blob: b82f031eecff0026bfa17bceb565ceb15d889c93 [file] [log] [blame]
/* fdomain.c -- Future Domain TMC-16x0 driver
* Created: Sun May 3 18:53:19 1992 by faith@cs.unc.edu
* Revised: Sun Oct 31 19:53:49 1993 by faith@cs.unc.edu
* Author: Rickard E. Faith, faith@cs.unc.edu
* Copyright 1992, 1993 Rickard E. Faith
*
* $Id: fdomain.c,v 5.6 1993/11/01 02:40:32 root Exp $
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2, or (at your option) any
* later version.
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
**************************************************************************
DESCRIPTION:
This is the Linux low-level SCSI driver for Future Domain TMC-1660/1680
and TMC-1650/1670 SCSI host adapters. The 1650 and 1670 have a 25-pin
external connector, whereas the 1660 and 1680 have a SCSI-2 50-pin
high-density external connector. The 1670 and 1680 have floppy disk
controllers built in.
Future Domain's older boards are based on the TMC-1800 chip, and the
driver was originally written for a TMC-1680 board with the TMC-1800
chip. More recently, boards are being produced with the TMC-18C50 chip.
The latest and greatest board may not work with this driver. If you have
to patch this driver so that it will recognize your board's BIOS
signature, then the driver may fail to function after the board is
detected.
If you have a TMC-8xx or TMC-9xx board, then this is not the driver for
your board. Please refer to the Seagate driver for more information and
possible support.
REFERENCES USED:
"TMC-1800 SCSI Chip Specification (FDC-1800T)", Future Domain Corporation,
1990.
"Technical Reference Manual: 18C50 SCSI Host Adapter Chip", Future Domain
Corporation, January 1992.
"LXT SCSI Products: Specifications and OEM Technical Manual (Revision
B/September 1991)", Maxtor Corporation, 1991.
"7213S product Manual (Revision P3)", Maxtor Corporation, 1992.
"Draft Proposed American National Standard: Small Computer System
Interface - 2 (SCSI-2)", Global Engineering Documents. (X3T9.2/86-109,
revision 10h, October 17, 1991)
Private communications, Drew Eckhardt (drew@cs.colorado.edu) and Eric
Youngdale (eric@tantalus.nrl.navy.mil), 1992.
NOTES ON REFERENCES:
The Maxtor manuals were free. Maxtor telephone technical support is
great!
The Future Domain manuals were $25 and $35. They document the chip, not
the TMC-16x0 boards, so some information I had to guess at. In 1992,
Future Domain sold DOS BIOS source for $250 and the UN*X driver source was
$750, but these required a non-disclosure agreement, so even if I could
have afforded them, they would *not* have been useful for writing this
publically distributable driver. Future Domain technical support has
provided some information on the phone and have sent a few useful FAXs.
They have been much more helpful since they started to recognize that the
word "Linux" refers to an operating system :-).
ALPHA TESTERS:
There are many other alpha testers that come and go as the driver
develops. The people listed here were most helpful in times of greatest
need (mostly early on -- I've probably left out a few worthy people in
more recent times):
Todd Carrico (todd@wutc.wustl.edu), Dan Poirier (poirier@cs.unc.edu ), Ken
Corey (kenc@sol.acs.unt.edu), C. de Bruin (bruin@bruin@sterbbs.nl), Sakari
Aaltonen (sakaria@vipunen.hit.fi), John Rice (rice@xanth.cs.odu.edu), Brad
Yearwood (brad@optilink.com), and Ray Toy (toy@soho.crd.ge.com).
Special thanks to Tien-Wan Yang (twyang@cs.uh.edu), who graciously lent me
his 18C50-based card for debugging. He is the sole reason that this
driver works with the 18C50 chip.
All of the alpha testers deserve much thanks.
NOTES ON USER DEFINABLE OPTIONS:
DEBUG: This turns on the printing of various debug informaiton.
ENABLE_PARITY: This turns on SCSI parity checking. With the current
driver, all attached devices must support SCSI parity. If none of your
devices support parity, then you can probably get the driver to work by
turning this option off. I have no way of testing this, however.
