blob: ad4fc659fc3598a283bbcae6f82d4a147a1eeb44 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2015 Broadcom
*/
/**
* DOC: VC4 CRTC module
*
* In VC4, the Pixel Valve is what most closely corresponds to the
* DRM's concept of a CRTC. The PV generates video timings from the
* encoder's clock plus its configuration. It pulls scaled pixels from
* the HVS at that timing, and feeds it to the encoder.
*
* However, the DRM CRTC also collects the configuration of all the
* DRM planes attached to it. As a result, the CRTC is also
* responsible for writing the display list for the HVS channel that
* the CRTC will use.
*
* The 2835 has 3 different pixel valves. pv0 in the audio power
* domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
* image domain can feed either HDMI or the SDTV controller. The
* pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
* SDTV, etc.) according to which output type is chosen in the mux.
*
* For power management, the pixel valve's registers are all clocked
* by the AXI clock, while the timings and FIFOs make use of the
* output-specific clock. Since the encoders also directly consume
* the CPRMAN clocks, and know what timings they need, they are the
* ones that set the clock.
*/
#include <linux/clk.h>
#include <linux/component.h>
#include <linux/of_device.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_atomic_uapi.h>
#include <drm/drm_fb_cma_helper.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_vblank.h>
#include "vc4_drv.h"
#include "vc4_regs.h"
#define HVS_FIFO_LATENCY_PIX 6
#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
static const struct debugfs_reg32 crtc_regs[] = {
VC4_REG32(PV_CONTROL),
VC4_REG32(PV_V_CONTROL),
VC4_REG32(PV_VSYNCD_EVEN),
VC4_REG32(PV_HORZA),
VC4_REG32(PV_HORZB),
VC4_REG32(PV_VERTA),
VC4_REG32(PV_VERTB),
VC4_REG32(PV_VERTA_EVEN),
VC4_REG32(PV_VERTB_EVEN),
VC4_REG32(PV_INTEN),
VC4_REG32(PV_INTSTAT),
VC4_REG32(PV_STAT),
VC4_REG32(PV_HACT_ACT),
};
static unsigned int
vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
{
u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
/* Top/base are supposed to be 4-pixel aligned, but the
* Raspberry Pi firmware fills the low bits (which are
* presumably ignored).
*/
u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
return top - base + 4;
}
static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
bool in_vblank_irq,
int *vpos, int *hpos,
ktime_t *stime, ktime_t *etime,
const struct drm_display_mode *mode)
{
struct drm_device *dev = crtc->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
unsigned int cob_size;
u32 val;
int fifo_lines;
int vblank_lines;
bool ret = false;
/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
/* Get optional system timestamp before query. */
if (stime)
*stime = ktime_get();
/*
* Read vertical scanline which is currently composed for our
* pixelvalve by the HVS, and also the scaler status.
*/
val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
/* Get optional system timestamp after query. */
if (etime)
*etime = ktime_get();
/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
/* Vertical position of hvs composed scanline. */
*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
*hpos = 0;
if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
*vpos /= 2;
/* Use hpos to correct for field offset in interlaced mode. */
if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
*hpos += mode->crtc_htotal / 2;
}
cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
/* This is the offset we need for translating hvs -> pv scanout pos. */
fifo_lines = cob_size / mode->crtc_hdisplay;
if (fifo_lines > 0)
ret = true;
/* HVS more than fifo_lines into frame for compositing? */
if (*vpos > fifo_lines) {
/*
* We are in active scanout and can get some meaningful results
* from HVS. The actual PV scanout can not trail behind more
* than fifo_lines as that is the fifo's capacity. Assume that
* in active scanout the HVS and PV work in lockstep wrt. HVS
* refilling the fifo and PV consuming from the fifo, ie.
* whenever the PV consumes and frees up a scanline in the
* fifo, the HVS will immediately refill it, therefore
* incrementing vpos. Therefore we choose HVS read position -
* fifo size in scanlines as a estimate of the real scanout
* position of the PV.
*/
*vpos -= fifo_lines + 1;
return ret;
}
/*
* Less: This happens when we are in vblank and the HVS, after getting
* the VSTART restart signal from the PV, just started refilling its
* fifo with new lines from the top-most lines of the new framebuffers.
