blob: 7c338c29675620814bad12b613da863086691eb2 [file] [log] [blame]
.file "reg_round.S"
/*---------------------------------------------------------------------------+
| reg_round.S |
| |
| Rounding/truncation/etc for FPU basic arithmetic functions. |
| |
| Copyright (C) 1993 |
| W. Metzenthen, 22 Parker St, Ormond, Vic 3163, |
| Australia. E-mail apm233m@vaxc.cc.monash.edu.au |
| |
| This code has four possible entry points. |
| The following must be entered by a jmp intruction: |
| FPU_round, FPU_round_sqrt, and FPU_Arith_exit. |
| |
| The _round_reg entry point is intended to be used by C code. |
| From C, call as: |
| void round_reg(FPU_REG *arg, unsigned int extent, unsigned int control_w) |
| |
| For correct "up" and "down" rounding, the argument must have the correct |
| sign. |
| |
+---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------+
| Four entry points. |
| |
| Needed by both the FPU_round and FPU_round_sqrt entry points: |
| %eax:%ebx 64 bit significand |
| %edx 32 bit extension of the significand |
| %edi pointer to an FPU_REG for the result to be stored |
| stack calling function must have set up a C stack frame and |
| pushed %esi, %edi, and %ebx |
| |
| Needed just for the FPU_round_sqrt entry point: |
| %cx A control word in the same format as the FPU control word. |
| Otherwise, PARAM4 must give such a value. |
| |
| |
| The significand and its extension are assumed to be exact in the |
| following sense: |
| If the significand by itself is the exact result then the significand |
| extension (%edx) must contain 0, otherwise the significand extension |
| must be non-zero. |
| If the significand extension is non-zero then the significand is |
| smaller than the magnitude of the correct exact result by an amount |
| greater than zero and less than one ls bit of the significand. |
| The significand extension is only required to have three possible |
| non-zero values: |
| less than 0x80000000 <=> the significand is less than 1/2 an ls |
| bit smaller than the magnitude of the |
| true exact result. |
| exactly 0x80000000 <=> the significand is exactly 1/2 an ls bit |
| smaller than the magnitude of the true |
| exact result. |
| greater than 0x80000000 <=> the significand is more than 1/2 an ls |
| bit smaller than the magnitude of the |
| true exact result. |
| |
+---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------+
| The code in this module has become quite complex, but it should handle |
| all of the FPU flags which are set at this stage of the basic arithmetic |
| computations. |
| There are a few rare cases where the results are not set identically to |
| a real FPU. These require a bit more thought because at this stage the |
| results of the code here appear to be more consistent... |
| This may be changed in a future version. |
+---------------------------------------------------------------------------*/
#include "fpu_asm.h"
#include "exception.h"
#include "control_w.h"
/* Flags for FPU_bits_lost */
#define LOST_DOWN $1
#define LOST_UP $2
/* Flags for FPU_denormal */
#define DENORMAL $1
#define UNMASKED_UNDERFLOW $2
.data
.align 2,0
FPU_bits_lost:
.byte 0
FPU_denormal:
.byte 0
.text
.align 2,144
.globl FPU_round
.globl FPU_round_sqrt
.globl FPU_Arith_exit
.globl _round_reg
