blob: 8d62113f865f7366066ed4be925b75d46ae58f1d [file] [log] [blame]
/*
* linux/kernel/hd.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*/
/*
* This is the low-level hd interrupt support. It traverses the
* request-list, using interrupts to jump between functions. As
* all the functions are called within interrupts, we may not
* sleep. Special care is recommended.
*
* modified by Drew Eckhardt to check nr of hd's from the CMOS.
*
* Thanks to Branko Lankester, lankeste@fwi.uva.nl, who found a bug
* in the early extended-partition checks and added DM partitions
*/
#include <linux/config.h>
#ifdef CONFIG_BLK_DEV_HD
#define HD_IRQ 14
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/hdreg.h>
#include <linux/genhd.h>
#define REALLY_SLOW_IO
#include <asm/system.h>
#include <asm/io.h>
#include <asm/segment.h>
#define MAJOR_NR 3
#include "blk.h"
extern void resetup_one_dev(struct gendisk *, unsigned int);
static int revalidate_hddisk(int, int);
static inline unsigned char CMOS_READ(unsigned char addr)
{
outb_p(addr,0x70);
return inb_p(0x71);
}
#define HD_DELAY 0
#define MAX_ERRORS 16 /* Max read/write errors/sector */
#define RESET_FREQ 8 /* Reset controller every 8th retry */
#define RECAL_FREQ 4 /* Recalibrate every 4th retry */
#define MAX_HD 2
static void recal_intr(void);
static void bad_rw_intr(void);
static char recalibrate[ MAX_HD ] = { 0, };
static int access_count[MAX_HD] = {0, };
static char busy[MAX_HD] = {0, };
static struct wait_queue * busy_wait = NULL;
static int reset = 0;
static int hd_error = 0;
#if (HD_DELAY > 0)
unsigned long last_req, read_timer();
#endif
/*
* This struct defines the HD's and their types.
*/
struct hd_i_struct {
unsigned int head,sect,cyl,wpcom,lzone,ctl;
};
#ifdef HD_TYPE
struct hd_i_struct hd_info[] = { HD_TYPE };
static int NR_HD = ((sizeof (hd_info))/(sizeof (struct hd_i_struct)));
#else
struct hd_i_struct hd_info[] = { {0,0,0,0,0,0},{0,0,0,0,0,0} };
static int NR_HD = 0;
#endif
static struct hd_struct hd[MAX_HD<<6]={{0,0},};
static int hd_sizes[MAX_HD<<6] = {0, };
#define port_read(port,buf,nr) \
__asm__("cld;rep;insw"::"d" (port),"D" (buf),"c" (nr):"cx","di")
#define port_write(port,buf,nr) \
__asm__("cld;rep;outsw"::"d" (port),"S" (buf),"c" (nr):"cx","si")
#if (HD_DELAY > 0)
unsigned long read_timer(void)
{
unsigned long t;
int i;
cli();
t = jiffies * 11932;
outb_p(0, 0x43);
i = inb_p(0x40);
i |= inb(0x40) << 8;
sti();
return(t - i);
}
#endif
static int win_result(void)
{
int i=inb_p(HD_STATUS);
if ((i & (BUSY_STAT | READY_STAT | WRERR_STAT | SEEK_STAT | ERR_STAT))
== (READY_STAT | SEEK_STAT)) {
hd_error = 0;
return 0; /* ok */
}
printk("HD: win_result: status = 0x%02x\n",i);
if (i&1) {
hd_error = inb(HD_ERROR);
printk("HD: win_result: error = 0x%02x\n",hd_error);
}
return 1;
}
static int controller_busy(void);
static int status_ok(void);
static int controller_ready(unsigned int drive, unsigned int head)
{
int retry = 100;
do {
if (controller_busy() & BUSY_STAT)
return 0;
outb_p(0xA0 | (drive<<4) | head, HD_CURRENT);
if (status_ok())
return 1;
} while (--retry);
return 0;
}
static int status_ok(void)
{
unsigned char status = inb_p(HD_STATUS);
if (status & BUSY_STAT)
return 1;
if (status & WRERR_STAT)
return 0;
if (!(status & READY_STAT))
return 0;
if (!(status & SEEK_STAT))
return 0;
return 1;
}
static int controller_busy(void)
{
int retries = 100000;
