blob: 17b2e2e38d5a0cc3b21f228b8a7b40b252d8b673 [file] [log] [blame]
/*
* Meta exception handling.
*
* Copyright (C) 2005,2006,2007,2008,2009,2012 Imagination Technologies Ltd.
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive
* for more details.
*/
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/signal.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/preempt.h>
#include <linux/ptrace.h>
#include <linux/module.h>
#include <linux/kallsyms.h>
#include <linux/kdebug.h>
#include <linux/kexec.h>
#include <linux/unistd.h>
#include <linux/smp.h>
#include <linux/slab.h>
#include <linux/syscalls.h>
#include <asm/bug.h>
#include <asm/core_reg.h>
#include <asm/irqflags.h>
#include <asm/siginfo.h>
#include <asm/traps.h>
#include <asm/hwthread.h>
#include <asm/setup.h>
#include <asm/switch.h>
#include <asm/user_gateway.h>
#include <asm/syscall.h>
#include <asm/syscalls.h>
/* Passing syscall arguments as long long is quicker. */
typedef unsigned int (*LPSYSCALL) (unsigned long long,
unsigned long long,
unsigned long long);
/*
* Users of LNKSET should compare the bus error bits obtained from DEFR
* against TXDEFR_LNKSET_SUCCESS only as the failure code will vary between
* different cores revisions.
*/
#define TXDEFR_LNKSET_SUCCESS 0x02000000
#define TXDEFR_LNKSET_FAILURE 0x04000000
/*
* Our global TBI handle. Initialised from setup.c/setup_arch.
*/
DECLARE_PER_CPU(PTBI, pTBI);
#ifdef CONFIG_SMP
static DEFINE_PER_CPU(unsigned int, trigger_mask);
#else
unsigned int global_trigger_mask;
EXPORT_SYMBOL(global_trigger_mask);
#endif
unsigned long per_cpu__stack_save[NR_CPUS];
static const char * const trap_names[] = {
[TBIXXF_SIGNUM_IIF] = "Illegal instruction fault",
[TBIXXF_SIGNUM_PGF] = "Privilege violation",
[TBIXXF_SIGNUM_DHF] = "Unaligned data access fault",
[TBIXXF_SIGNUM_IGF] = "Code fetch general read failure",
[TBIXXF_SIGNUM_DGF] = "Data access general read/write fault",
[TBIXXF_SIGNUM_IPF] = "Code fetch page fault",
[TBIXXF_SIGNUM_DPF] = "Data access page fault",
[TBIXXF_SIGNUM_IHF] = "Instruction breakpoint",
[TBIXXF_SIGNUM_DWF] = "Read-only data access fault",
};
const char *trap_name(int trapno)
{
if (trapno >= 0 && trapno < ARRAY_SIZE(trap_names)
&& trap_names[trapno])
return trap_names[trapno];
return "Unknown fault";
}
static DEFINE_SPINLOCK(die_lock);
void __noreturn die(const char *str, struct pt_regs *regs,
long err, unsigned long addr)
{
static int die_counter;
oops_enter();
spin_lock_irq(&die_lock);
console_verbose();
bust_spinlocks(1);
pr_err("%s: err %04lx (%s) addr %08lx [#%d]\n", str, err & 0xffff,
trap_name(err & 0xffff), addr, ++die_counter);
print_modules();
show_regs(regs);
pr_err("Process: %s (pid: %d, stack limit = %p)\n", current->comm,
task_pid_nr(current), task_stack_page(current) + THREAD_SIZE);
bust_spinlocks(0);
add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
if (kexec_should_crash(current))
crash_kexec(regs);
if (in_interrupt())
panic("Fatal exception in interrupt");
if (panic_on_oops)
panic("Fatal exception");
spin_unlock_irq(&die_lock);
oops_exit();
do_exit(SIGSEGV);
}
#ifdef CONFIG_METAG_DSP
/*
* The ECH encoding specifies the size of a DSPRAM as,
*
* "slots" / 4
*
* A "slot" is the size of two DSPRAM bank entries; an entry from
* DSPRAM bank A and an entry from DSPRAM bank B. One DSPRAM bank
* entry is 4 bytes.