// Entry point when called from C
_round_reg:
pushl %ebp
movl %esp,%ebp
pushl %esi
pushl %edi
pushl %ebx
movl PARAM1,%edi
movl SIGH(%edi),%eax
movl SIGL(%edi),%ebx
movl PARAM2,%edx
movl PARAM3,%ecx
jmp FPU_round_sqrt
FPU_round: // Normal entry point
movl PARAM4,%ecx
FPU_round_sqrt: // Entry point from wm_sqrt.S
#ifdef PARANOID
// Cannot use this here yet
// orl %eax,%eax
// jns L_entry_bugged
#endif PARANOID
cmpl EXP_UNDER,EXP(%edi)
jle xMake_denorm // The number is a de-normal
movb $0,FPU_denormal // 0 -> not a de-normal
xDenorm_done:
movb $0,FPU_bits_lost // No bits yet lost in rounding
movl %ecx,%esi
andl CW_PC,%ecx
cmpl PR_64_BITS,%ecx
je LRound_To_64
cmpl PR_53_BITS,%ecx
je LRound_To_53
cmpl PR_24_BITS,%ecx
je LRound_To_24
#ifdef PARANOID
jmp L_bugged // There is no bug, just a bad control word
#endif PARANOID
// Round etc to 24 bit precision
LRound_To_24:
movl %esi,%ecx
andl CW_RC,%ecx
cmpl RC_RND,%ecx
je LRound_nearest_24
cmpl RC_CHOP,%ecx
je LCheck_truncate_24
cmpl RC_UP,%ecx // Towards +infinity
je LUp_24
cmpl RC_DOWN,%ecx // Towards -infinity
je LDown_24
#ifdef PARANOID
jmp L_bugged
#endif PARANOID
LUp_24:
cmpb SIGN_POS,SIGN(%edi)
jne LCheck_truncate_24 // If negative then up==truncate
jmp LCheck_24_round_up
LDown_24:
cmpb SIGN_POS,SIGN(%edi)
je LCheck_truncate_24 // If positive then down==truncate
LCheck_24_round_up:
movl %eax,%ecx
andl $0x000000ff,%ecx
orl %ebx,%ecx
orl %edx,%ecx
jnz LDo_24_round_up
jmp LRe_normalise
LRound_nearest_24:
// Do rounding of the 24th bit if needed (nearest or even)
movl %eax,%ecx
andl $0x000000ff,%ecx
cmpl $0x00000080,%ecx
jc LCheck_truncate_24 // less than half, no increment needed
jne LGreater_Half_24 // greater than half, increment needed
// Possibly half, we need to check the ls bits
orl %ebx,%ebx
jnz LGreater_Half_24 // greater than half, increment needed
orl %edx,%edx
jnz LGreater_Half_24 // greater than half, increment needed
// Exactly half, increment only if 24th bit is 1 (round to even)
testl $0x00000100,%eax
jz LDo_truncate_24
LGreater_Half_24: // Rounding: increment at the 24th bit
LDo_24_round_up:
andl $0xffffff00,%eax // Truncate to 24 bits
xorl %ebx,%ebx
movb LOST_UP,FPU_bits_lost
addl $0x00000100,%eax
jmp LCheck_Round_Overflow
LCheck_truncate_24:
movl %eax,%ecx
andl $0x000000ff,%ecx
orl %ebx,%ecx
orl %edx,%ecx
jz LRe_normalise // No truncation needed
LDo_truncate_24:
andl $0xffffff00,%eax // Truncate to 24 bits
xorl %ebx,%ebx
movb LOST_DOWN,FPU_bits_lost
jmp LRe_normalise
// Round etc to 53 bit precision
LRound_To_53:
movl %esi,%ecx
andl CW_RC,%ecx
cmpl RC_RND,%ecx
je LRound_nearest_53
cmpl RC_CHOP,%ecx
je LCheck_truncate_53
cmpl RC_UP,%ecx // Towards +infinity
je LUp_53
cmpl RC_DOWN,%ecx // Towards -infinity
je LDown_53
#ifdef PARANOID
jmp L_bugged
#endif PARANOID
LUp_53:
cmpb SIGN_POS,SIGN(%edi)
jne LCheck_truncate_53 // If negative then up==truncate
jmp LCheck_53_round_up
LDown_53:
cmpb SIGN_POS,SIGN(%edi)
je LCheck_truncate_53 // If positive then down==truncate
LCheck_53_round_up:
movl %ebx,%ecx
andl $0x000007ff,%ecx
orl %edx,%ecx
jnz LDo_53_round_up
jmp LRe_normalise
LRound_nearest_53:
// Do rounding of the 53rd bit if needed (nearest or even)
movl %ebx,%ecx
andl $0x000007ff,%ecx
cmpl $0x00000400,%ecx
jc LCheck_truncate_53 // less than half, no increment needed