unsigned char status;
do {
status = inb_p(HD_STATUS);
} while ((status & BUSY_STAT) && --retries);
return status;
}
static void hd_out(unsigned int drive,unsigned int nsect,unsigned int sect,
unsigned int head,unsigned int cyl,unsigned int cmd,
void (*intr_addr)(void))
{
unsigned short port;
if (drive>1 || head>15)
panic("Trying to write bad sector");
#if (HD_DELAY > 0)
while (read_timer() - last_req < HD_DELAY)
/* nothing */;
#endif
if (reset)
return;
if (!controller_ready(drive, head)) {
reset = 1;
return;
}
SET_INTR(intr_addr);
outb_p(hd_info[drive].ctl,HD_CMD);
port=HD_DATA;
outb_p(hd_info[drive].wpcom>>2,++port);
outb_p(nsect,++port);
outb_p(sect,++port);
outb_p(cyl,++port);
outb_p(cyl>>8,++port);
outb_p(0xA0|(drive<<4)|head,++port);
outb_p(cmd,++port);
}
static int drive_busy(void)
{
unsigned int i;
unsigned char c;
for (i = 0; i < 500000 ; i++) {
c = inb_p(HD_STATUS);
c &= (BUSY_STAT | READY_STAT | SEEK_STAT);
if (c == (READY_STAT | SEEK_STAT))
return 0;
}
printk("HD controller times out, status = 0x%02x\n",c);
return 1;
}
static void reset_controller(void)
{
int i;
printk("HD-controller reset\n");
outb(4,HD_CMD);
for(i = 0; i < 1000; i++) nop();
outb(hd_info[0].ctl & 0x0f ,HD_CMD);
if (drive_busy())
printk("HD-controller still busy\n");
if ((hd_error = inb(HD_ERROR)) != 1)
printk("HD-controller reset failed: %02x\n",hd_error);
}
static void reset_hd(void)
{
static int i;
repeat:
if (reset) {
reset = 0;
i = -1;
reset_controller();
} else if (win_result()) {
bad_rw_intr();
if (reset)
goto repeat;
}
i++;
if (i < NR_HD) {
hd_out(i,hd_info[i].sect,hd_info[i].sect,hd_info[i].head-1,
hd_info[i].cyl,WIN_SPECIFY,&reset_hd);
if (reset)
goto repeat;
} else
do_hd_request();
}
/*
* Ok, don't know what to do with the unexpected interrupts: on some machines
* doing a reset and a retry seems to result in an eternal loop. Right now I
* ignore it, and just set the timeout.
*/
void unexpected_hd_interrupt(void)
{
sti();
printk("Unexpected HD interrupt\n");
SET_TIMER;
}
/*
* bad_rw_intr() now tries to be a bit smarter and does things
* according to the error returned by the controller.
* -Mika Liljeberg (liljeber@cs.Helsinki.FI)
*/
static void bad_rw_intr(void)
{
int dev;
if (!CURRENT)
return;
dev = MINOR(CURRENT->dev) >> 6;
if (++CURRENT->errors >= MAX_ERRORS || (hd_error & BBD_ERR)) {
end_request(0);
recalibrate[dev] = 1;
} else if (CURRENT->errors % RESET_FREQ == 0)
reset = 1;
else if ((hd_error & TRK0_ERR) || CURRENT->errors % RECAL_FREQ == 0)
recalibrate[dev] = 1;
/* Otherwise just retry */
}
static inline int wait_DRQ(void)
{
int retries = 100000;
while (--retries > 0)
if (inb_p(HD_STATUS) & DRQ_STAT)
return 0;
return -1;
}
#define STAT_MASK (BUSY_STAT | READY_STAT | WRERR_STAT | SEEK_STAT | ERR_STAT)
#define STAT_OK (READY_STAT | SEEK_STAT)
static void read_intr(void)
{
int i;
int retries = 100000;
do {
i = (unsigned) inb_p(HD_STATUS);
if (i & BUSY_STAT)
continue;
if ((i & STAT_MASK) != STAT_OK)
break;
if (i & DRQ_STAT)
goto ok_to_read;
} while (--retries > 0);
sti();
printk("HD: read_intr: status = 0x%02x\n",i);
if (i & ERR_STAT) {
hd_error = (unsigned) inb(HD_ERROR);
printk("HD: read_intr: error = 0x%02x\n",hd_error);
}
bad_rw_intr();
cli();
do_hd_request();
return;
ok_to_read:
port_read(HD_DATA,CURRENT->buffer,256);
CURRENT->errors = 0;
CURRENT->buffer += 512;
CURRENT->sector++;
i = --CURRENT->nr_sectors;