*/
#define SLOT_SZ 8
static inline unsigned int decode_dspram_size(unsigned int size)
{
unsigned int _sz = size & 0x7f;
return _sz * SLOT_SZ * 4;
}
static void dspram_save(struct meta_ext_context *dsp_ctx,
unsigned int ramA_sz, unsigned int ramB_sz)
{
unsigned int ram_sz[2];
int i;
ram_sz[0] = ramA_sz;
ram_sz[1] = ramB_sz;
for (i = 0; i < 2; i++) {
if (ram_sz[i] != 0) {
unsigned int sz;
if (i == 0)
sz = decode_dspram_size(ram_sz[i] >> 8);
else
sz = decode_dspram_size(ram_sz[i]);
if (dsp_ctx->ram[i] == NULL) {
dsp_ctx->ram[i] = kmalloc(sz, GFP_KERNEL);
if (dsp_ctx->ram[i] == NULL)
panic("couldn't save DSP context");
} else {
if (ram_sz[i] > dsp_ctx->ram_sz[i]) {
kfree(dsp_ctx->ram[i]);
dsp_ctx->ram[i] = kmalloc(sz,
GFP_KERNEL);
if (dsp_ctx->ram[i] == NULL)
panic("couldn't save DSP context");
}
}
if (i == 0)
__TBIDspramSaveA(ram_sz[i], dsp_ctx->ram[i]);
else
__TBIDspramSaveB(ram_sz[i], dsp_ctx->ram[i]);
dsp_ctx->ram_sz[i] = ram_sz[i];
}
}
}
#endif /* CONFIG_METAG_DSP */
/*
* Allow interrupts to be nested and save any "extended" register
* context state, e.g. DSP regs and RAMs.
*/
static void nest_interrupts(TBIRES State, unsigned long mask)
{
#ifdef CONFIG_METAG_DSP
struct meta_ext_context *dsp_ctx;
unsigned int D0_8;
/*
* D0.8 may contain an ECH encoding. The upper 16 bits
* tell us what DSP resources the current process is
* using. OR the bits into the SaveMask so that
* __TBINestInts() knows what resources to save as
* part of this context.
*
* Don't save the context if we're nesting interrupts in the
* kernel because the kernel doesn't use DSP hardware.
*/
D0_8 = __core_reg_get(D0.8);
if (D0_8 && (State.Sig.SaveMask & TBICTX_PRIV_BIT)) {
State.Sig.SaveMask |= (D0_8 >> 16);
dsp_ctx = current->thread.dsp_context;
if (dsp_ctx == NULL) {
dsp_ctx = kzalloc(sizeof(*dsp_ctx), GFP_KERNEL);
if (dsp_ctx == NULL)
panic("couldn't save DSP context: ENOMEM");
current->thread.dsp_context = dsp_ctx;
}
current->thread.user_flags |= (D0_8 & 0xffff0000);
__TBINestInts(State, &dsp_ctx->regs, mask);
dspram_save(dsp_ctx, D0_8 & 0x7f00, D0_8 & 0x007f);
} else
__TBINestInts(State, NULL, mask);
#else
__TBINestInts(State, NULL, mask);
#endif
}
void head_end(TBIRES State, unsigned long mask)
{
unsigned int savemask = (unsigned short)State.Sig.SaveMask;
unsigned int ctx_savemask = (unsigned short)State.Sig.pCtx->SaveMask;
if (savemask & TBICTX_PRIV_BIT) {
ctx_savemask |= TBICTX_PRIV_BIT;
current->thread.user_flags = savemask;
}
/* Always undo the sleep bit */
ctx_savemask &= ~TBICTX_WAIT_BIT;
/* Always save the catch buffer and RD pipe if they are dirty */
savemask |= TBICTX_XCBF_BIT;
/* Only save the catch and RD if we have not already done so.