* The PV does not scan out in vblank, so does not remove lines from
* the fifo, so the fifo will be full quickly and the HVS has to pause.
* We can't get meaningful readings wrt. scanline position of the PV
* and need to make things up in a approximative but consistent way.
*/
vblank_lines = mode->vtotal - mode->vdisplay;
if (in_vblank_irq) {
/*
* Assume the irq handler got called close to first
* line of vblank, so PV has about a full vblank
* scanlines to go, and as a base timestamp use the
* one taken at entry into vblank irq handler, so it
* is not affected by random delays due to lock
* contention on event_lock or vblank_time lock in
* the core.
*/
*vpos = -vblank_lines;
if (stime)
*stime = vc4_crtc->t_vblank;
if (etime)
*etime = vc4_crtc->t_vblank;
/*
* If the HVS fifo is not yet full then we know for certain
* we are at the very beginning of vblank, as the hvs just
* started refilling, and the stime and etime timestamps
* truly correspond to start of vblank.
*
* Unfortunately there's no way to report this to upper levels
* and make it more useful.
*/
} else {
/*
* No clue where we are inside vblank. Return a vpos of zero,
* which will cause calling code to just return the etime
* timestamp uncorrected. At least this is no worse than the
* standard fallback.
*/
*vpos = 0;
}
return ret;
}
void vc4_crtc_destroy(struct drm_crtc *crtc)
{
drm_crtc_cleanup(crtc);
}
static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
{
const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
u32 fifo_len_bytes = pv_data->fifo_depth;
/*
* Pixels are pulled from the HVS if the number of bytes is
* lower than the FIFO full level.
*
* The latency of the pixel fetch mechanism is 6 pixels, so we
* need to convert those 6 pixels in bytes, depending on the
* format, and then subtract that from the length of the FIFO
* to make sure we never end up in a situation where the FIFO
* is full.
*/
switch (format) {
case PV_CONTROL_FORMAT_DSIV_16:
case PV_CONTROL_FORMAT_DSIC_16:
return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
case PV_CONTROL_FORMAT_DSIV_18:
return fifo_len_bytes - 14;
case PV_CONTROL_FORMAT_24:
case PV_CONTROL_FORMAT_DSIV_24:
default:
/*
* For some reason, the pixelvalve4 doesn't work with
* the usual formula and will only work with 32.
*/
if (crtc_data->hvs_output == 5)
return 32;
return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
}
}
static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
u32 format)
{
u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
u32 ret = 0;
ret |= VC4_SET_FIELD((level >> 6),
PV5_CONTROL_FIFO_LEVEL_HIGH);
return ret | VC4_SET_FIELD(level & 0x3f,
PV_CONTROL_FIFO_LEVEL);
}
/*
* Returns the encoder attached to the CRTC.
*
* VC4 can only scan out to one encoder at a time, while the DRM core
* allows drivers to push pixels to more than one encoder from the
* same CRTC.
*/
static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
{
struct drm_connector *connector;
struct drm_connector_list_iter conn_iter;
drm_connector_list_iter_begin(crtc->dev, &conn_iter);
drm_for_each_connector_iter(connector, &conn_iter) {
if (connector->state->crtc == crtc) {
drm_connector_list_iter_end(&conn_iter);
return connector->encoder;
}
}
drm_connector_list_iter_end(&conn_iter);
return NULL;
}
static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
{
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
/* The PV needs to be disabled before it can be flushed */
CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
}
static void vc4_crtc_config_pv(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
struct drm_crtc_state *state = crtc->state;
struct drm_display_mode *mode = &state->adjusted_mode;
bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
u8 ppc = pv_data->pixels_per_clock;
bool debug_dump_regs = false;
if (debug_dump_regs) {
struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
drm_crtc_index(crtc));
drm_print_regset32(&p, &vc4_crtc->regset);
}
vc4_crtc_pixelvalve_reset(crtc);
CRTC_WRITE(PV_HORZA,
VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
PV_HORZA_HBP) |
VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
PV_HORZA_HSYNC));
CRTC_WRITE(PV_HORZB,
VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
PV_HORZB_HFP) |
VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
PV_HORZB_HACTIVE));
CRTC_WRITE(PV_VERTA,
VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
PV_VERTA_VBP) |
VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
PV_VERTA_VSYNC));
CRTC_WRITE(PV_VERTB,
VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
PV_VERTB_VFP) |
VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
if (interlace) {
CRTC_WRITE(PV_VERTA_EVEN,
VC4_SET_FIELD(mode->crtc_vtotal -
mode->crtc_vsync_end - 1,
PV_VERTA_VBP) |
VC4_SET_FIELD(mode->crtc_vsync_end -
mode->crtc_vsync_start,
PV_VERTA_VSYNC));
CRTC_WRITE(PV_VERTB_EVEN,
VC4_SET_FIELD(mode->crtc_vsync_start -
mode->crtc_vdisplay,
PV_VERTB_VFP) |
VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
/* We set up first field even mode for HDMI. VEC's
* NTSC mode would want first field odd instead, once
* we support it (to do so, set ODD_FIRST and put the
* delay in VSYNCD_EVEN instead).