--CURRENT->current_nr_sectors;
#ifdef DEBUG
printk("hd%d : sector = %d, %d remaining to buffer = %08x\n",
MINOR(CURRENT->dev), CURRENT->sector, i, CURRENT->
buffer);
#endif
if (!i || (CURRENT->bh && !SUBSECTOR(i)))
end_request(1);
if (i > 0) {
SET_INTR(&read_intr);
sti();
return;
}
(void) inb_p(HD_STATUS);
#if (HD_DELAY > 0)
last_req = read_timer();
#endif
do_hd_request();
return;
}
static void write_intr(void)
{
int i;
int retries = 100000;
do {
i = (unsigned) inb_p(HD_STATUS);
if (i & BUSY_STAT)
continue;
if ((i & STAT_MASK) != STAT_OK)
break;
if ((CURRENT->nr_sectors <= 1) || (i & DRQ_STAT))
goto ok_to_write;
} while (--retries > 0);
sti();
printk("HD: write_intr: status = 0x%02x\n",i);
if (i & ERR_STAT) {
hd_error = (unsigned) inb(HD_ERROR);
printk("HD: write_intr: error = 0x%02x\n",hd_error);
}
bad_rw_intr();
cli();
do_hd_request();
return;
ok_to_write:
CURRENT->sector++;
i = --CURRENT->nr_sectors;
--CURRENT->current_nr_sectors;
CURRENT->buffer += 512;
if (!i || (CURRENT->bh && !SUBSECTOR(i)))
end_request(1);
if (i > 0) {
SET_INTR(&write_intr);
port_write(HD_DATA,CURRENT->buffer,256);
sti();
} else {
#if (HD_DELAY > 0)
last_req = read_timer();
#endif
do_hd_request();
}
return;
}
static void recal_intr(void)
{
if (win_result())
bad_rw_intr();
do_hd_request();
}
/*
* This is another of the error-routines I don't know what to do with. The
* best idea seems to just set reset, and start all over again.
*/
static void hd_times_out(void)
{
DEVICE_INTR = NULL;
sti();
reset = 1;
if (!CURRENT)
return;
printk("HD timeout\n");
cli();
if (++CURRENT->errors >= MAX_ERRORS) {
#ifdef DEBUG
printk("hd : too many errors.\n");
#endif
end_request(0);
}
do_hd_request();
}
/*
* The driver has been modified to enable interrupts a bit more: in order to
* do this we first (a) disable the timeout-interrupt and (b) clear the
* device-interrupt. This way the interrupts won't mess with out code (the
* worst that can happen is that an unexpected HD-interrupt comes in and
* sets the "reset" variable and starts the timer)
*/
static void do_hd_request(void)
{
unsigned int block,dev;
unsigned int sec,head,cyl,track;
unsigned int nsect;
if (CURRENT && CURRENT->dev < 0) return;
if (DEVICE_INTR)
return;
repeat:
timer_active &= ~(1<<HD_TIMER);
sti();
INIT_REQUEST;
dev = MINOR(CURRENT->dev);
block = CURRENT->sector;
nsect = CURRENT->nr_sectors;
if (dev >= (NR_HD<<6) || block >= hd[dev].nr_sects) {
#ifdef DEBUG
printk("hd%d : attempted read for sector %d past end of device at sector %d.\n",
block, hd[dev].nr_sects);
#endif
end_request(0);
goto repeat;
}
block += hd[dev].start_sect;
dev >>= 6;
sec = block % hd_info[dev].sect + 1;
track = block / hd_info[dev].sect;
head = track % hd_info[dev].head;
cyl = track / hd_info[dev].head;
#ifdef DEBUG
printk("hd%d : cyl = %d, head = %d, sector = %d, buffer = %08x\n",
dev, cyl, head, sec, CURRENT->buffer);
#endif
cli();
if (reset) {
int i;
for (i=0; i < NR_HD; i++)
recalibrate[i] = 1;
reset_hd();
sti();
return;
}
if (recalibrate[dev]) {
recalibrate[dev] = 0;
hd_out(dev,hd_info[dev].sect,0,0,0,WIN_RESTORE,&recal_intr);
if (reset)
goto repeat;
sti();
return;
}
if (CURRENT->cmd == WRITE) {
hd_out(dev,nsect,sec,head,cyl,WIN_WRITE,&write_intr);
if (reset)
goto repeat;
if (wait_DRQ()) {
printk("HD: do_hd_request: no DRQ\n");
bad_rw_intr();
goto repeat;
}
port_write(HD_DATA,CURRENT->buffer,256);