* Note - the RD bits are in the pCtx only, and not in the
* State.SaveMask.
*/
if ((savemask & TBICTX_CBUF_BIT) ||
(ctx_savemask & TBICTX_CBRP_BIT)) {
/* Have we already saved the buffers though?
* - See TestTrack 5071 */
if (ctx_savemask & TBICTX_XCBF_BIT) {
/* Strip off the bits so the call to __TBINestInts
* won't save the buffers again. */
savemask &= ~TBICTX_CBUF_BIT;
ctx_savemask &= ~TBICTX_CBRP_BIT;
}
}
#ifdef CONFIG_METAG_META21
{
unsigned int depth, txdefr;
/*
* Save TXDEFR state.
*
* The process may have been interrupted after a LNKSET, but
* before it could read the DEFR state, so we mustn't lose that
* state or it could end up retrying an atomic operation that
* succeeded.
*
* All interrupts are disabled at this point so we
* don't need to perform any locking. We must do this
* dance before we use LNKGET or LNKSET.
*/
BUG_ON(current->thread.int_depth > HARDIRQ_BITS);
depth = current->thread.int_depth++;
txdefr = __core_reg_get(TXDEFR);
txdefr &= TXDEFR_BUS_STATE_BITS;
if (txdefr & TXDEFR_LNKSET_SUCCESS)
current->thread.txdefr_failure &= ~(1 << depth);
else
current->thread.txdefr_failure |= (1 << depth);
}
#endif
State.Sig.SaveMask = savemask;
State.Sig.pCtx->SaveMask = ctx_savemask;
nest_interrupts(State, mask);
#ifdef CONFIG_METAG_POISON_CATCH_BUFFERS
/* Poison the catch registers. This shows up any mistakes we have
* made in their handling MUCH quicker.
*/
__core_reg_set(TXCATCH0, 0x87650021);
__core_reg_set(TXCATCH1, 0x87654322);
__core_reg_set(TXCATCH2, 0x87654323);
__core_reg_set(TXCATCH3, 0x87654324);
#endif /* CONFIG_METAG_POISON_CATCH_BUFFERS */
}
TBIRES tail_end_sys(TBIRES State, int syscall, int *restart)
{
struct pt_regs *regs = (struct pt_regs *)State.Sig.pCtx;
unsigned long flags;
local_irq_disable();
if (user_mode(regs)) {
flags = current_thread_info()->flags;
if (flags & _TIF_WORK_MASK &&
do_work_pending(regs, flags, syscall)) {
*restart = 1;
return State;
}
#ifdef CONFIG_METAG_FPU
if (current->thread.fpu_context &&
current->thread.fpu_context->needs_restore) {
__TBICtxFPURestore(State, current->thread.fpu_context);
/*
* Clearing this bit ensures the FP unit is not made
* active again unless it is used.
*/
State.Sig.SaveMask &= ~TBICTX_FPAC_BIT;
current->thread.fpu_context->needs_restore = false;
}
State.Sig.TrigMask |= TBI_TRIG_BIT(TBID_SIGNUM_DFR);
#endif
}
/* TBI will turn interrupts back on at some point. */
if (!irqs_disabled_flags((unsigned long)State.Sig.TrigMask))
trace_hardirqs_on();
#ifdef CONFIG_METAG_DSP
/*
* If we previously saved an extended context then restore it
* now. Otherwise, clear D0.8 because this process is not
* using DSP hardware.