*/
CRTC_WRITE(PV_V_CONTROL,
PV_VCONTROL_CONTINUOUS |
(is_dsi ? PV_VCONTROL_DSI : 0) |
PV_VCONTROL_INTERLACE |
VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
PV_VCONTROL_ODD_DELAY));
CRTC_WRITE(PV_VSYNCD_EVEN, 0);
} else {
CRTC_WRITE(PV_V_CONTROL,
PV_VCONTROL_CONTINUOUS |
(is_dsi ? PV_VCONTROL_DSI : 0));
}
if (is_dsi)
CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
if (vc4->hvs->hvs5)
CRTC_WRITE(PV_MUX_CFG,
VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
PV_CONTROL_CLR_AT_START |
PV_CONTROL_TRIGGER_UNDERFLOW |
PV_CONTROL_WAIT_HSTART |
VC4_SET_FIELD(vc4_encoder->clock_select,
PV_CONTROL_CLK_SELECT));
if (debug_dump_regs) {
struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
drm_crtc_index(crtc));
drm_print_regset32(&p, &vc4_crtc->regset);
}
}
static void require_hvs_enabled(struct drm_device *dev)
{
struct vc4_dev *vc4 = to_vc4_dev(dev);
WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
SCALER_DISPCTRL_ENABLE);
}
static int vc4_crtc_disable(struct drm_crtc *crtc, unsigned int channel)
{
struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
struct drm_device *dev = crtc->dev;
int ret;
CRTC_WRITE(PV_V_CONTROL,
CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
mdelay(20);
if (vc4_encoder && vc4_encoder->post_crtc_disable)
vc4_encoder->post_crtc_disable(encoder);
vc4_crtc_pixelvalve_reset(crtc);
vc4_hvs_stop_channel(dev, channel);
if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
vc4_encoder->post_crtc_powerdown(encoder);
return 0;
}
int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
{
struct drm_device *drm = crtc->dev;
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
int channel;
if (!of_device_is_compatible(drm->dev->of_node, "brcm,bcm2711-vc5"))
return 0;
if (of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
"brcm,bcm2835-txp"))
return 0;
if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
return 0;
if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
return 0;
channel = vc4_hvs_get_fifo_from_output(drm, vc4_crtc->data->hvs_output);
if (channel < 0)
return 0;
return vc4_crtc_disable(crtc, channel);
}
static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
struct drm_crtc_state *old_state)
{
struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
struct drm_device *dev = crtc->dev;
require_hvs_enabled(dev);
/* Disable vblank irq handling before crtc is disabled. */
drm_crtc_vblank_off(crtc);
vc4_crtc_disable(crtc, old_vc4_state->assigned_channel);
/*
* Make sure we issue a vblank event after disabling the CRTC if
* someone was waiting it.
*/
if (crtc->state->event) {
unsigned long flags;
spin_lock_irqsave(&dev->event_lock, flags);
drm_crtc_send_vblank_event(crtc, crtc->state->event);
crtc->state->event = NULL;
spin_unlock_irqrestore(&dev->event_lock, flags);
}
}
static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
struct drm_crtc_state *old_state)
{
struct drm_device *dev = crtc->dev;
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
require_hvs_enabled(dev);
/* Enable vblank irq handling before crtc is started otherwise
* drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
*/
drm_crtc_vblank_on(crtc);
vc4_hvs_atomic_enable(crtc, old_state);
if (vc4_encoder->pre_crtc_configure)
vc4_encoder->pre_crtc_configure(encoder);
vc4_crtc_config_pv(crtc);
CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
if (vc4_encoder->pre_crtc_enable)
vc4_encoder->pre_crtc_enable(encoder);
/* When feeding the transposer block the pixelvalve is unneeded and
* should not be enabled.