sti();
return;
}
if (CURRENT->cmd == READ) {
hd_out(dev,nsect,sec,head,cyl,WIN_READ,&read_intr);
if (reset)
goto repeat;
sti();
return;
}
panic("unknown hd-command");
}
static int hd_ioctl(struct inode * inode, struct file * file,
unsigned int cmd, unsigned long arg)
{
struct hd_geometry *loc = (void *) arg;
int dev, err;
if (!inode)
return -EINVAL;
dev = MINOR(inode->i_rdev) >> 6;
if (dev >= NR_HD)
return -EINVAL;
switch (cmd) {
case HDIO_GETGEO:
if (!loc) return -EINVAL;
err = verify_area(VERIFY_WRITE, loc, sizeof(*loc));
if (err)
return err;
put_fs_byte(hd_info[dev].head,
(char *) &loc->heads);
put_fs_byte(hd_info[dev].sect,
(char *) &loc->sectors);
put_fs_word(hd_info[dev].cyl,
(short *) &loc->cylinders);
put_fs_long(hd[MINOR(inode->i_rdev)].start_sect,
(long *) &loc->start);
return 0;
case BLKGETSIZE: /* Return device size */
if (!arg) return -EINVAL;
err = verify_area(VERIFY_WRITE, (long *) arg, sizeof(long));
if (err)
return err;
put_fs_long(hd[MINOR(inode->i_rdev)].nr_sects,
(long *) arg);
return 0;
case BLKRRPART: /* Re-read partition tables */
return revalidate_hddisk(inode->i_rdev, 1);
RO_IOCTLS(inode->i_rdev,arg);
default:
return -EINVAL;
}
}
static int hd_open(struct inode * inode, struct file * filp)
{
int target;
target = DEVICE_NR(MINOR(inode->i_rdev));
while (busy[target])
sleep_on(&busy_wait);
access_count[target]++;
return 0;
}
/*
* Releasing a block device means we sync() it, so that it can safely
* be forgotten about...
*/
static void hd_release(struct inode * inode, struct file * file)
{
int target;
sync_dev(inode->i_rdev);
target = DEVICE_NR(MINOR(inode->i_rdev));
access_count[target]--;
}
static void hd_geninit(void);
static struct gendisk hd_gendisk = {
MAJOR_NR, /* Major number */
"hd", /* Major name */
6, /* Bits to shift to get real from partition */
1 << 6, /* Number of partitions per real */
MAX_HD, /* maximum number of real */
hd_geninit, /* init function */
hd, /* hd struct */
hd_sizes, /* block sizes */
0, /* number */
(void *) hd_info, /* internal */
NULL /* next */
};
static void hd_interrupt(int unused)
{
void (*handler)(void) = DEVICE_INTR;
DEVICE_INTR = NULL;
timer_active &= ~(1<<HD_TIMER);
if (!handler)
handler = unexpected_hd_interrupt;
handler();
sti();
}
/*
* This is the harddisk IRQ description. The SA_INTERRUPT in sa_flags
* means we run the IRQ-handler with interrupts disabled: this is bad for
* interrupt latency, but anything else has led to problems on some
* machines...
*
* We enable interrupts in some of the routines after making sure it's
* safe.
*/
static struct sigaction hd_sigaction = {
hd_interrupt,
0,
SA_INTERRUPT,
NULL
};
static void hd_geninit(void)
{
int drive, i;
#ifndef HD_TYPE
extern struct drive_info drive_info;
void *BIOS = (void *) &drive_info;
int cmos_disks;
for (drive=0 ; drive<2 ; drive++) {
hd_info[drive].cyl = *(unsigned short *) BIOS;
hd_info[drive].head = *(unsigned char *) (2+BIOS);
hd_info[drive].wpcom = *(unsigned short *) (5+BIOS);
hd_info[drive].ctl = *(unsigned char *) (8+BIOS);
hd_info[drive].lzone = *(unsigned short *) (12+BIOS);
hd_info[drive].sect = *(unsigned char *) (14+BIOS);
BIOS += 16;
}
/*
We querry CMOS about hard disks : it could be that
we have a SCSI/ESDI/etc controller that is BIOS
compatable with ST-506, and thus showing up in our
BIOS table, but not register compatable, and therefore
not present in CMOS.
