret);
} else {
if (!best_diff_rate) {
dev_dbg(dev->dev, "found perfect rate on pclk: %lu\n",
clk_rate);
break;
}
}
}
/* check if clocks returned only errors */
if (!best_clk) {
dev_err(dev->dev, "unable to change rate to clocks\n");
return -EINVAL;
}
dev_dbg(dev->dev, "source CLK is %s with rate %lu, diff %lu\n",
best_clk == dev->pclk ? "pclk" : "gclk",
*best_rate, best_diff_rate);
/* Configure divisors */
if (dev->sysclk)
*mra |= MCHP_I2SMCC_MRA_IMCKDIV(*best_rate / (2 * sysclk));
*mra |= MCHP_I2SMCC_MRA_ISCKDIV(*best_rate / (2 * bclk));
if (best_clk == dev->gclk)
*mra |= MCHP_I2SMCC_MRA_SRCCLK_GCLK;
else
*mra |= MCHP_I2SMCC_MRA_SRCCLK_PCLK;
return 0;
}
static int mchp_i2s_mcc_is_running(struct mchp_i2s_mcc_dev *dev)
{
u32 sr;
regmap_read(dev->regmap, MCHP_I2SMCC_SR, &sr);
return !!(sr & (MCHP_I2SMCC_SR_TXEN | MCHP_I2SMCC_SR_RXEN));
}
static int mchp_i2s_mcc_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
unsigned long rate = 0;
struct mchp_i2s_mcc_dev *dev = snd_soc_dai_get_drvdata(dai);
u32 mra = 0;
u32 mrb = 0;
unsigned int channels = params_channels(params);
unsigned int frame_length = dev->frame_length;
unsigned int bclk_rate;
int set_divs = 0;
int ret;
bool is_playback = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
dev_dbg(dev->dev, "%s() rate=%u format=%#x width=%u channels=%u\n",
__func__, params_rate(params), params_format(params),
params_width(params), params_channels(params));
switch (dev->fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
if (dev->tdm_slots) {
dev_err(dev->dev, "I2S with TDM is not supported\n");
return -EINVAL;
}
mra |= MCHP_I2SMCC_MRA_FORMAT_I2S;
break;
case SND_SOC_DAIFMT_LEFT_J:
if (dev->tdm_slots) {
dev_err(dev->dev, "Left-Justified with TDM is not supported\n");
return -EINVAL;
}
mra |= MCHP_I2SMCC_MRA_FORMAT_LJ;
break;
case SND_SOC_DAIFMT_DSP_A:
mra |= MCHP_I2SMCC_MRA_FORMAT_TDM;
break;
default:
dev_err(dev->dev, "unsupported bus format\n");
return -EINVAL;
}
switch (dev->fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBS_CFS:
/* cpu is BCLK and LRC master */
mra |= MCHP_I2SMCC_MRA_MODE_MASTER;
if (dev->sysclk)
mra |= MCHP_I2SMCC_MRA_IMCKMODE_GEN;
set_divs = 1;
break;
case SND_SOC_DAIFMT_CBS_CFM:
/* cpu is BCLK master */
mrb |= MCHP_I2SMCC_MRB_CLKSEL_INT;
set_divs = 1;
/* fall through */
case SND_SOC_DAIFMT_CBM_CFM:
/* cpu is slave */
mra |= MCHP_I2SMCC_MRA_MODE_SLAVE;
if (dev->sysclk)
dev_warn(dev->dev, "Unable to generate MCLK in Slave mode\n");
break;
default:
dev_err(dev->dev, "unsupported master/slave mode\n");
return -EINVAL;
}
if (dev->fmt & (SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_LEFT_J)) {
switch (channels) {
case 1:
if (is_playback)
mra |= MCHP_I2SMCC_MRA_TXMONO;
else
mra |= MCHP_I2SMCC_MRA_RXMONO;
break;
case 2:
break;
default:
dev_err(dev->dev, "unsupported number of audio channels\n");
return -EINVAL;
}
if (!frame_length)
frame_length = 2 * params_physical_width(params);
} else if (dev->fmt & SND_SOC_DAIFMT_DSP_A) {
if (dev->tdm_slots) {
if (channels % 2 && channels * 2 <= dev->tdm_slots) {
/*
* Duplicate data for even-numbered channels
* to odd-numbered channels
*/
if (is_playback)
mra |= MCHP_I2SMCC_MRA_TXMONO;
else