*/
if (State.Sig.pCtx->SaveMask & TBICTX_XEXT_BIT) {
unsigned int D0_8;
struct meta_ext_context *dsp_ctx = current->thread.dsp_context;
/* Make sure we're going to return to userland. */
BUG_ON(current->thread.int_depth != 1);
if (dsp_ctx->ram_sz[0] > 0)
__TBIDspramRestoreA(dsp_ctx->ram_sz[0],
dsp_ctx->ram[0]);
if (dsp_ctx->ram_sz[1] > 0)
__TBIDspramRestoreB(dsp_ctx->ram_sz[1],
dsp_ctx->ram[1]);
State.Sig.SaveMask |= State.Sig.pCtx->SaveMask;
__TBICtxRestore(State, current->thread.dsp_context);
D0_8 = __core_reg_get(D0.8);
D0_8 |= current->thread.user_flags & 0xffff0000;
D0_8 |= (dsp_ctx->ram_sz[1] | dsp_ctx->ram_sz[0]) & 0xffff;
__core_reg_set(D0.8, D0_8);
} else
__core_reg_set(D0.8, 0);
#endif /* CONFIG_METAG_DSP */
#ifdef CONFIG_METAG_META21
{
unsigned int depth, txdefr;
/*
* If there hasn't been a LNKSET since the last LNKGET then the
* link flag will be set, causing the next LNKSET to succeed if
* the addresses match. The two LNK operations may not be a pair
* (e.g. see atomic_read()), so the LNKSET should fail.
* We use a conditional-never LNKSET to clear the link flag
* without side effects.
*/
asm volatile("LNKSETDNV [D0Re0],D0Re0");
depth = --current->thread.int_depth;
BUG_ON(user_mode(regs) && depth);
txdefr = __core_reg_get(TXDEFR);
txdefr &= ~TXDEFR_BUS_STATE_BITS;
/* Do we need to restore a failure code into TXDEFR? */
if (current->thread.txdefr_failure & (1 << depth))
txdefr |= (TXDEFR_LNKSET_FAILURE | TXDEFR_BUS_TRIG_BIT);
else
txdefr |= (TXDEFR_LNKSET_SUCCESS | TXDEFR_BUS_TRIG_BIT);
__core_reg_set(TXDEFR, txdefr);
}
#endif
return State;
}
#ifdef CONFIG_SMP
/*
* If we took an interrupt in the middle of __kuser_get_tls then we need
* to rewind the PC to the start of the function in case the process
* gets migrated to another thread (SMP only) and it reads the wrong tls
* data.
*/
static inline void _restart_critical_section(TBIRES State)
{
unsigned long get_tls_start;
unsigned long get_tls_end;
get_tls_start = (unsigned long)__kuser_get_tls -
(unsigned long)&__user_gateway_start;
get_tls_start += USER_GATEWAY_PAGE;
get_tls_end = (unsigned long)__kuser_get_tls_end -
(unsigned long)&__user_gateway_start;
get_tls_end += USER_GATEWAY_PAGE;
if ((State.Sig.pCtx->CurrPC >= get_tls_start) &&
(State.Sig.pCtx->CurrPC < get_tls_end))
State.Sig.pCtx->CurrPC = get_tls_start;
}
#else
/*
* If we took an interrupt in the middle of
* __kuser_cmpxchg then we need to rewind the PC to the
* start of the function.
*/
static inline void _restart_critical_section(TBIRES State)
{
unsigned long cmpxchg_start;
unsigned long cmpxchg_end;
cmpxchg_start = (unsigned long)__kuser_cmpxchg -
(unsigned long)&__user_gateway_start;
cmpxchg_start += USER_GATEWAY_PAGE;
cmpxchg_end = (unsigned long)__kuser_cmpxchg_end -
(unsigned long)&__user_gateway_start;
cmpxchg_end += USER_GATEWAY_PAGE;
if ((State.Sig.pCtx->CurrPC >= cmpxchg_start) &&
(State.Sig.pCtx->CurrPC < cmpxchg_end))
State.Sig.pCtx->CurrPC = cmpxchg_start;
}
#endif
/* Used by kick_handler() */
void restart_critical_section(TBIRES State)
{
_restart_critical_section(State);
}
TBIRES trigger_handler(TBIRES State, int SigNum, int Triggers, int Inst,
PTBI pTBI)
{
head_end(State, ~INTS_OFF_MASK);
/* If we interrupted user code handle any critical sections. */
if (State.Sig.SaveMask & TBICTX_PRIV_BIT)
_restart_critical_section(State);
trace_hardirqs_off();
do_IRQ(SigNum, (struct pt_regs *)State.Sig.pCtx);
return tail_end(State);
}