Furthurmore, we will assume that our ST-506 drives
<if any> are the primary drives in the system, and
the ones reflected as drive 1 or 2.
The first drive is stored in the high nibble of CMOS
byte 0x12, the second in the low nibble. This will be
either a 4 bit drive type or 0xf indicating use byte 0x19
for an 8 bit type, drive 1, 0x1a for drive 2 in CMOS.
Needless to say, a non-zero value means we have
an AT controller hard disk for that drive.
*/
if ((cmos_disks = CMOS_READ(0x12)) & 0xf0)
if (cmos_disks & 0x0f)
NR_HD = 2;
else
NR_HD = 1;
else
NR_HD = 0;
#endif
i = NR_HD;
while (i-- > 0) {
hd[i<<6].nr_sects = 0;
if (hd_info[i].head > 16) {
printk("hd.c: ST-506 interface disk with more than 16 heads detected,\n");
printk(" probably due to non-standard sector translation. Giving up.\n");
printk(" (disk %d: cyl=%d, sect=%d, head=%d)\n", i,
hd_info[i].cyl,
hd_info[i].sect,
hd_info[i].head);
if (i+1 == NR_HD)
NR_HD--;
continue;
}
hd[i<<6].nr_sects = hd_info[i].head*
hd_info[i].sect*hd_info[i].cyl;
}
if (NR_HD) {
if (irqaction(HD_IRQ,&hd_sigaction)) {
printk("hd.c: unable to get IRQ%d for the harddisk driver\n",HD_IRQ);
NR_HD = 0;
}
}
hd_gendisk.nr_real = NR_HD;
}
static struct file_operations hd_fops = {
NULL, /* lseek - default */
block_read, /* read - general block-dev read */
block_write, /* write - general block-dev write */
NULL, /* readdir - bad */
NULL, /* select */
hd_ioctl, /* ioctl */
NULL, /* mmap */
hd_open, /* open */
hd_release, /* release */
block_fsync /* fsync */
};
unsigned long hd_init(unsigned long mem_start, unsigned long mem_end)
{
if (register_blkdev(MAJOR_NR,"hd",&hd_fops)) {
printk("Unable to get major %d for harddisk\n",MAJOR_NR);
return mem_start;
}
blk_dev[MAJOR_NR].request_fn = DEVICE_REQUEST;
read_ahead[MAJOR_NR] = 8; /* 8 sector (4kB) read-ahead */
hd_gendisk.next = gendisk_head;
gendisk_head = &hd_gendisk;
timer_table[HD_TIMER].fn = hd_times_out;
return mem_start;
}
#define DEVICE_BUSY busy[target]
#define USAGE access_count[target]
#define CAPACITY (hd_info[target].head*hd_info[target].sect*hd_info[target].cyl)
/* We assume that the the bios parameters do not change, so the disk capacity
will not change */
#undef MAYBE_REINIT
#define GENDISK_STRUCT hd_gendisk
/*
* This routine is called to flush all partitions and partition tables
* for a changed scsi disk, and then re-read the new partition table.
* If we are revalidating a disk because of a media change, then we
* enter with usage == 0. If we are using an ioctl, we automatically have
* usage == 1 (we need an open channel to use an ioctl :-), so this
* is our limit.
*/
static int revalidate_hddisk(int dev, int maxusage)
{
int target, major;
struct gendisk * gdev;
int max_p;
int start;
int i;
target = DEVICE_NR(MINOR(dev));
gdev = &GENDISK_STRUCT;
cli();
if (DEVICE_BUSY || USAGE > maxusage) {
sti();
return -EBUSY;
};
DEVICE_BUSY = 1;
sti();
max_p = gdev->max_p;
start = target << gdev->minor_shift;
major = MAJOR_NR << 8;
for (i=max_p - 1; i >=0 ; i--) {
sync_dev(major | start | i);
invalidate_inodes(major | start | i);
invalidate_buffers(major | start | i);
gdev->part[start+i].start_sect = 0;
gdev->part[start+i].nr_sects = 0;
};
#ifdef MAYBE_REINIT
MAYBE_REINIT;
#endif
gdev->part[start].nr_sects = CAPACITY;
resetup_one_dev(gdev, target);
DEVICE_BUSY = 0;
wake_up(&busy_wait);
return 0;
}
#endif