blob: 55d60d636b161053e4288d15f58159470c2f61c0 [file] [log] [blame]
/*
* linux/kernel/sched.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*/
/*
* 'sched.c' is the main kernel file. It contains scheduling primitives
* (sleep_on, wakeup, schedule etc) as well as a number of simple system
* call functions (type getpid(), which just extracts a field from
* current-task
*/
#include <linux/config.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/kernel.h>
#include <linux/sys.h>
#include <linux/fdreg.h>
#include <linux/errno.h>
#include <linux/time.h>
#include <linux/ptrace.h>
#include <linux/segment.h>
#include <linux/delay.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/segment.h>
#define TIMER_IRQ 0
int need_resched = 0;
/*
* Tell us the machine setup..
*/
int hard_math = 0; /* set by boot/head.S */
int x86 = 0; /* set by boot/head.S to 3 or 4 */
int ignore_irq13 = 0; /* set if exception 16 works */
int wp_works_ok = 0; /* not used currently */
extern int _setitimer(int, struct itimerval *, struct itimerval *);
unsigned long * prof_buffer = NULL;
unsigned long prof_len = 0;
#define _S(nr) (1<<((nr)-1))
#define LATCH ((1193180 + HZ/2)/HZ)
extern void mem_use(void);
extern int timer_interrupt(void);
extern "C" int system_call(void);
static unsigned long init_kernel_stack[1024];
struct task_struct init_task = INIT_TASK;
unsigned long volatile jiffies=0;
unsigned long startup_time=0;
int jiffies_offset = 0; /* # clock ticks to add to get "true
time". Should always be less than
1 second's worth. For time fanatics
who like to syncronize their machines
to WWV :-) */
struct task_struct *current = &init_task;
struct task_struct *last_task_used_math = NULL;
struct task_struct * task[NR_TASKS] = {&init_task, };
long user_stack [ PAGE_SIZE>>2 ] ;
struct {
long * a;
short b;
} stack_start = { & user_stack [PAGE_SIZE>>2] , KERNEL_DS };
/*
* 'math_state_restore()' saves the current math information in the
* old math state array, and gets the new ones from the current task
*
* Careful.. There are problems with IBM-designed IRQ13 behaviour.
* Don't touch unless you *really* know how it works.
*/
extern "C" void math_state_restore(void)
{
__asm__ __volatile__("clts");
if (last_task_used_math == current)
return;
timer_table[COPRO_TIMER].expires = jiffies+50;
timer_active |= 1<<COPRO_TIMER;
if (last_task_used_math)
__asm__("fnsave %0":"=m" (last_task_used_math->tss.i387));
else
__asm__("fnclex");
last_task_used_math = current;
if (current->used_math) {
__asm__("frstor %0": :"m" (current->tss.i387));
} else {
__asm__("fninit");
current->used_math=1;
}
timer_active &= ~(1<<COPRO_TIMER);
}
/*
* 'schedule()' is the scheduler function. It's a very simple and nice
* scheduler: it's not perfect, but certainly works for most things.
* The one thing you might take a look at is the signal-handler code here.
*
* NOTE!! Task 0 is the 'idle' task, which gets called when no other
* tasks can run. It can not be killed, and it cannot sleep. The 'state'
* information in task[0] is never used.
*
* The "confuse_gcc" goto is used only to get better assembly code..
* Djikstra probably hates me.
*/
extern "C" void schedule(void)
{
int c;
struct task_struct * p;
struct task_struct * next;
/* check alarm, wake up any interruptible tasks that have got a signal */
sti();
need_resched = 0;
p = &init_task;
for (;;) {
if ((p = p->next_task) == &init_task)
goto confuse_gcc1;
if (p->state != TASK_INTERRUPTIBLE)
continue;
if (p->signal & ~p->blocked) {
p->state = TASK_RUNNING;
continue;
}
if (p->timeout && p->timeout < jiffies) {
p->timeout = 0;
p->state = TASK_RUNNING;
}
}
confuse_gcc1:
/* this is the scheduler proper: */
c = -1;
next = p = &init_task;
for (;;) {
if ((p = p->next_task) == &init_task)
goto confuse_gcc2;
if (p->state == TASK_RUNNING && p->counter > c)
c = p->counter, next = p;
}
confuse_gcc2:
if (!c) {
for_each_task(p)
p->counter = (p->counter >> 1) + p->priority;
}
switch_to(next);
}
extern "C" int sys_pause(void)
{
current->state = TASK_INTERRUPTIBLE;
schedule();
return -ERESTARTNOHAND;
}
/*
* wake_up doesn't wake up stopped processes - they have to be awakened
* with signals or similar.
*
* Note that this doesn't need cli-sti pairs: interrupts may not change
* the wait-queue structures directly, but only call wake_up() to wake
* a process. The process itself must remove the queue once it has woken.