static unsigned int load_fault(PTBICTXEXTCB0 pbuf)
{
return pbuf->CBFlags & TXCATCH0_READ_BIT;
}
static unsigned long fault_address(PTBICTXEXTCB0 pbuf)
{
return pbuf->CBAddr;
}
static void unhandled_fault(struct pt_regs *regs, unsigned long addr,
int signo, int code, int trapno)
{
if (user_mode(regs)) {
siginfo_t info;
if (show_unhandled_signals && unhandled_signal(current, signo)
&& printk_ratelimit()) {
pr_info("pid %d unhandled fault: pc 0x%08x, addr 0x%08lx, trap %d (%s)\n",
current->pid, regs->ctx.CurrPC, addr,
trapno, trap_name(trapno));
print_vma_addr(" in ", regs->ctx.CurrPC);
print_vma_addr(" rtp in ", regs->ctx.DX[4].U1);
printk("\n");
show_regs(regs);
}
info.si_signo = signo;
info.si_errno = 0;
info.si_code = code;
info.si_addr = (__force void __user *)addr;
info.si_trapno = trapno;
force_sig_info(signo, &info, current);
} else {
die("Oops", regs, trapno, addr);
}
}
static int handle_data_fault(PTBICTXEXTCB0 pcbuf, struct pt_regs *regs,
unsigned int data_address, int trapno)
{
int ret;
ret = do_page_fault(regs, data_address, !load_fault(pcbuf), trapno);
return ret;
}
static unsigned long get_inst_fault_address(struct pt_regs *regs)
{
return regs->ctx.CurrPC;
}
TBIRES fault_handler(TBIRES State, int SigNum, int Triggers,
int Inst, PTBI pTBI)
{
struct pt_regs *regs = (struct pt_regs *)State.Sig.pCtx;
PTBICTXEXTCB0 pcbuf = (PTBICTXEXTCB0)&regs->extcb0;
unsigned long data_address;
head_end(State, ~INTS_OFF_MASK);
/* Hardware breakpoint or data watch */
if ((SigNum == TBIXXF_SIGNUM_IHF) ||
((SigNum == TBIXXF_SIGNUM_DHF) &&
(pcbuf[0].CBFlags & (TXCATCH0_WATCH1_BIT |
TXCATCH0_WATCH0_BIT)))) {
State = __TBIUnExpXXX(State, SigNum, Triggers, Inst,
pTBI);
return tail_end(State);
}
local_irq_enable();
data_address = fault_address(pcbuf);
switch (SigNum) {
case TBIXXF_SIGNUM_IGF:
/* 1st-level entry invalid (instruction fetch) */
case TBIXXF_SIGNUM_IPF: {
/* 2nd-level entry invalid (instruction fetch) */
unsigned long addr = get_inst_fault_address(regs);
do_page_fault(regs, addr, 0, SigNum);
break;
}
case TBIXXF_SIGNUM_DGF:
/* 1st-level entry invalid (data access) */
case TBIXXF_SIGNUM_DPF:
/* 2nd-level entry invalid (data access) */
case TBIXXF_SIGNUM_DWF:
/* Write to read only page */
handle_data_fault(pcbuf, regs, data_address, SigNum);
break;
case TBIXXF_SIGNUM_IIF:
/* Illegal instruction */
unhandled_fault(regs, regs->ctx.CurrPC, SIGILL, ILL_ILLOPC,
SigNum);
break;
case TBIXXF_SIGNUM_DHF:
/* Unaligned access */
unhandled_fault(regs, data_address, SIGBUS, BUS_ADRALN,
SigNum);
break;
case TBIXXF_SIGNUM_PGF:
/* Privilege violation */
unhandled_fault(regs, data_address, SIGSEGV, SEGV_ACCERR,
SigNum);
break;
default:
BUG();
break;
}
return tail_end(State);
}
static bool switch_is_syscall(unsigned int inst)
{
return inst == __METAG_SW_ENCODING(SYS);
}
static bool switch_is_legacy_syscall(unsigned int inst)
{
return inst == __METAG_SW_ENCODING(SYS_LEGACY);
}
static inline void step_over_switch(struct pt_regs *regs, unsigned int inst)
{
regs->ctx.CurrPC += 4;
}
static inline int test_syscall_work(void)
{
return current_thread_info()->flags & _TIF_WORK_SYSCALL_MASK;
}
TBIRES switch1_handler(TBIRES State, int SigNum, int Triggers,
int Inst, PTBI pTBI)
{
struct pt_regs *regs = (struct pt_regs *)State.Sig.pCtx;
unsigned int sysnumber;
unsigned long long a1_a2, a3_a4, a5_a6;
LPSYSCALL syscall_entry;
int restart;
head_end(State, ~INTS_OFF_MASK);
/*
* If this is not a syscall SWITCH it could be a breakpoint.
