blob: 2e2aa3df170cfb5f2be5f8097ee9e2324c759143 [file] [log] [blame]
* Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
* The full GNU General Public License is included in this distribution in the
* file called COPYING.
#include <linux/device.h>
#include <linux/uio.h>
#include <linux/dma-mapping.h>
* typedef dma_cookie_t - an opaque DMA cookie
* if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
typedef s32 dma_cookie_t;
#define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0)
* enum dma_status - DMA transaction status
* @DMA_SUCCESS: transaction completed successfully
* @DMA_IN_PROGRESS: transaction not yet processed
* @DMA_ERROR: transaction failed
enum dma_status {
* enum dma_transaction_type - DMA transaction types/indexes
enum dma_transaction_type {
/* last transaction type for creation of the capabilities mask */
* enum dma_ctrl_flags - DMA flags to augment operation preparation,
* control completion, and communicate status.
* @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
* this transaction
* @DMA_CTRL_ACK - the descriptor cannot be reused until the client
* acknowledges receipt, i.e. has has a chance to establish any
* dependency chains
* @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s)
* @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s)
enum dma_ctrl_flags {
DMA_CTRL_ACK = (1 << 1),
* dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
* See linux/cpumask.h
typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
* struct dma_chan_percpu - the per-CPU part of struct dma_chan
* @memcpy_count: transaction counter
* @bytes_transferred: byte counter
struct dma_chan_percpu {
/* stats */
unsigned long memcpy_count;
unsigned long bytes_transferred;
* struct dma_chan - devices supply DMA channels, clients use them
* @device: ptr to the dma device who supplies this channel, always !%NULL
* @cookie: last cookie value returned to client
* @chan_id: channel ID for sysfs
* @dev: class device for sysfs
* @device_node: used to add this to the device chan list
* @local: per-cpu pointer to a struct dma_chan_percpu
* @client-count: how many clients are using this channel
* @table_count: number of appearances in the mem-to-mem allocation table
* @private: private data for certain client-channel associations
struct dma_chan {
struct dma_device *device;
dma_cookie_t cookie;
/* sysfs */
int chan_id;
struct dma_chan_dev *dev;
struct list_head device_node;
struct dma_chan_percpu *local;
int client_count;
int table_count;
void *private;
* struct dma_chan_dev - relate sysfs device node to backing channel device
* @chan - driver channel device
* @device - sysfs device
* @dev_id - parent dma_device dev_id
* @idr_ref - reference count to gate release of dma_device dev_id
struct dma_chan_dev {
struct dma_chan *chan;
struct device device;
int dev_id;
atomic_t *idr_ref;
static inline const char *dma_chan_name(struct dma_chan *chan)
return dev_name(&chan->dev->device);
void dma_chan_cleanup(struct kref *kref);
* typedef dma_filter_fn - callback filter for dma_request_channel
* @chan: channel to be reviewed
* @filter_param: opaque parameter passed through dma_request_channel
* When this optional parameter is specified in a call to dma_request_channel a
* suitable channel is passed to this routine for further dispositioning before
* being returned. Where 'suitable' indicates a non-busy channel that
* satisfies the given capability mask. It returns 'true' to indicate that the
* channel is suitable.
typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
typedef void (*dma_async_tx_callback)(void *dma_async_param);
* struct dma_async_tx_descriptor - async transaction descriptor
* ---dma generic offload fields---
* @cookie: tracking cookie for this transaction, set to -EBUSY if
* this tx is sitting on a dependency list
* @flags: flags to augment operation preparation, control completion, and
* communicate status
* @phys: physical address of the descriptor
* @tx_list: driver common field for operations that require multiple
* descriptors
* @chan: target channel for this operation
* @tx_submit: set the prepared descriptor(s) to be executed by the engine
* @callback: routine to call after this operation is complete
* @callback_param: general parameter to pass to the callback routine
* ---async_tx api specific fields---
* @next: at completion submit this descriptor
* @parent: pointer to the next level up in the dependency chain
* @lock: protect the parent and next pointers
struct dma_async_tx_descriptor {
dma_cookie_t cookie;
enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
dma_addr_t phys;
struct list_head tx_list;
struct dma_chan *chan;
dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
dma_async_tx_callback callback;
void *callback_param;
struct dma_async_tx_descriptor *next;
struct dma_async_tx_descriptor *parent;
spinlock_t lock;
* struct dma_device - info on the entity supplying DMA services
* @chancnt: how many DMA channels are supported
* @privatecnt: how many DMA channels are requested by dma_request_channel
* @channels: the list of struct dma_chan
* @global_node: list_head for global dma_device_list
* @cap_mask: one or more dma_capability flags
* @max_xor: maximum number of xor sources, 0 if no capability
* @dev_id: unique device ID
* @dev: struct device reference for dma mapping api
* @device_alloc_chan_resources: allocate resources and return the
* number of allocated descriptors
* @device_free_chan_resources: release DMA channel's resources
* @device_prep_dma_memcpy: prepares a memcpy operation
* @device_prep_dma_xor: prepares a xor operation
* @device_prep_dma_zero_sum: prepares a zero_sum operation
* @device_prep_dma_memset: prepares a memset operation
* @device_prep_dma_interrupt: prepares an end of chain interrupt operation
* @device_prep_slave_sg: prepares a slave dma operation
* @device_terminate_all: terminate all pending operations
* @device_is_tx_complete: poll for transaction completion
* @device_issue_pending: push pending transactions to hardware
struct dma_device {
unsigned int chancnt;
unsigned int privatecnt;