*/
CRTC_WRITE(PV_V_CONTROL,
CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
if (vc4_encoder->post_crtc_enable)
vc4_encoder->post_crtc_enable(encoder);
}
static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
const struct drm_display_mode *mode)
{
/* Do not allow doublescan modes from user space */
if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
crtc->base.id);
return MODE_NO_DBLESCAN;
}
return MODE_OK;
}
void vc4_crtc_get_margins(struct drm_crtc_state *state,
unsigned int *left, unsigned int *right,
unsigned int *top, unsigned int *bottom)
{
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
struct drm_connector_state *conn_state;
struct drm_connector *conn;
int i;
*left = vc4_state->margins.left;
*right = vc4_state->margins.right;
*top = vc4_state->margins.top;
*bottom = vc4_state->margins.bottom;
/* We have to interate over all new connector states because
* vc4_crtc_get_margins() might be called before
* vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
* might be outdated.
*/
for_each_new_connector_in_state(state->state, conn, conn_state, i) {
if (conn_state->crtc != state->crtc)
continue;
*left = conn_state->tv.margins.left;
*right = conn_state->tv.margins.right;
*top = conn_state->tv.margins.top;
*bottom = conn_state->tv.margins.bottom;
break;
}
}
static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
struct drm_connector *conn;
struct drm_connector_state *conn_state;
int ret, i;
ret = vc4_hvs_atomic_check(crtc, state);
if (ret)
return ret;
for_each_new_connector_in_state(state->state, conn, conn_state, i) {
if (conn_state->crtc != crtc)
continue;
vc4_state->margins.left = conn_state->tv.margins.left;
vc4_state->margins.right = conn_state->tv.margins.right;
vc4_state->margins.top = conn_state->tv.margins.top;
vc4_state->margins.bottom = conn_state->tv.margins.bottom;
break;
}
return 0;
}
static int vc4_enable_vblank(struct drm_crtc *crtc)
{
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
return 0;
}
static void vc4_disable_vblank(struct drm_crtc *crtc)
{
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
CRTC_WRITE(PV_INTEN, 0);
}
static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
{
struct drm_crtc *crtc = &vc4_crtc->base;
struct drm_device *dev = crtc->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
u32 chan = vc4_state->assigned_channel;
unsigned long flags;
spin_lock_irqsave(&dev->event_lock, flags);
if (vc4_crtc->event &&
(vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
vc4_state->feed_txp)) {
drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
vc4_crtc->event = NULL;
drm_crtc_vblank_put(crtc);
/* Wait for the page flip to unmask the underrun to ensure that
* the display list was updated by the hardware. Before that
* happens, the HVS will be using the previous display list with
* the CRTC and encoder already reconfigured, leading to
* underruns. This can be seen when reconfiguring the CRTC.
*/
vc4_hvs_unmask_underrun(dev, chan);
}
spin_unlock_irqrestore(&dev->event_lock, flags);
}
void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
{
crtc->t_vblank = ktime_get();
drm_crtc_handle_vblank(&crtc->base);
vc4_crtc_handle_page_flip(crtc);
}
static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
{
struct vc4_crtc *vc4_crtc = data;
u32 stat = CRTC_READ(PV_INTSTAT);
irqreturn_t ret = IRQ_NONE;
if (stat & PV_INT_VFP_START) {
CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
vc4_crtc_handle_vblank(vc4_crtc);
ret = IRQ_HANDLED;
}
return ret;
}
struct vc4_async_flip_state {
struct drm_crtc *crtc;
struct drm_framebuffer *fb;
struct drm_framebuffer *old_fb;
struct drm_pending_vblank_event *event;
struct vc4_seqno_cb cb;
};
/* Called when the V3D execution for the BO being flipped to is done, so that
* we can actually update the plane's address to point to it.