*/
if (!switch_is_syscall(Inst)) {
/*
* Alert the user if they're trying to use legacy system
* calls. This suggests they need to update their C
* library and build against up to date kernel headers.
*/
if (switch_is_legacy_syscall(Inst))
pr_warn_once("WARNING: A legacy syscall was made. Your userland needs updating.\n");
/*
* We don't know how to handle the SWITCH and cannot
* safely ignore it, so treat all unknown switches
* (including breakpoints) as traps.
*/
force_sig(SIGTRAP, current);
return tail_end(State);
}
local_irq_enable();
restart_syscall:
restart = 0;
sysnumber = regs->ctx.DX[0].U1;
if (test_syscall_work())
sysnumber = syscall_trace_enter(regs);
/* Skip over the SWITCH instruction - or you just get 'stuck' on it! */
step_over_switch(regs, Inst);
if (sysnumber >= __NR_syscalls) {
pr_debug("unknown syscall number: %d\n", sysnumber);
syscall_entry = (LPSYSCALL) sys_ni_syscall;
} else {
syscall_entry = (LPSYSCALL) sys_call_table[sysnumber];
}
/* Use 64bit loads for speed. */
a5_a6 = *(unsigned long long *)&regs->ctx.DX[1];
a3_a4 = *(unsigned long long *)&regs->ctx.DX[2];
a1_a2 = *(unsigned long long *)&regs->ctx.DX[3];
/* here is the actual call to the syscall handler functions */
regs->ctx.DX[0].U0 = syscall_entry(a1_a2, a3_a4, a5_a6);
if (test_syscall_work())
syscall_trace_leave(regs);
State = tail_end_sys(State, sysnumber, &restart);
/* Handlerless restarts shouldn't go via userland */
if (restart)
goto restart_syscall;
return State;
}
TBIRES switchx_handler(TBIRES State, int SigNum, int Triggers,
int Inst, PTBI pTBI)
{
struct pt_regs *regs = (struct pt_regs *)State.Sig.pCtx;
/*
* This can be caused by any user process simply executing an unusual
* SWITCH instruction. If there's no DA, __TBIUnExpXXX will cause the
* thread to stop, so signal a SIGTRAP instead.