*/
void wake_up(struct wait_queue **q)
{
struct wait_queue *tmp;
struct task_struct * p;
if (!q || !(tmp = *q))
return;
do {
if ((p = tmp->task) != NULL) {
if ((p->state == TASK_UNINTERRUPTIBLE) ||
(p->state == TASK_INTERRUPTIBLE)) {
p->state = TASK_RUNNING;
if (p->counter > current->counter)
need_resched = 1;
}
}
if (!tmp->next) {
printk("wait_queue is bad (eip = %08x)\n",((unsigned long *) q)[-1]);
printk(" q = %08x\n",q);
printk(" *q = %08x\n",*q);
printk(" tmp = %08x\n",tmp);
break;
}
tmp = tmp->next;
} while (tmp != *q);
}
void wake_up_interruptible(struct wait_queue **q)
{
struct wait_queue *tmp;
struct task_struct * p;
if (!q || !(tmp = *q))
return;
do {
if ((p = tmp->task) != NULL) {
if (p->state == TASK_INTERRUPTIBLE) {
p->state = TASK_RUNNING;
if (p->counter > current->counter)
need_resched = 1;
}
}
if (!tmp->next) {
printk("wait_queue is bad (eip = %08x)\n",((unsigned long *) q)[-1]);
printk(" q = %08x\n",q);
printk(" *q = %08x\n",*q);
printk(" tmp = %08x\n",tmp);
break;
}
tmp = tmp->next;
} while (tmp != *q);
}
static inline void __sleep_on(struct wait_queue **p, int state)
{
unsigned long flags;
struct wait_queue wait = { current, NULL };
if (!p)
return;
if (current == task[0])
panic("task[0] trying to sleep");
current->state = state;
add_wait_queue(p, &wait);
save_flags(flags);
sti();
schedule();
remove_wait_queue(p, &wait);
restore_flags(flags);
}
void interruptible_sleep_on(struct wait_queue **p)
{
__sleep_on(p,TASK_INTERRUPTIBLE);
}
void sleep_on(struct wait_queue **p)
{
__sleep_on(p,TASK_UNINTERRUPTIBLE);
}
static struct timer_list * next_timer = NULL;
void add_timer(struct timer_list * timer)
{
unsigned long flags;
struct timer_list ** p;
if (!timer)
return;
timer->next = NULL;
p = &next_timer;
save_flags(flags);
cli();
while (*p) {
if ((*p)->expires > timer->expires) {
(*p)->expires -= timer->expires;
timer->next = *p;
break;
}
timer->expires -= (*p)->expires;
p = &(*p)->next;
}
*p = timer;
restore_flags(flags);
}
int del_timer(struct timer_list * timer)
{
unsigned long flags;
unsigned long expires = 0;
struct timer_list **p;
p = &next_timer;
save_flags(flags);
cli();
while (*p) {
if (*p == timer) {
if ((*p = timer->next) != NULL)
(*p)->expires += timer->expires;
timer->expires += expires;
restore_flags(flags);
return 1;
}
expires += (*p)->expires;
p = &(*p)->next;
}
restore_flags(flags);
return 0;
}
unsigned long timer_active = 0;
struct timer_struct timer_table[32];
/*
* Hmm.. Changed this, as the GNU make sources (load.c) seems to
* imply that avenrun[] is the standard name for this kind of thing.
* Nothing else seems to be standardized: the fractional size etc
* all seem to differ on different machines.
*/
unsigned long avenrun[3] = { 0,0,0 };
/*
* Nr of active tasks - counted in fixed-point numbers
*/
static unsigned long count_active_tasks(void)
{
struct task_struct **p;
unsigned long nr = 0;
for(p = &LAST_TASK; p > &FIRST_TASK; --p)
if (*p && (*p)->state == TASK_RUNNING)
nr += FIXED_1;
return nr;
}
static inline void calc_load(void)
{
unsigned long active_tasks; /* fixed-point */
static int count = LOAD_FREQ;
if (count-- > 0)
return;
count = LOAD_FREQ;
active_tasks = count_active_tasks();
CALC_LOAD(avenrun[0], EXP_1, active_tasks);
CALC_LOAD(avenrun[1], EXP_5, active_tasks);
CALC_LOAD(avenrun[2], EXP_15, active_tasks);
}
/*
* The int argument is really a (struct pt_regs *), in case the
* interrupt wants to know from where it was called. The timer
* irq uses this to decide if it should update the user or system
* times.