FIFO_COUNT: The host adapter has an 8K cache. When this many 512 byte
blocks are filled by the SCSI device, an interrupt will be raised.
Therefore, this could be as low as 0, or as high as 16. Note, however,
that values which are too high or too low seem to prevent any interrupts
from occuring, and thereby lock up the machine. I have found that 2 is a
good number, but throughput may be increased by changing this value to
values which are close to 2. Please let me know if you try any different
values.
DO_DETECT: This activates some old scan code which was needed before the
high level drivers got fixed. If you are having toruble with the driver,
turning this on should not hurt, and might help. Please let me know if
this is the case, since this code will be removed from future drivers.
RESELECTION: This is no longer an option, since I gave up trying to
implement it in version 4.x of this driver. It did not improve
performance at all and made the driver unstable (because I never found one
of the two race conditions which were introduced by multiple outstanding
commands). The instability seems a very high price to pay just so that
you don't have to wait for the tape to rewind. When I have time, I will
work on this again. In the interim, if anyone want to work on the code, I
can give them my latest version.
**************************************************************************/
#include <linux/sched.h>
#include <asm/io.h>
#include "../block/blk.h"
#include "scsi.h"
#include "hosts.h"
#include "fdomain.h"
#include <asm/system.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/ioport.h>
#define VERSION "$Revision: 5.6 $"
/* START OF USER DEFINABLE OPTIONS */
#define DEBUG 1 /* Enable debugging output */
#define ENABLE_PARITY 1 /* Enable SCSI Parity */
#define FIFO_COUNT 2 /* Number of 512 byte blocks before INTR */
#define DO_DETECT 0 /* Do device detection here (see scsi.c) */
/* END OF USER DEFINABLE OPTIONS */
#if DEBUG
#define EVERY_ACCESS 0 /* Write a line on every scsi access */
#define ERRORS_ONLY 1 /* Only write a line if there is an error */
#define DEBUG_DETECT 0 /* Debug fdomain_16x0_detect() */
#define DEBUG_MESSAGES 1 /* Debug MESSAGE IN phase */
#define DEBUG_ABORT 1 /* Debug abort() routine */
#define DEBUG_RESET 1 /* Debug reset() routine */
#define DEBUG_RACE 1 /* Debug interrupt-driven race condition */
#else
#define EVERY_ACCESS 0 /* LEAVE THESE ALONE--CHANGE THE ONES ABOVE */
#define ERRORS_ONLY 0
#define DEBUG_DETECT 0
#define DEBUG_MESSAGES 0
#define DEBUG_ABORT 0
#define DEBUG_RESET 0
#define DEBUG_RACE 0
#endif
/* Errors are reported on the line, so we don't need to report them again */
#if EVERY_ACCESS
#undef ERRORS_ONLY
#define ERRORS_ONLY 0
#endif
#if ENABLE_PARITY
#define PARITY_MASK 0x08
#else
#define PARITY_MASK 0x00
#endif
enum chip_type {
unknown = 0x00,
tmc1800 = 0x01,
tmc18c50 = 0x02,
};
enum {
in_arbitration = 0x02,
in_selection = 0x04,
in_other = 0x08,
disconnect = 0x10,
aborted = 0x20,
sent_ident = 0x40,
};
enum in_port_type {
Read_SCSI_Data = 0,
SCSI_Status = 1,
TMC_Status = 2,