*/
head_end(State, ~INTS_OFF_MASK);
if (user_mode(regs))
force_sig(SIGTRAP, current);
else
State = __TBIUnExpXXX(State, SigNum, Triggers, Inst, pTBI);
return tail_end(State);
}
#ifdef CONFIG_METAG_META21
TBIRES fpe_handler(TBIRES State, int SigNum, int Triggers, int Inst, PTBI pTBI)
{
struct pt_regs *regs = (struct pt_regs *)State.Sig.pCtx;
unsigned int error_state = Triggers;
siginfo_t info;
head_end(State, ~INTS_OFF_MASK);
local_irq_enable();
info.si_signo = SIGFPE;
if (error_state & TXSTAT_FPE_INVALID_BIT)
info.si_code = FPE_FLTINV;
else if (error_state & TXSTAT_FPE_DIVBYZERO_BIT)
info.si_code = FPE_FLTDIV;
else if (error_state & TXSTAT_FPE_OVERFLOW_BIT)
info.si_code = FPE_FLTOVF;
else if (error_state & TXSTAT_FPE_UNDERFLOW_BIT)
info.si_code = FPE_FLTUND;
else if (error_state & TXSTAT_FPE_INEXACT_BIT)
info.si_code = FPE_FLTRES;
else
info.si_code = 0;
info.si_errno = 0;
info.si_addr = (__force void __user *)regs->ctx.CurrPC;
force_sig_info(SIGFPE, &info, current);
return tail_end(State);
}
#endif
#ifdef CONFIG_METAG_SUSPEND_MEM
struct traps_context {
PTBIAPIFN fnSigs[TBID_SIGNUM_MAX + 1];
};
static struct traps_context *metag_traps_context;
int traps_save_context(void)
{
unsigned long cpu = smp_processor_id();
PTBI _pTBI = per_cpu(pTBI, cpu);
struct traps_context *context;
context = kzalloc(sizeof(*context), GFP_ATOMIC);
if (!context)
return -ENOMEM;
memcpy(context->fnSigs, (void *)_pTBI->fnSigs, sizeof(context->fnSigs));
metag_traps_context = context;
return 0;
}
int traps_restore_context(void)
{
unsigned long cpu = smp_processor_id();
PTBI _pTBI = per_cpu(pTBI, cpu);
struct traps_context *context = metag_traps_context;
metag_traps_context = NULL;
memcpy((void *)_pTBI->fnSigs, context->fnSigs, sizeof(context->fnSigs));
kfree(context);
return 0;
}
#endif
#ifdef CONFIG_SMP
static inline unsigned int _get_trigger_mask(void)
{
unsigned long cpu = smp_processor_id();
return per_cpu(trigger_mask, cpu);
}
unsigned int get_trigger_mask(void)
{
return _get_trigger_mask();
}
EXPORT_SYMBOL(get_trigger_mask);
static void set_trigger_mask(unsigned int mask)
{
unsigned long cpu = smp_processor_id();
per_cpu(trigger_mask, cpu) = mask;
}
void arch_local_irq_enable(void)
{
preempt_disable();
arch_local_irq_restore(_get_trigger_mask());
preempt_enable_no_resched();
}
EXPORT_SYMBOL(arch_local_irq_enable);
#else
static void set_trigger_mask(unsigned int mask)
{
global_trigger_mask = mask;
}
#endif
void per_cpu_trap_init(unsigned long cpu)
{
TBIRES int_context;
unsigned int thread = cpu_2_hwthread_id[cpu];
set_trigger_mask(TBI_INTS_INIT(thread) | /* interrupts */
TBI_TRIG_BIT(TBID_SIGNUM_LWK) | /* low level kick */
TBI_TRIG_BIT(TBID_SIGNUM_SW1));
/* non-priv - use current stack */
int_context.Sig.pCtx = NULL;
/* Start with interrupts off */
int_context.Sig.TrigMask = INTS_OFF_MASK;
int_context.Sig.SaveMask = 0;
/* And call __TBIASyncTrigger() */
__TBIASyncTrigger(int_context);
}
void __init trap_init(void)
{
unsigned long cpu = smp_processor_id();
PTBI _pTBI = per_cpu(pTBI, cpu);
_pTBI->fnSigs[TBID_SIGNUM_XXF] = fault_handler;
_pTBI->fnSigs[TBID_SIGNUM_SW0] = switchx_handler;