jnz LGreater_Half_53 // greater than half, increment needed
// Possibly half, we need to check the ls bits
orl %edx,%edx
jnz LGreater_Half_53 // greater than half, increment needed
// Exactly half, increment only if 53rd bit is 1 (round to even)
testl $0x00000800,%ebx
jz LTruncate_53
LGreater_Half_53: // Rounding: increment at the 53rd bit
LDo_53_round_up:
movb LOST_UP,FPU_bits_lost
andl $0xfffff800,%ebx // Truncate to 53 bits
addl $0x00000800,%ebx
adcl $0,%eax
jmp LCheck_Round_Overflow
LCheck_truncate_53:
movl %ebx,%ecx
andl $0x000007ff,%ecx
orl %edx,%ecx
jz LRe_normalise
LTruncate_53:
movb LOST_DOWN,FPU_bits_lost
andl $0xfffff800,%ebx // Truncate to 53 bits
jmp LRe_normalise
// Round etc to 64 bit precision
LRound_To_64:
movl %esi,%ecx
andl CW_RC,%ecx
cmpl RC_RND,%ecx
je LRound_nearest_64
cmpl RC_CHOP,%ecx
je LCheck_truncate_64
cmpl RC_UP,%ecx // Towards +infinity
je LUp_64
cmpl RC_DOWN,%ecx // Towards -infinity
je LDown_64
#ifdef PARANOID
jmp L_bugged
#endif PARANOID
LUp_64:
cmpb SIGN_POS,SIGN(%edi)
jne LCheck_truncate_64 // If negative then up==truncate
orl %edx,%edx
jnz LDo_64_round_up
jmp LRe_normalise
LDown_64:
cmpb SIGN_POS,SIGN(%edi)
je LCheck_truncate_64 // If positive then down==truncate
orl %edx,%edx
jnz LDo_64_round_up
jmp LRe_normalise
LRound_nearest_64:
cmpl $0x80000000,%edx
jc LCheck_truncate_64
jne LDo_64_round_up
/* Now test for round-to-even */
testb $1,%ebx
jz LCheck_truncate_64
LDo_64_round_up:
movb LOST_UP,FPU_bits_lost
addl $1,%ebx
adcl $0,%eax
LCheck_Round_Overflow:
jnc LRe_normalise
/* Overflow, adjust the result (significand to 1.0) */
rcrl $1,%eax
rcrl $1,%ebx
incl EXP(%edi)
jmp LRe_normalise
LCheck_truncate_64:
orl %edx,%edx
jz LRe_normalise
LTruncate_64:
movb LOST_DOWN,FPU_bits_lost
LRe_normalise:
testb $0xff,FPU_denormal
jnz xNormalise_result
xL_Normalised:
cmpb LOST_UP,FPU_bits_lost
je xL_precision_lost_up
cmpb LOST_DOWN,FPU_bits_lost
je xL_precision_lost_down
xL_no_precision_loss:
/* store the result */
movb TW_Valid,TAG(%edi)
xL_Store_significand:
movl %eax,SIGH(%edi)
movl %ebx,SIGL(%edi)
xorl %eax,%eax // No errors detected.
cmpl EXP_OVER,EXP(%edi)
jge L_overflow
FPU_Arith_exit:
popl %ebx
popl %edi
popl %esi
leave
ret
// Set the FPU status flags to represent precision loss due to
// round-up.
xL_precision_lost_up:
push %eax
call _set_precision_flag_up
popl %eax
jmp xL_no_precision_loss
// Set the FPU status flags to represent precision loss due to
// truncation.
xL_precision_lost_down:
push %eax
call _set_precision_flag_down
popl %eax
jmp xL_no_precision_loss
// The number is a denormal (which might get rounded up to a normal)
// Shift the number right the required number of bits, which will
// have to be undone later...
xMake_denorm:
// The action to be taken depends upon whether the underflow
// exception is masked
testb CW_Underflow,%cl // Underflow mask.
jz xUnmasked_underflow // Do not make a denormal.
movb DENORMAL,FPU_denormal
pushl %ecx // Save
movl EXP_UNDER+1,%ecx
subl EXP(%edi),%ecx
cmpl $64,%ecx /* shrd only works for 0..31 bits */
jnc xDenorm_shift_more_than_63
cmpl $32,%ecx /* shrd only works for 0..31 bits */
jnc xDenorm_shift_more_than_32
// We got here without jumps by assuming that the most common requirement
// is for a small de-normalising shift.