FIFO_Status = 3, /* tmc18c50 only */
Interrupt_Cond = 4, /* tmc18c50 only */
LSB_ID_Code = 5,
MSB_ID_Code = 6,
Read_Loopback = 7,
SCSI_Data_NoACK = 8,
Interrupt_Status = 9,
Configuration1 = 10,
Configuration2 = 11, /* tmc18c50 only */
Read_FIFO = 12,
FIFO_Data_Count = 14
};
enum out_port_type {
Write_SCSI_Data = 0,
SCSI_Cntl = 1,
Interrupt_Cntl = 2,
SCSI_Mode_Cntl = 3,
TMC_Cntl = 4,
Memory_Cntl = 5, /* tmc18c50 only */
Write_Loopback = 7,
Write_FIFO = 12
};
static int port_base = 0;
static void *bios_base = NULL;
static int bios_major = 0;
static int bios_minor = 0;
static int interrupt_level = 0;
static int this_host = 0;
static volatile int in_command = 0;
static Scsi_Cmnd *current_SC = NULL;
static enum chip_type chip = unknown;
static int adapter_mask = 0x40;
#if DEBUG_RACE
static volatile int in_interrupt_flag = 0;
#endif
static int SCSI_Mode_Cntl_port;
static int FIFO_Data_Count_port;
static int Interrupt_Cntl_port;
static int Interrupt_Status_port;
static int Read_FIFO_port;
static int Read_SCSI_Data_port;
static int SCSI_Cntl_port;
static int SCSI_Data_NoACK_port;
static int SCSI_Status_port;
static int TMC_Cntl_port;
static int TMC_Status_port;
static int Write_FIFO_port;
static int Write_SCSI_Data_port;
extern void fdomain_16x0_intr( int unused );
static void *addresses[] = {
(void *)0xc8000,
(void *)0xca000,
(void *)0xce000,
(void *)0xde000 };
#define ADDRESS_COUNT (sizeof( addresses ) / sizeof( unsigned ))
static unsigned short ports[] = { 0x140, 0x150, 0x160, 0x170 };
#define PORT_COUNT (sizeof( ports ) / sizeof( unsigned short ))
static unsigned short ints[] = { 3, 5, 10, 11, 12, 14, 15, 0 };
/*
READ THIS BEFORE YOU ADD A SIGNATURE!
READING THIS SHORT NOTE CAN SAVE YOU LOTS OF TIME!
READ EVERY WORD, ESPECIALLY THE WORD *NOT*
This driver works *ONLY* for Future Domain cards using the TMC-1800 or
the TMC-18C50 chip. This includes models TMC-1650, 1660, 1670, and 1680.
The following BIOS signature signatures are for boards which do *NOT*
work with this driver (these TMC-8xx and TMC-9xx boards may work with the
Seagate driver):
FUTURE DOMAIN CORP. (C) 1986-1988 V4.0I 03/16/88
FUTURE DOMAIN CORP. (C) 1986-1989 V5.0C2/14/89
FUTURE DOMAIN CORP. (C) 1986-1989 V6.0A7/28/89
FUTURE DOMAIN CORP. (C) 1986-1990 V6.0105/31/90
FUTURE DOMAIN CORP. (C) 1986-1990 V6.0209/18/90
FUTURE DOMAIN CORP. (C) 1986-1990 V7.009/18/90
FUTURE DOMAIN CORP. (C) 1992 V8.00.004/02/92
*/
struct signature {
char *signature;
int sig_offset;
int sig_length;
int major_bios_version;
int minor_bios_version;
} signatures[] = {
/* 1 2 3 4 5 6 */
/* 123456789012345678901234567890123456789012345678901234567890 */
{ "FUTURE DOMAIN CORP. (C) 1986-1990 1800-V2.07/28/89", 5, 50, 2, 0 },
{ "FUTURE DOMAIN CORP. (C) 1992 V3.00.004/02/92", 5, 44, 3, 0 },
{ "FUTURE DOMAIN TMC-18XX (C) 1993 V3.203/12/93", 5, 44, 3, 2 },
{ "FUTURE DOMAIN TMC-18XX", 5, 22, -1, -1 },
/* READ NOTICE ABOVE *BEFORE* YOU WASTE YOUR TIME ADDING A SIGANTURE
Also, fix the disk geometry code for your signature and send your
changes for faith@cs.unc.edu. Above all, do *NOT* change any old
signatures!