*/
static void
vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
{
struct vc4_async_flip_state *flip_state =
container_of(cb, struct vc4_async_flip_state, cb);
struct drm_crtc *crtc = flip_state->crtc;
struct drm_device *dev = crtc->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct drm_plane *plane = crtc->primary;
vc4_plane_async_set_fb(plane, flip_state->fb);
if (flip_state->event) {
unsigned long flags;
spin_lock_irqsave(&dev->event_lock, flags);
drm_crtc_send_vblank_event(crtc, flip_state->event);
spin_unlock_irqrestore(&dev->event_lock, flags);
}
drm_crtc_vblank_put(crtc);
drm_framebuffer_put(flip_state->fb);
/* Decrement the BO usecnt in order to keep the inc/dec calls balanced
* when the planes are updated through the async update path.
* FIXME: we should move to generic async-page-flip when it's
* available, so that we can get rid of this hand-made cleanup_fb()
* logic.
*/
if (flip_state->old_fb) {
struct drm_gem_cma_object *cma_bo;
struct vc4_bo *bo;
cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
bo = to_vc4_bo(&cma_bo->base);
vc4_bo_dec_usecnt(bo);
drm_framebuffer_put(flip_state->old_fb);
}
kfree(flip_state);
up(&vc4->async_modeset);
}
/* Implements async (non-vblank-synced) page flips.
*
* The page flip ioctl needs to return immediately, so we grab the
* modeset semaphore on the pipe, and queue the address update for
* when V3D is done with the BO being flipped to.
*/
static int vc4_async_page_flip(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_pending_vblank_event *event,
uint32_t flags)
{
struct drm_device *dev = crtc->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct drm_plane *plane = crtc->primary;
int ret = 0;
struct vc4_async_flip_state *flip_state;
struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
/* Increment the BO usecnt here, so that we never end up with an
* unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
* plane is later updated through the non-async path.
* FIXME: we should move to generic async-page-flip when it's
* available, so that we can get rid of this hand-made prepare_fb()
* logic.
*/
ret = vc4_bo_inc_usecnt(bo);
if (ret)
return ret;
flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
if (!flip_state) {
vc4_bo_dec_usecnt(bo);
return -ENOMEM;
}
drm_framebuffer_get(fb);
flip_state->fb = fb;
flip_state->crtc = crtc;
flip_state->event = event;
/* Make sure all other async modesetes have landed. */
ret = down_interruptible(&vc4->async_modeset);
if (ret) {
drm_framebuffer_put(fb);
vc4_bo_dec_usecnt(bo);
kfree(flip_state);
return ret;
}
/* Save the current FB before it's replaced by the new one in
* drm_atomic_set_fb_for_plane(). We'll need the old FB in
* vc4_async_page_flip_complete() to decrement the BO usecnt and keep
* it consistent.
* FIXME: we should move to generic async-page-flip when it's
* available, so that we can get rid of this hand-made cleanup_fb()
* logic.
*/
flip_state->old_fb = plane->state->fb;
if (flip_state->old_fb)
drm_framebuffer_get(flip_state->old_fb);
WARN_ON(drm_crtc_vblank_get(crtc) != 0);
/* Immediately update the plane's legacy fb pointer, so that later
* modeset prep sees the state that will be present when the semaphore
* is released.