// Shift by [1..31] bits
addl %ecx,EXP(%edi)
orl %edx,%edx // extension
setne %ch // Save whether %edx is non-zero
xorl %edx,%edx
shrd %cl,%ebx,%edx
shrd %cl,%eax,%ebx
shr %cl,%eax
orb %ch,%dl
popl %ecx
jmp xDenorm_done
// Shift by [32..63] bits
xDenorm_shift_more_than_32:
addl %ecx,EXP(%edi)
subb $32,%cl
orl %edx,%edx
setne %ch
orb %ch,%bl
xorl %edx,%edx
shrd %cl,%ebx,%edx
shrd %cl,%eax,%ebx
shr %cl,%eax
orl %edx,%edx // test these 32 bits
setne %cl
orb %ch,%bl
orb %cl,%bl
movl %ebx,%edx
movl %eax,%ebx
xorl %eax,%eax
popl %ecx
jmp xDenorm_done
// Shift by [64..) bits
xDenorm_shift_more_than_63:
cmpl $64,%ecx
jne xDenorm_shift_more_than_64
// Exactly 64 bit shift
addl %ecx,EXP(%edi)
xorl %ecx,%ecx
orl %edx,%edx
setne %cl
orl %ebx,%ebx
setne %ch
orb %ch,%cl
orb %cl,%al
movl %eax,%edx
xorl %eax,%eax
xorl %ebx,%ebx
popl %ecx
jmp xDenorm_done
xDenorm_shift_more_than_64:
movl EXP_UNDER+1,EXP(%edi)
// This is easy, %eax must be non-zero, so..
movl $1,%edx
xorl %eax,%eax
xorl %ebx,%ebx
popl %ecx
jmp xDenorm_done
xUnmasked_underflow:
movb UNMASKED_UNDERFLOW,FPU_denormal
jmp xDenorm_done
// Undo the de-normalisation.
xNormalise_result:
cmpb UNMASKED_UNDERFLOW,FPU_denormal
je xSignal_underflow
// The number must be a denormal if we got here.
#ifdef PARANOID
// But check it... just in case.
cmpl EXP_UNDER+1,EXP(%edi)
jne L_norm_bugged
#endif PARANOID
#ifdef PECULIAR_486
// This implements a special feature of 80486 behaviour.
// Underflow will be signalled even if the number is
// not a denormal after rounding.
// This difference occurs only for masked underflow, and not
// in the unmasked case.
// Actual 80486 behaviour differs from this in some circumstances.
orl %eax,%eax // ms bits
js LNormalise_shift_done // Will be masked underflow
#endif PECULIAR_486
orl %eax,%eax // ms bits
js xL_Normalised // No longer a denormal
jnz LNormalise_shift_up_to_31 // Shift left 0 - 31 bits
orl %ebx,%ebx
jz L_underflow_to_zero // The contents are zero
// Shift left 32 - 63 bits
movl %ebx,%eax
xorl %ebx,%ebx
subl $32,EXP(%edi)
LNormalise_shift_up_to_31:
bsrl %eax,%ecx /* get the required shift in %ecx */
subl $31,%ecx
negl %ecx
shld %cl,%ebx,%eax
shl %cl,%ebx
subl %ecx,EXP(%edi)
LNormalise_shift_done:
testb $0xff,FPU_bits_lost // bits lost == underflow
jz xL_Normalised
// There must be a masked underflow
push %eax
pushl EX_Underflow
call _exception
popl %eax
popl %eax
jmp xL_Normalised
// The operations resulted in a number too small to represent.
// Masked response.
L_underflow_to_zero:
push %eax
call _set_precision_flag_down
popl %eax
push %eax
pushl EX_Underflow
call _exception
popl %eax
popl %eax
// Reduce the exponent to EXP_UNDER
movl EXP_UNDER,EXP(%edi)
movb TW_Zero,TAG(%edi)
jmp xL_Store_significand
// The operations resulted in a number too large to represent.
L_overflow:
push %edi
call _arith_overflow
pop %edi
jmp FPU_Arith_exit
xSignal_underflow:
// The number may have been changed to a non-denormal
// by the rounding operations.
cmpl EXP_UNDER,EXP(%edi)
jle xDo_unmasked_underflow
jmp xL_Normalised
xDo_unmasked_underflow:
// Increase the exponent by the magic number
addl $(3*(1<<13)),EXP(%edi)
push %eax
pushl EX_Underflow
call EXCEPTION
popl %eax
popl %eax
jmp xL_Normalised
#ifdef PARANOID
/* If we ever get here then we have problems! */
L_bugged:
pushl EX_INTERNAL|0x201
call EXCEPTION
popl %ebx
jmp L_exception_exit
L_norm_bugged:
pushl EX_INTERNAL|0x216
call EXCEPTION
popl %ebx
jmp L_exception_exit
L_entry_bugged:
pushl EX_INTERNAL|0x217
call EXCEPTION
popl %ebx
L_exception_exit:
mov $1,%eax
jmp FPU_Arith_exit
#endif PARANOID