*/
static void do_timer(struct pt_regs * regs)
{
unsigned long mask;
struct timer_struct *tp = timer_table+0;
struct task_struct * task_p;
jiffies++;
calc_load();
if ((VM_MASK & regs->eflags) || (3 & regs->cs)) {
current->utime++;
/* Update ITIMER_VIRT for current task if not in a system call */
if (current->it_virt_value && !(--current->it_virt_value)) {
current->it_virt_value = current->it_virt_incr;
send_sig(SIGVTALRM,current,1);
}
} else {
current->stime++;
#ifdef CONFIG_PROFILE
if (prof_buffer && current != task[0]) {
unsigned long eip = regs->eip;
eip >>= 2;
if (eip < prof_len)
prof_buffer[eip]++;
}
#endif
}
if (current == task[0] || (--current->counter)<=0) {
current->counter=0;
need_resched = 1;
}
/* Update ITIMER_REAL for every task */
for_each_task(task_p) {
if (!task_p->it_real_value)
continue;
if (--task_p->it_real_value)
continue;
send_sig(SIGALRM,task_p,1);
task_p->it_real_value = task_p->it_real_incr;
need_resched = 1;
}
/* Update ITIMER_PROF for the current task */
if (current->it_prof_value && !(--current->it_prof_value)) {
current->it_prof_value = current->it_prof_incr;
send_sig(SIGPROF,current,1);
}
for (mask = 1 ; mask ; tp++,mask += mask) {
if (mask > timer_active)
break;
if (!(mask & timer_active))
continue;
if (tp->expires > jiffies)
continue;
timer_active &= ~mask;
tp->fn();
sti();
}
cli();
while (next_timer && next_timer->expires == 0) {
void (*fn)(unsigned long) = next_timer->function;
unsigned long data = next_timer->data;
next_timer = next_timer->next;
sti();
fn(data);
cli();
}
if (next_timer)
next_timer->expires--;
sti();
}
extern "C" int sys_alarm(long seconds)
{
struct itimerval it_new, it_old;
it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0;
it_new.it_value.tv_sec = seconds;
it_new.it_value.tv_usec = 0;
_setitimer(ITIMER_REAL, &it_new, &it_old);
return(it_old.it_value.tv_sec + (it_old.it_value.tv_usec / 1000000));
}
extern "C" int sys_getpid(void)
{
return current->pid;
}
extern "C" int sys_getppid(void)
{
return current->p_pptr->pid;
}
extern "C" int sys_getuid(void)
{
return current->uid;
}
extern "C" int sys_geteuid(void)
{
return current->euid;
}
extern "C" int sys_getgid(void)
{
return current->gid;
}
extern "C" int sys_getegid(void)
{
return current->egid;
}
extern "C" int sys_nice(long increment)
{
int newprio;
if (increment < 0 && !suser())
return -EPERM;
newprio = current->priority - increment;
if (newprio < 1)
newprio = 1;
if (newprio > 35)
newprio = 35;
current->priority = newprio;
return 0;
}
static void show_task(int nr,struct task_struct * p)
{
int i, j;
unsigned char * stack;
printk("%d: pid=%d, state=%d, father=%d, child=%d, ",(p == current)?-nr:nr,p->pid,
p->state, p->p_pptr->pid, p->p_cptr ? p->p_cptr->pid : -1);
i = 0;
j = PAGE_SIZE;
if (!(stack = (unsigned char *) p->kernel_stack_page)) {
stack = (unsigned char *) init_kernel_stack;
j = sizeof(init_kernel_stack);
}
while (i<j && !*(stack++))
i++;
printk("%d/%d chars free in kstack\n",i,j);
printk(" PC=%08X.", *(1019 + (unsigned long *) p));
if (p->p_ysptr || p->p_osptr)
printk(" Younger sib=%d, older sib=%d\n",
p->p_ysptr ? p->p_ysptr->pid : -1,
p->p_osptr ? p->p_osptr->pid : -1);
else
printk("\n");
}
void show_state(void)
{
int i;
printk("Task-info:\n");
for (i=0 ; i<NR_TASKS ; i++)
if (task[i])
show_task(i,task[i]);
}
void sched_init(void)
{
int i;
struct desc_struct * p;
if (sizeof(struct sigaction) != 16)
panic("Struct sigaction MUST be 16 bytes");
set_tss_desc(gdt+FIRST_TSS_ENTRY,&init_task.tss);
set_ldt_desc(gdt+FIRST_LDT_ENTRY,&default_ldt,1);
set_system_gate(0x80,&system_call);
p = gdt+2+FIRST_TSS_ENTRY;
for(i=1 ; i<NR_TASKS ; i++) {
task[i] = NULL;
p->a=p->b=0;
p++;
p->a=p->b=0;
p++;
}
/* Clear NT, so that we won't have troubles with that later on */
__asm__("pushfl ; andl $0xffffbfff,(%esp) ; popfl");
load_TR(0);
load_ldt(0);
outb_p(0x34,0x43); /* binary, mode 2, LSB/MSB, ch 0 */
outb_p(LATCH & 0xff , 0x40); /* LSB */
outb(LATCH >> 8 , 0x40); /* MSB */
if (request_irq(TIMER_IRQ,(void (*)(int)) do_timer)!=0)
panic("Could not allocate timer IRQ!");
}