mra |= MCHP_I2SMCC_MRA_RXMONO;
}
channels = dev->tdm_slots;
}
mra |= MCHP_I2SMCC_MRA_NBCHAN(channels);
if (!frame_length)
frame_length = channels * MCHP_I2MCC_TDM_SLOT_WIDTH;
}
/*
* We must have the same burst size configured
* in the DMA transfer and in out IP
*/
mrb |= MCHP_I2SMCC_MRB_DMACHUNK(channels);
if (is_playback)
dev->playback.maxburst = 1 << (fls(channels) - 1);
else
dev->capture.maxburst = 1 << (fls(channels) - 1);
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S8:
mra |= MCHP_I2SMCC_MRA_DATALENGTH_8_BITS;
break;
case SNDRV_PCM_FORMAT_S16_LE:
mra |= MCHP_I2SMCC_MRA_DATALENGTH_16_BITS;
break;
case SNDRV_PCM_FORMAT_S18_3LE:
mra |= MCHP_I2SMCC_MRA_DATALENGTH_18_BITS |
MCHP_I2SMCC_MRA_IWS;
break;
case SNDRV_PCM_FORMAT_S20_3LE:
mra |= MCHP_I2SMCC_MRA_DATALENGTH_20_BITS |
MCHP_I2SMCC_MRA_IWS;
break;
case SNDRV_PCM_FORMAT_S24_3LE:
mra |= MCHP_I2SMCC_MRA_DATALENGTH_24_BITS |
MCHP_I2SMCC_MRA_IWS;
break;
case SNDRV_PCM_FORMAT_S24_LE:
mra |= MCHP_I2SMCC_MRA_DATALENGTH_24_BITS;
break;
case SNDRV_PCM_FORMAT_S32_LE:
mra |= MCHP_I2SMCC_MRA_DATALENGTH_32_BITS;
break;
default:
dev_err(dev->dev, "unsupported size/endianness for audio samples\n");
return -EINVAL;
}
if (set_divs) {
bclk_rate = frame_length * params_rate(params);
ret = mchp_i2s_mcc_config_divs(dev, bclk_rate, &mra,
&rate);
if (ret) {
dev_err(dev->dev,
"unable to configure the divisors: %d\n", ret);
return ret;
}
}
/*
* If we are already running, the wanted setup must be
* the same with the one that's currently ongoing
*/
if (mchp_i2s_mcc_is_running(dev)) {
u32 mra_cur;
u32 mrb_cur;
regmap_read(dev->regmap, MCHP_I2SMCC_MRA, &mra_cur);
regmap_read(dev->regmap, MCHP_I2SMCC_MRB, &mrb_cur);
if (mra != mra_cur || mrb != mrb_cur)
return -EINVAL;
return 0;
}
if (mra & MCHP_I2SMCC_MRA_SRCCLK_GCLK && !dev->gclk_use) {
/* set the rate */
ret = clk_set_rate(dev->gclk, rate);
if (ret) {
dev_err(dev->dev,
"unable to set rate %lu to GCLK: %d\n",
rate, ret);
return ret;
}
ret = clk_prepare(dev->gclk);
if (ret < 0) {
dev_err(dev->dev, "unable to prepare GCLK: %d\n", ret);
return ret;
}
dev->gclk_use = 1;
}
/* Save the number of channels to know what interrupts to enable */
dev->channels = channels;
ret = regmap_write(dev->regmap, MCHP_I2SMCC_MRA, mra);
if (ret < 0) {
if (dev->gclk_use) {
clk_unprepare(dev->gclk);
dev->gclk_use = 0;
}
return ret;
}
return regmap_write(dev->regmap, MCHP_I2SMCC_MRB, mrb);
}
static int mchp_i2s_mcc_hw_free(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct mchp_i2s_mcc_dev *dev = snd_soc_dai_get_drvdata(dai);
bool is_playback = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
long err;
if (is_playback) {
err = wait_event_interruptible_timeout(dev->wq_txrdy,
dev->tx_rdy,
msecs_to_jiffies(500));
if (err == 0) {
dev_warn_once(dev->dev,
"Timeout waiting for Tx ready\n");
regmap_write(dev->regmap, MCHP_I2SMCC_IDRA,
MCHP_I2SMCC_INT_TXRDY_MASK(dev->channels));
dev->tx_rdy = 1;
}
} else {
err = wait_event_interruptible_timeout(dev->wq_rxrdy,
dev->rx_rdy,
msecs_to_jiffies(500));
if (err == 0) {
dev_warn_once(dev->dev,
"Timeout waiting for Rx ready\n");
regmap_write(dev->regmap, MCHP_I2SMCC_IDRA,
MCHP_I2SMCC_INT_RXRDY_MASK(dev->channels));