*/
drm_atomic_set_fb_for_plane(plane->state, fb);
vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
vc4_async_page_flip_complete);
/* Driver takes ownership of state on successful async commit. */
return 0;
}
int vc4_page_flip(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_pending_vblank_event *event,
uint32_t flags,
struct drm_modeset_acquire_ctx *ctx)
{
if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
return vc4_async_page_flip(crtc, fb, event, flags);
else
return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
}
struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
{
struct vc4_crtc_state *vc4_state, *old_vc4_state;
vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
if (!vc4_state)
return NULL;
old_vc4_state = to_vc4_crtc_state(crtc->state);
vc4_state->feed_txp = old_vc4_state->feed_txp;
vc4_state->margins = old_vc4_state->margins;
vc4_state->assigned_channel = old_vc4_state->assigned_channel;
__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
return &vc4_state->base;
}
void vc4_crtc_destroy_state(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
if (drm_mm_node_allocated(&vc4_state->mm)) {
unsigned long flags;
spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
drm_mm_remove_node(&vc4_state->mm);
spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
}
drm_atomic_helper_crtc_destroy_state(crtc, state);
}
void vc4_crtc_reset(struct drm_crtc *crtc)
{
if (crtc->state)
vc4_crtc_destroy_state(crtc, crtc->state);
crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
if (crtc->state)
crtc->state->crtc = crtc;
}
static const struct drm_crtc_funcs vc4_crtc_funcs = {
.set_config = drm_atomic_helper_set_config,
.destroy = vc4_crtc_destroy,
.page_flip = vc4_page_flip,
.set_property = NULL,
.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
.reset = vc4_crtc_reset,
.atomic_duplicate_state = vc4_crtc_duplicate_state,
.atomic_destroy_state = vc4_crtc_destroy_state,
.gamma_set = drm_atomic_helper_legacy_gamma_set,
.enable_vblank = vc4_enable_vblank,
.disable_vblank = vc4_disable_vblank,
.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
};
static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
.mode_valid = vc4_crtc_mode_valid,
.atomic_check = vc4_crtc_atomic_check,
.atomic_flush = vc4_hvs_atomic_flush,
.atomic_enable = vc4_crtc_atomic_enable,
.atomic_disable = vc4_crtc_atomic_disable,
.get_scanout_position = vc4_crtc_get_scanout_position,
};
static const struct vc4_pv_data bcm2835_pv0_data = {
.base = {
.hvs_available_channels = BIT(0),
.hvs_output = 0,
},
.debugfs_name = "crtc0_regs",
.fifo_depth = 64,
.pixels_per_clock = 1,
.encoder_types = {
[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
},
};
static const struct vc4_pv_data bcm2835_pv1_data = {
.base = {
.hvs_available_channels = BIT(2),
.hvs_output = 2,
},
.debugfs_name = "crtc1_regs",
.fifo_depth = 64,
.pixels_per_clock = 1,
.encoder_types = {
[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
},
};
static const struct vc4_pv_data bcm2835_pv2_data = {
.base = {
.hvs_available_channels = BIT(1),
.hvs_output = 1,
},
.debugfs_name = "crtc2_regs",
.fifo_depth = 64,
.pixels_per_clock = 1,
.encoder_types = {
[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
},
};
static const struct vc4_pv_data bcm2711_pv0_data = {
.base = {
.hvs_available_channels = BIT(0),
.hvs_output = 0,
},
.debugfs_name = "crtc0_regs",
.fifo_depth = 64,
.pixels_per_clock = 1,
.encoder_types = {
[0] = VC4_ENCODER_TYPE_DSI0,
[1] = VC4_ENCODER_TYPE_DPI,
},
};
static const struct vc4_pv_data bcm2711_pv1_data = {
.base = {
.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
.hvs_output = 3,
},
.debugfs_name = "crtc1_regs",
.fifo_depth = 64,
.pixels_per_clock = 1,
.encoder_types = {
[0] = VC4_ENCODER_TYPE_DSI1,
[1] = VC4_ENCODER_TYPE_SMI,
},
};
static const struct vc4_pv_data bcm2711_pv2_data = {
.base = {
.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
.hvs_output = 4,
},
.debugfs_name = "crtc2_regs",
.fifo_depth = 256,
.pixels_per_clock = 2,
.encoder_types = {
[0] = VC4_ENCODER_TYPE_HDMI0,
},
};
static const struct vc4_pv_data bcm2711_pv3_data = {
.base = {
.hvs_available_channels = BIT(1),
.hvs_output = 1,
},
.debugfs_name = "crtc3_regs",
.fifo_depth = 64,
.pixels_per_clock = 1,
.encoder_types = {
[0] = VC4_ENCODER_TYPE_VEC,
},
};
static const struct vc4_pv_data bcm2711_pv4_data = {
.base = {
.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
.hvs_output = 5,
},
.debugfs_name = "crtc4_regs",
.fifo_depth = 64,
.pixels_per_clock = 2,
.encoder_types = {
[0] = VC4_ENCODER_TYPE_HDMI1,
},
};
static const struct of_device_id vc4_crtc_dt_match[] = {
{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
{ .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
{ .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
{ .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
{ .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
{ .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
{}
};
static void vc4_set_crtc_possible_masks(struct drm_device *drm,
struct drm_crtc *crtc)
{
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
struct drm_encoder *encoder;
drm_for_each_encoder(encoder, drm) {
struct vc4_encoder *vc4_encoder;
int i;
vc4_encoder = to_vc4_encoder(encoder);
for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
if (vc4_encoder->type == encoder_types[i]) {
vc4_encoder->clock_select = i;
encoder->possible_crtcs |= drm_crtc_mask(crtc);
break;
}
}
}
}
int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
const struct drm_crtc_funcs *crtc_funcs,
const struct drm_crtc_helper_funcs *crtc_helper_funcs)
{
struct drm_crtc *crtc = &vc4_crtc->base;
struct drm_plane *primary_plane;
unsigned int i;
/* For now, we create just the primary and the legacy cursor
* planes. We should be able to stack more planes on easily,
* but to do that we would need to compute the bandwidth
* requirement of the plane configuration, and reject ones
* that will take too much.