Note that the last line will match a "generic" 18XX bios. Because
Future Domain has changed the host SCSI ID and/or the location of the
geometry information in the on-board RAM area for each of the first
three BIOS's, it is still important to enter a fully qualified
signature in the table for any new BIOS's (after the host SCSI ID and
geometry location are verified.) */
};
#define SIGNATURE_COUNT (sizeof( signatures ) / sizeof( struct signature ))
/* These functions are based on include/asm/io.h */
inline static unsigned short inw( unsigned short port )
{
unsigned short _v;
__asm__ volatile ( "inw %1,%0"
:"=a" (_v):"d" ((unsigned short) port) );
return _v;
}
inline static void outw( unsigned short value, unsigned short port )
{
__asm__ volatile ( "outw %0,%1"
: :"a" ((unsigned short) value),
"d" ((unsigned short) port) );
}
/* These defines are copied from kernel/blk_drv/hd.c */
#define insw( buf, count, port ) \
__asm__ volatile \
("cld;rep;insw": :"d" (port),"D" (buf),"c" (count):"cx","di" )
#define outsw( buf, count, port ) \
__asm__ volatile \
("cld;rep;outsw": :"d" (port),"S" (buf),"c" (count):"cx","si")
static void print_banner( void )
{
printk( "%s", fdomain_16x0_info() );
printk( "Future Domain: BIOS version %d.%d, %s\n",
bios_major, bios_minor,
chip == tmc1800 ? "TMC-1800"
: (chip == tmc18c50 ? "TMC-18C50" : "Unknown") );
if (interrupt_level) {
printk( "Future Domain: BIOS at %x; port base at %x; using IRQ %d\n",
(unsigned)bios_base, port_base, interrupt_level );
} else {
printk( "Future Domain: BIOS at %x; port base at %x; *NO* IRQ\n",
(unsigned)bios_base, port_base );
}
}
static void do_pause( unsigned amount ) /* Pause for amount*10 milliseconds */
{
unsigned long the_time = jiffies + amount; /* 0.01 seconds per jiffy */
while (jiffies < the_time);
}
inline static void fdomain_make_bus_idle( void )
{
outb( 0, SCSI_Cntl_port );
outb( 0, SCSI_Mode_Cntl_port );
if (chip == tmc18c50)
outb( 0x21 | PARITY_MASK, TMC_Cntl_port ); /* Clear forced intr. */
else
outb( 0x01 | PARITY_MASK, TMC_Cntl_port );
}
static int fdomain_is_valid_port( int port )
{
int options;
#if DEBUG_DETECT
printk( " (%x%x),",
inb( port + MSB_ID_Code ), inb( port + LSB_ID_Code ) );
#endif
/* The MCA ID is a unique id for each MCA compatible board. We
are using ISA boards, but Future Domain provides the MCA ID
anyway. We can use this ID to ensure that this is a Future
Domain TMC-1660/TMC-1680.
*/
if (inb( port + LSB_ID_Code ) != 0xe9) { /* test for 0x6127 id */
if (inb( port + LSB_ID_Code ) != 0x27) return 0;
if (inb( port + MSB_ID_Code ) != 0x61) return 0;
chip = tmc1800;
} else { /* test for 0xe960 id */
if (inb( port + MSB_ID_Code ) != 0x60) return 0;
chip = tmc18c50;
}
/* We have a valid MCA ID for a TMC-1660/TMC-1680 Future Domain board.