dev->rx_rdy = 1;
}
}
if (!mchp_i2s_mcc_is_running(dev)) {
regmap_write(dev->regmap, MCHP_I2SMCC_CR, MCHP_I2SMCC_CR_CKDIS);
if (dev->gclk_running) {
clk_disable(dev->gclk);
dev->gclk_running = 0;
}
if (dev->gclk_use) {
clk_unprepare(dev->gclk);
dev->gclk_use = 0;
}
}
return 0;
}
static int mchp_i2s_mcc_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *dai)
{
struct mchp_i2s_mcc_dev *dev = snd_soc_dai_get_drvdata(dai);
bool is_playback = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
u32 cr = 0;
u32 iera = 0;
u32 sr;
int err;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
if (is_playback)
cr = MCHP_I2SMCC_CR_TXEN | MCHP_I2SMCC_CR_CKEN;
else
cr = MCHP_I2SMCC_CR_RXEN | MCHP_I2SMCC_CR_CKEN;
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
regmap_read(dev->regmap, MCHP_I2SMCC_SR, &sr);
if (is_playback && (sr & MCHP_I2SMCC_SR_TXEN)) {
cr = MCHP_I2SMCC_CR_TXDIS;
dev->tx_rdy = 0;
/*
* Enable Tx Ready interrupts on all channels
* to assure all data is sent
*/
iera = MCHP_I2SMCC_INT_TXRDY_MASK(dev->channels);
} else if (!is_playback && (sr & MCHP_I2SMCC_SR_RXEN)) {
cr = MCHP_I2SMCC_CR_RXDIS;
dev->rx_rdy = 0;
/*
* Enable Rx Ready interrupts on all channels
* to assure all data is received
*/
iera = MCHP_I2SMCC_INT_RXRDY_MASK(dev->channels);
}
break;
default:
return -EINVAL;
}
if ((cr & MCHP_I2SMCC_CR_CKEN) && dev->gclk_use &&
!dev->gclk_running) {
err = clk_enable(dev->gclk);
if (err) {
dev_err_once(dev->dev, "failed to enable GCLK: %d\n",
err);
} else {
dev->gclk_running = 1;
}
}
regmap_write(dev->regmap, MCHP_I2SMCC_IERA, iera);
regmap_write(dev->regmap, MCHP_I2SMCC_CR, cr);
return 0;
}
static int mchp_i2s_mcc_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct mchp_i2s_mcc_dev *dev = snd_soc_dai_get_drvdata(dai);
/* Software reset the IP if it's not running */
if (!mchp_i2s_mcc_is_running(dev)) {
return regmap_write(dev->regmap, MCHP_I2SMCC_CR,
MCHP_I2SMCC_CR_SWRST);
}
return 0;
}
static const struct snd_soc_dai_ops mchp_i2s_mcc_dai_ops = {
.set_sysclk = mchp_i2s_mcc_set_sysclk,
.set_bclk_ratio = mchp_i2s_mcc_set_bclk_ratio,
.startup = mchp_i2s_mcc_startup,
.trigger = mchp_i2s_mcc_trigger,
.hw_params = mchp_i2s_mcc_hw_params,
.hw_free = mchp_i2s_mcc_hw_free,
.set_fmt = mchp_i2s_mcc_set_dai_fmt,
.set_tdm_slot = mchp_i2s_mcc_set_dai_tdm_slot,
};
static int mchp_i2s_mcc_dai_probe(struct snd_soc_dai *dai)
{
struct mchp_i2s_mcc_dev *dev = snd_soc_dai_get_drvdata(dai);
init_waitqueue_head(&dev->wq_txrdy);
init_waitqueue_head(&dev->wq_rxrdy);
dev->tx_rdy = 1;
dev->rx_rdy = 1;
snd_soc_dai_init_dma_data(dai, &dev->playback, &dev->capture);
return 0;
}
#define MCHP_I2SMCC_RATES SNDRV_PCM_RATE_8000_192000
#define MCHP_I2SMCC_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
SNDRV_PCM_FMTBIT_S16_LE | \
SNDRV_PCM_FMTBIT_S18_3LE | \
SNDRV_PCM_FMTBIT_S20_3LE | \
SNDRV_PCM_FMTBIT_S24_3LE | \
SNDRV_PCM_FMTBIT_S24_LE | \
SNDRV_PCM_FMTBIT_S32_LE)
static struct snd_soc_dai_driver mchp_i2s_mcc_dai = {
.probe = mchp_i2s_mcc_dai_probe,
.playback = {
.stream_name = "I2SMCC-Playback",
.channels_min = 1,
.channels_max = 8,
.rates = MCHP_I2SMCC_RATES,
.formats = MCHP_I2SMCC_FORMATS,
},
.capture = {