*/
primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
if (IS_ERR(primary_plane)) {
dev_err(drm->dev, "failed to construct primary plane\n");
return PTR_ERR(primary_plane);
}
drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
crtc_funcs, NULL);
drm_crtc_helper_add(crtc, crtc_helper_funcs);
if (!of_device_is_compatible(drm->dev->of_node, "brcm,bcm2711-vc5")) {
drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
/* We support CTM, but only for one CRTC at a
* time. It's therefore implemented as private driver
* state in vc4_kms, not here.
*/
drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
}
for (i = 0; i < crtc->gamma_size; i++) {
vc4_crtc->lut_r[i] = i;
vc4_crtc->lut_g[i] = i;
vc4_crtc->lut_b[i] = i;
}
return 0;
}
static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
{
struct platform_device *pdev = to_platform_device(dev);
struct drm_device *drm = dev_get_drvdata(master);
const struct vc4_pv_data *pv_data;
struct vc4_crtc *vc4_crtc;
struct drm_crtc *crtc;
struct drm_plane *destroy_plane, *temp;
int ret;
vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
if (!vc4_crtc)
return -ENOMEM;
crtc = &vc4_crtc->base;
pv_data = of_device_get_match_data(dev);
if (!pv_data)
return -ENODEV;
vc4_crtc->data = &pv_data->base;
vc4_crtc->pdev = pdev;
vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
if (IS_ERR(vc4_crtc->regs))
return PTR_ERR(vc4_crtc->regs);
vc4_crtc->regset.base = vc4_crtc->regs;
vc4_crtc->regset.regs = crtc_regs;
vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
ret = vc4_crtc_init(drm, vc4_crtc,
&vc4_crtc_funcs, &vc4_crtc_helper_funcs);
if (ret)
return ret;
vc4_set_crtc_possible_masks(drm, crtc);
CRTC_WRITE(PV_INTEN, 0);
CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
vc4_crtc_irq_handler,
IRQF_SHARED,
"vc4 crtc", vc4_crtc);
if (ret)
goto err_destroy_planes;
platform_set_drvdata(pdev, vc4_crtc);
vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
&vc4_crtc->regset);
return 0;
err_destroy_planes:
list_for_each_entry_safe(destroy_plane, temp,
&drm->mode_config.plane_list, head) {
if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
destroy_plane->funcs->destroy(destroy_plane);
}
return ret;
}
static void vc4_crtc_unbind(struct device *dev, struct device *master,
void *data)
{
struct platform_device *pdev = to_platform_device(dev);
struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
vc4_crtc_destroy(&vc4_crtc->base);
CRTC_WRITE(PV_INTEN, 0);
platform_set_drvdata(pdev, NULL);
}
static const struct component_ops vc4_crtc_ops = {
.bind = vc4_crtc_bind,
.unbind = vc4_crtc_unbind,
};
static int vc4_crtc_dev_probe(struct platform_device *pdev)
{
return component_add(&pdev->dev, &vc4_crtc_ops);
}
static int vc4_crtc_dev_remove(struct platform_device *pdev)
{
component_del(&pdev->dev, &vc4_crtc_ops);
return 0;
}
struct platform_driver vc4_crtc_driver = {
.probe = vc4_crtc_dev_probe,
.remove = vc4_crtc_dev_remove,
.driver = {
.name = "vc4_crtc",
.of_match_table = vc4_crtc_dt_match,
},
};