Now, check to be sure the bios_base matches these ports. If someone
was unlucky enough to have purchased more than one Future Domain
board, then they will have to modify this code, as we only detect one
board here. [The one with the lowest bios_base.] */
options = inb( port + Configuration1 );
#if DEBUG_DETECT
printk( " Options = %x\n", options );
#endif
/* Check for board with lowest bios_base. */
if (addresses[ (options & 0xc0) >> 6 ] != bios_base)
return 0;
interrupt_level = ints[ (options & 0x0e) >> 1 ];
return 1;
}
static int fdomain_test_loopback( void )
{
int i;
int result;
for (i = 0; i < 255; i++) {
outb( i, port_base + Write_Loopback );
result = inb( port_base + Read_Loopback );
if (i != result)
return 1;
}
return 0;
}
int fdomain_16x0_detect( int hostnum )
{
int i, j;
int flag = 0;
struct sigaction sa;
int retcode;
#if DO_DETECT
const int buflen = 255;
Scsi_Cmnd SCinit;
unsigned char do_inquiry[] = { INQUIRY, 0, 0, 0, buflen, 0 };
unsigned char do_request_sense[] = { REQUEST_SENSE, 0, 0, 0, buflen, 0 };
unsigned char do_read_capacity[] = { READ_CAPACITY,
0, 0, 0, 0, 0, 0, 0, 0, 0 };
unsigned char buf[buflen];
#endif
#if DEBUG_DETECT
printk( "fdomain_16x0_detect()," );
#endif
for (i = 0; !bios_base && i < ADDRESS_COUNT; i++) {
#if DEBUG_DETECT
printk( " %x(%x),", (unsigned)addresses[i], (unsigned)bios_base );
#endif
for (j = 0; !bios_base && j < SIGNATURE_COUNT; j++) {
if (!memcmp( ((char *)addresses[i] + signatures[j].sig_offset),
signatures[j].signature, signatures[j].sig_length )) {
bios_major = signatures[j].major_bios_version;
bios_minor = signatures[j].minor_bios_version;
bios_base = addresses[i];
}
}
}
if (!bios_base) {
#if DEBUG_DETECT
printk( " FAILED: NO BIOS\n" );
#endif
return 0;
}
if (bios_major == 2) {
/* The TMC-1660/TMC-1680 has a RAM area just after the BIOS ROM.
Assuming the ROM is enabled (otherwise we wouldn't have been
able to read the ROM signature :-), then the ROM sets up the
RAM area with some magic numbers, such as a list of port
base addresses and a list of the disk "geometry" reported to
DOS (this geometry has nothing to do with physical geometry).
*/
port_base = *((char *)bios_base + 0x1fcc)
+ (*((char *)bios_base + 0x1fcd) << 8);
#if DEBUG_DETECT
printk( " %x,", port_base );
#endif
for (flag = 0, i = 0; !flag && i < PORT_COUNT; i++) {
if (port_base == ports[i])
++flag;
}
if (flag)
flag = fdomain_is_valid_port( port_base );
}
if (!flag) { /* Cannot get port base from BIOS RAM */
/* This is a bad sign. It usually means that someone patched the
BIOS signature list (the signatures variable) to contain a BIOS
signature for a board *OTHER THAN* the TMC-1660/TMC-1680. It
also means that we don't have a Version 2.0 BIOS :-)
*/
#if DEBUG_DETECT
if (bios_major != 2) printk( " RAM FAILED, " );
#endif
/* Anyway, the alternative to finding the address in the RAM is
to just search through every possible port address for one
that is attached to the Future Domain card. Don't panic,
though, about reading all these random port addresses--there
are rumors that the Future Domain BIOS does something very
similar.
Do not, however, check ports which the kernel knows are being used
by another driver.
*/
for (i = 0; !flag && i < PORT_COUNT; i++) {
port_base = ports[i];
if (check_region( port_base, 0x10 )) {
#if DEBUG_DETECT
printf( " (%x inuse),", port_base );
#endif
continue;
}
#if DEBUG_DETECT
printk( " %x,", port_base );
#endif
flag = fdomain_is_valid_port( port_base );
}
}
if (!flag) {
#if DEBUG_DETECT
printk( " FAILED: NO PORT\n" );
#endif