_pTBI->fnSigs[TBID_SIGNUM_SW1] = switch1_handler;
_pTBI->fnSigs[TBID_SIGNUM_SW2] = switchx_handler;
_pTBI->fnSigs[TBID_SIGNUM_SW3] = switchx_handler;
_pTBI->fnSigs[TBID_SIGNUM_LWK] = kick_handler;
#ifdef CONFIG_METAG_META21
_pTBI->fnSigs[TBID_SIGNUM_DFR] = __TBIHandleDFR;
_pTBI->fnSigs[TBID_SIGNUM_FPE] = fpe_handler;
#endif
per_cpu_trap_init(cpu);
}
void tbi_startup_interrupt(int irq)
{
unsigned long cpu = smp_processor_id();
PTBI _pTBI = per_cpu(pTBI, cpu);
BUG_ON(irq > TBID_SIGNUM_MAX);
/* For TR1 and TR2, the thread id is encoded in the irq number */
if (irq >= TBID_SIGNUM_T10 && irq < TBID_SIGNUM_TR3)
cpu = hwthread_id_2_cpu[(irq - TBID_SIGNUM_T10) % 4];
set_trigger_mask(get_trigger_mask() | TBI_TRIG_BIT(irq));
_pTBI->fnSigs[irq] = trigger_handler;
}
void tbi_shutdown_interrupt(int irq)
{
unsigned long cpu = smp_processor_id();
PTBI _pTBI = per_cpu(pTBI, cpu);
BUG_ON(irq > TBID_SIGNUM_MAX);
set_trigger_mask(get_trigger_mask() & ~TBI_TRIG_BIT(irq));
_pTBI->fnSigs[irq] = __TBIUnExpXXX;
}
int ret_from_fork(TBIRES arg)
{
struct task_struct *prev = arg.Switch.pPara;
struct task_struct *tsk = current;
struct pt_regs *regs = task_pt_regs(tsk);
int (*fn)(void *);
TBIRES Next;
schedule_tail(prev);
if (tsk->flags & PF_KTHREAD) {
fn = (void *)regs->ctx.DX[4].U1;
BUG_ON(!fn);
fn((void *)regs->ctx.DX[3].U1);
}
if (test_syscall_work())
syscall_trace_leave(regs);
preempt_disable();
Next.Sig.TrigMask = get_trigger_mask();
Next.Sig.SaveMask = 0;
Next.Sig.pCtx = &regs->ctx;
set_gateway_tls(current->thread.tls_ptr);
preempt_enable_no_resched();
/* And interrupts should come back on when we resume the real usermode
* code. Call __TBIASyncResume()
*/
__TBIASyncResume(tail_end(Next));
/* ASyncResume should NEVER return */
BUG();
return 0;
}
void show_trace(struct task_struct *tsk, unsigned long *sp,
struct pt_regs *regs)
{
unsigned long addr;
#ifdef CONFIG_FRAME_POINTER
unsigned long fp, fpnew;
unsigned long stack;
#endif
if (regs && user_mode(regs))
return;
printk("\nCall trace: ");
#ifdef CONFIG_KALLSYMS
printk("\n");
#endif
if (!tsk)
tsk = current;
#ifdef CONFIG_FRAME_POINTER
if (regs) {
print_ip_sym(regs->ctx.CurrPC);
fp = regs->ctx.AX[1].U0;
} else {
fp = __core_reg_get(A0FrP);
}
/* detect when the frame pointer has been used for other purposes and
* doesn't point to the stack (it may point completely elsewhere which
* kstack_end may not detect).
*/
stack = (unsigned long)task_stack_page(tsk);
while (fp >= stack && fp + 8 <= stack + THREAD_SIZE) {
addr = __raw_readl((unsigned long *)(fp + 4)) - 4;
if (kernel_text_address(addr))
print_ip_sym(addr);
else
break;
/* stack grows up, so frame pointers must decrease */
fpnew = __raw_readl((unsigned long *)(fp + 0));
if (fpnew >= fp)
break;
fp = fpnew;
}
#else
while (!kstack_end(sp)) {
addr = (*sp--) - 4;
if (kernel_text_address(addr))
print_ip_sym(addr);
}
#endif
printk("\n");
debug_show_held_locks(tsk);
}
void show_stack(struct task_struct *tsk, unsigned long *sp)
{
if (!tsk)
tsk = current;
if (tsk == current)
sp = (unsigned long *)current_stack_pointer;
else
sp = (unsigned long *)tsk->thread.kernel_context->AX[0].U0;
show_trace(tsk, sp, NULL);
}