struct list_head channels;
struct list_head global_node;
dma_cap_mask_t cap_mask;
int max_xor;
int dev_id;
struct device *dev;
int (*device_alloc_chan_resources)(struct dma_chan *chan);
void (*device_free_chan_resources)(struct dma_chan *chan);
struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
size_t len, unsigned long flags);
struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
unsigned int src_cnt, size_t len, unsigned long flags);
struct dma_async_tx_descriptor *(*device_prep_dma_zero_sum)(
struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
size_t len, u32 *result, unsigned long flags);
struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
unsigned long flags);
struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
struct dma_chan *chan, unsigned long flags);
struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sg_len, enum dma_data_direction direction,
unsigned long flags);
void (*device_terminate_all)(struct dma_chan *chan);
enum dma_status (*device_is_tx_complete)(struct dma_chan *chan,
dma_cookie_t cookie, dma_cookie_t *last,
dma_cookie_t *used);
void (*device_issue_pending)(struct dma_chan *chan);
/* --- public DMA engine API --- */
void dmaengine_get(void);
void dmaengine_put(void);
static inline void dmaengine_get(void)
static inline void dmaengine_put(void)
#define net_dmaengine_get() dmaengine_get()
#define net_dmaengine_put() dmaengine_put()
static inline void net_dmaengine_get(void)
static inline void net_dmaengine_put(void)
#define async_dmaengine_get() dmaengine_get()
#define async_dmaengine_put() dmaengine_put()
#define async_dma_find_channel(type) dma_find_channel(type)
static inline void async_dmaengine_get(void)
static inline void async_dmaengine_put(void)
static inline struct dma_chan *
async_dma_find_channel(enum dma_transaction_type type)
return NULL;
dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
void *dest, void *src, size_t len);
dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
struct page *page, unsigned int offset, void *kdata, size_t len);
dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan,
struct page *dest_pg, unsigned int dest_off, struct page *src_pg,
unsigned int src_off, size_t len);
void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
struct dma_chan *chan);
static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
tx->flags |= DMA_CTRL_ACK;
static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
tx->flags &= ~DMA_CTRL_ACK;
static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
#define first_dma_cap(mask) __first_dma_cap(&(mask))
static inline int __first_dma_cap(const dma_cap_mask_t *srcp)
return min_t(int, DMA_TX_TYPE_END,
find_first_bit(srcp->bits, DMA_TX_TYPE_END));
#define next_dma_cap(n, mask) __next_dma_cap((n), &(mask))
static inline int __next_dma_cap(int n, const dma_cap_mask_t *srcp)
return min_t(int, DMA_TX_TYPE_END,
find_next_bit(srcp->bits, DMA_TX_TYPE_END, n+1));
#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
static inline void
__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
set_bit(tx_type, dstp->bits);
#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
static inline void
__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
clear_bit(tx_type, dstp->bits);
#define dma_cap_zero(mask) __dma_cap_zero(&(mask))
static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
static inline int
__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
return test_bit(tx_type, srcp->bits);
#define for_each_dma_cap_mask(cap, mask) \
for ((cap) = first_dma_cap(mask); \
(cap) < DMA_TX_TYPE_END; \
(cap) = next_dma_cap((cap), (mask)))
* dma_async_issue_pending - flush pending transactions to HW
* @chan: target DMA channel
* This allows drivers to push copies to HW in batches,
* reducing MMIO writes where possible.
static inline void dma_async_issue_pending(struct dma_chan *chan)
#define dma_async_memcpy_issue_pending(chan) dma_async_issue_pending(chan)
* dma_async_is_tx_complete - poll for transaction completion
* @chan: DMA channel
* @cookie: transaction identifier to check status of
* @last: returns last completed cookie, can be NULL
* @used: returns last issued cookie, can be NULL
* If @last and @used are passed in, upon return they reflect the driver
* internal state and can be used with dma_async_is_complete() to check
* the status of multiple cookies without re-checking hardware state.
static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
return chan->device->device_is_tx_complete(chan, cookie, last, used);
#define dma_async_memcpy_complete(chan, cookie, last, used)\
dma_async_is_tx_complete(chan, cookie, last, used)
* dma_async_is_complete - test a cookie against chan state
* @cookie: transaction identifier to test status of
* @last_complete: last know completed transaction
* @last_used: last cookie value handed out
* dma_async_is_complete() is used in dma_async_memcpy_complete()
* the test logic is separated for lightweight testing of multiple cookies
static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
dma_cookie_t last_complete, dma_cookie_t last_used)
if (last_complete <= last_used) {
if ((cookie <= last_complete) || (cookie > last_used))
} else {
if ((cookie <= last_complete) && (cookie > last_used))
enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
void dma_issue_pending_all(void);
static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
static inline void dma_issue_pending_all(void)
do { } while (0);
/* --- DMA device --- */
int dma_async_device_register(struct dma_device *device);
void dma_async_device_unregister(struct dma_device *device);
void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param);
void dma_release_channel(struct dma_chan *chan);
/* --- Helper iov-locking functions --- */
struct dma_page_list {
char __user *base_address;
int nr_pages;
struct page **pages;
struct dma_pinned_list {
int nr_iovecs;
struct dma_page_list page_list[0];
struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
struct dma_pinned_list *pinned_list, struct page *page,
unsigned int offset, size_t len);
#endif /* DMAENGINE_H */