return 0; /* Cannot find valid set of ports */
}
print_banner();
SCSI_Mode_Cntl_port = port_base + SCSI_Mode_Cntl;
FIFO_Data_Count_port = port_base + FIFO_Data_Count;
Interrupt_Cntl_port = port_base + Interrupt_Cntl;
Interrupt_Status_port = port_base + Interrupt_Status;
Read_FIFO_port = port_base + Read_FIFO;
Read_SCSI_Data_port = port_base + Read_SCSI_Data;
SCSI_Cntl_port = port_base + SCSI_Cntl;
SCSI_Data_NoACK_port = port_base + SCSI_Data_NoACK;
SCSI_Status_port = port_base + SCSI_Status;
TMC_Cntl_port = port_base + TMC_Cntl;
TMC_Status_port = port_base + TMC_Status;
Write_FIFO_port = port_base + Write_FIFO;
Write_SCSI_Data_port = port_base + Write_SCSI_Data;
fdomain_16x0_reset( NULL );
if (fdomain_test_loopback()) {
#if DEBUG_DETECT
printk( "Future Domain: LOOPBACK TEST FAILED, FAILING DETECT!\n" );
#endif
return 0;
}
this_host = hostnum;
/* Log IRQ with kernel */
if (!interrupt_level) {
panic( "Future Domain: *NO* interrupt level selected!\n" );
} else {
/* Register the IRQ with the kernel */
sa.sa_handler = fdomain_16x0_intr;
sa.sa_flags = SA_INTERRUPT;
sa.sa_mask = 0;
sa.sa_restorer = NULL;
retcode = irqaction( interrupt_level, &sa );
if (retcode < 0) {
if (retcode == -EINVAL) {
printk( "Future Domain: IRQ %d is bad!\n", interrupt_level );
printk( " This shouldn't happen!\n" );
printk( " Send mail to faith@cs.unc.edu\n" );
} else if (retcode == -EBUSY) {
printk( "Future Domain: IRQ %d is already in use!\n",
interrupt_level );
printk( " Please use another IRQ!\n" );
} else {
printk( "Future Domain: Error getting IRQ %d\n", interrupt_level );
printk( " This shouldn't happen!\n" );
printk( " Send mail to faith@cs.unc.edu\n" );
}
panic( "Future Domain: Driver requires interruptions\n" );
} else {
printk( "Future Domain: IRQ %d requested from kernel\n",
interrupt_level );
}
}
/* Log I/O ports with kernel */
snarf_region( port_base, 0x10 );
if ((bios_major == 3 && bios_minor >= 2) || bios_major < 0) {
adapter_mask = 0x80;
scsi_hosts[this_host].this_id = 7;
}
#if DO_DETECT
/* These routines are here because of the way the SCSI bus behaves after
a reset. This appropriate behavior was not handled correctly by the
higher level SCSI routines when I first wrote this driver. Now,
however, correct scan routines are part of scsi.c and these routines
are no longer needed. However, this code is still good for
debugging. */
SCinit.request_buffer = SCinit.buffer = buf;
SCinit.request_bufflen = SCinit.bufflen = sizeof(buf)-1;
SCinit.use_sg = 0;
SCinit.lun = 0;
printk( "Future Domain detection routine scanning for devices:\n" );
for (i = 0; i < 8; i++) {
SCinit.target = i;
if (i == scsi_hosts[this_host].this_id) /* Skip host adapter */
continue;
memcpy(SCinit.cmnd, do_request_sense, sizeof(do_request_sense));
retcode = fdomain_16x0_command(&SCinit);
if (!retcode) {
memcpy(SCinit.cmnd, do_inquiry, sizeof(do_inquiry));
retcode = fdomain_16x0_command(&SCinit);
if (!retcode) {
printk( " SCSI ID %d: ", i );
for (j = 8; j < (buf[4] < 32 ? buf[4] : 32); j++)
printk( "%c", buf[j] >= 20 ? buf[j] : ' ' );
memcpy(SCinit.cmnd, do_read_capacity, sizeof(do_read_capacity));
retcode = fdomain_16x0_command(&SCinit);
if (!retcode) {
unsigned long blocks, size, capacity;
blocks = (buf[0] << 24) | (buf[1] << 16)
| (buf[2] << 8) | buf[3];
size = (buf[4] << 24) | (buf[5] << 16) | (buf[6] << 8) | buf[7];
capacity = +( +(blocks / 1024L) * +(size * 10L)) / 1024L;
printk( "%lu MB (%lu byte blocks)",
((capacity + 5L) / 10L), size );
} else {
memcpy(SCinit.cmnd, do_request_sense, sizeof(do_request_sense));