.stream_name = "I2SMCC-Capture",
.channels_min = 1,
.channels_max = 8,
.rates = MCHP_I2SMCC_RATES,
.formats = MCHP_I2SMCC_FORMATS,
},
.ops = &mchp_i2s_mcc_dai_ops,
.symmetric_rates = 1,
.symmetric_samplebits = 1,
.symmetric_channels = 1,
};
static const struct snd_soc_component_driver mchp_i2s_mcc_component = {
.name = "mchp-i2s-mcc",
};
#ifdef CONFIG_OF
static const struct of_device_id mchp_i2s_mcc_dt_ids[] = {
{
.compatible = "microchip,sam9x60-i2smcc",
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mchp_i2s_mcc_dt_ids);
#endif
static int mchp_i2s_mcc_probe(struct platform_device *pdev)
{
struct mchp_i2s_mcc_dev *dev;
struct resource *mem;
struct regmap *regmap;
void __iomem *base;
u32 version;
int irq;
int err;
dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
if (!dev)
return -ENOMEM;
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
base = devm_ioremap_resource(&pdev->dev, mem);
if (IS_ERR(base))
return PTR_ERR(base);
regmap = devm_regmap_init_mmio(&pdev->dev, base,
&mchp_i2s_mcc_regmap_config);
if (IS_ERR(regmap))
return PTR_ERR(regmap);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
err = devm_request_irq(&pdev->dev, irq, mchp_i2s_mcc_interrupt, 0,
dev_name(&pdev->dev), dev);
if (err)
return err;
dev->pclk = devm_clk_get(&pdev->dev, "pclk");
if (IS_ERR(dev->pclk)) {
err = PTR_ERR(dev->pclk);
dev_err(&pdev->dev,
"failed to get the peripheral clock: %d\n", err);
return err;
}
/* Get the optional generated clock */
dev->gclk = devm_clk_get(&pdev->dev, "gclk");
if (IS_ERR(dev->gclk)) {
if (PTR_ERR(dev->gclk) == -EPROBE_DEFER)
return -EPROBE_DEFER;
dev_warn(&pdev->dev,
"generated clock not found: %d\n", err);
dev->gclk = NULL;
}
dev->dev = &pdev->dev;
dev->regmap = regmap;
platform_set_drvdata(pdev, dev);
err = clk_prepare_enable(dev->pclk);
if (err) {
dev_err(&pdev->dev,
"failed to enable the peripheral clock: %d\n", err);
return err;
}
err = devm_snd_soc_register_component(&pdev->dev,
&mchp_i2s_mcc_component,
&mchp_i2s_mcc_dai, 1);
if (err) {
dev_err(&pdev->dev, "failed to register DAI: %d\n", err);
clk_disable_unprepare(dev->pclk);
return err;
}
dev->playback.addr = (dma_addr_t)mem->start + MCHP_I2SMCC_THR;
dev->capture.addr = (dma_addr_t)mem->start + MCHP_I2SMCC_RHR;
err = devm_snd_dmaengine_pcm_register(&pdev->dev, NULL, 0);
if (err) {
dev_err(&pdev->dev, "failed to register PCM: %d\n", err);
clk_disable_unprepare(dev->pclk);
return err;
}
/* Get IP version. */
regmap_read(dev->regmap, MCHP_I2SMCC_VERSION, &version);
dev_info(&pdev->dev, "hw version: %#lx\n",
version & MCHP_I2SMCC_VERSION_MASK);
return 0;
}
static int mchp_i2s_mcc_remove(struct platform_device *pdev)
{
struct mchp_i2s_mcc_dev *dev = platform_get_drvdata(pdev);
clk_disable_unprepare(dev->pclk);
return 0;
}
static struct platform_driver mchp_i2s_mcc_driver = {
.driver = {
.name = "mchp_i2s_mcc",
.of_match_table = of_match_ptr(mchp_i2s_mcc_dt_ids),
},
.probe = mchp_i2s_mcc_probe,
.remove = mchp_i2s_mcc_remove,
};
module_platform_driver(mchp_i2s_mcc_driver);
MODULE_DESCRIPTION("Microchip I2S Multi-Channel Controller driver");
MODULE_AUTHOR("Codrin Ciubotariu <codrin.ciubotariu@microchip.com>");
MODULE_LICENSE("GPL v2");