retcode = fdomain_16x0_command(&SCinit);
}
printk ("\n" );
} else {
memcpy(SCinit.cmnd, do_request_sense, sizeof(do_request_sense));
retcode = fdomain_16x0_command(&SCinit);
}
}
}
#endif
return 1;
}
const char *fdomain_16x0_info(void)
{
static char buffer[80];
char *pt;
strcpy( buffer, "Future Domain: TMC-16x0 SCSI driver, version" );
if (strchr( VERSION, ':')) { /* Assume VERSION is an RCS Revision string */
strcat( buffer, strchr( VERSION, ':' ) + 1 );
pt = strrchr( buffer, '$') - 1;
if (!pt) /* Stripped RCS Revision string? */
pt = buffer + strlen( buffer ) - 1;
if (*pt != ' ')
++pt;
*pt++ = '\n';
*pt = '\0';
} else { /* Assume VERSION is a number */
strcat( buffer, " " VERSION "\n" );
}
return buffer;
}
#if 0
static int fdomain_arbitrate( void )
{
int status = 0;
unsigned long timeout;
#if EVERY_ACCESS
printk( "fdomain_arbitrate()\n" );
#endif
outb( 0x00, SCSI_Cntl_port ); /* Disable data drivers */
outb( adapter_mask, port_base + SCSI_Data_NoACK ); /* Set our id bit */
outb( 0x04 | PARITY_MASK, TMC_Cntl_port ); /* Start arbitration */
timeout = jiffies + 50; /* 500 mS */
while (jiffies < timeout) {
status = inb( TMC_Status_port ); /* Read adapter status */
if (status & 0x02) /* Arbitration complete */
return 0;
}
/* Make bus idle */
fdomain_make_bus_idle();
#if EVERY_ACCESS
printk( "Arbitration failed, status = %x\n", status );
#endif
#if ERRORS_ONLY
printk( "Future Domain: Arbitration failed, status = %x", status );
#endif
return 1;
}
#endif
static int fdomain_select( int target )
{
int status;
unsigned long timeout;
outb( 0x82, SCSI_Cntl_port ); /* Bus Enable + Select */
outb( adapter_mask | (1 << target), SCSI_Data_NoACK_port );
/* Stop arbitration and enable parity */
outb( PARITY_MASK, TMC_Cntl_port );
timeout = jiffies + 25; /* 250mS */
while (jiffies < timeout) {
status = inb( SCSI_Status_port ); /* Read adapter status */
if (status & 1) { /* Busy asserted */
/* Enable SCSI Bus (on error, should make bus idle with 0) */
outb( 0x80, SCSI_Cntl_port );
return 0;
}
}
/* Make bus idle */
fdomain_make_bus_idle();
#if EVERY_ACCESS
if (!target) printk( "Selection failed\n" );
#endif
#if ERRORS_ONLY
if (!target) printk( "Future Domain: Selection failed" );
#endif
return 1;
}
void my_done( int error )
{
if (in_command) {
in_command = 0;
outb( 0x00, Interrupt_Cntl_port );
fdomain_make_bus_idle();
current_SC->result = error;
if (current_SC->scsi_done)
current_SC->scsi_done( current_SC );
else panic( "Future Domain: current_SC->scsi_done() == NULL" );
} else {
panic( "Future Domain: my_done() called outside of command\n" );
}
#if DEBUG_RACE
in_interrupt_flag = 0;
#endif
}
void fdomain_16x0_intr( int unused )
{
int status;
int done = 0;
unsigned data_count;
sti();
outb( 0x00, Interrupt_Cntl_port );
/* We usually have one spurious interrupt after each command. Ignore it. */
if (!in_command || !current_SC) { /* Spurious interrupt */
#if EVERY_ACCESS
printk( "Spurious interrupt, in_command = %d, current_SC = %x\n",
in_command, current_SC );
#endif
return;
}
/* Abort calls my_done, so we do nothing here. */
if (current_SC->SCp.phase & aborted) {
#if DEBUG_ABORT
printk( "Interrupt after abort, ignoring\n" );
#endif
/*
return; */
}
#if DEBUG_RACE
++in_interrupt_flag;
#endif
if (current_SC->SCp.phase & in_arbitration) {
status = inb( TMC_Status_port ); /* Read adapter status */
if (!(status & 0x02)) {
#if EVERY_ACCESS
printk( " AFAIL " );
#endif
my_done( DID_BUS_BUSY << 16 );
return;
}
current_SC->SCp.phase = in_selection;
outb( 0x40 | FIFO_COUNT, Interrupt_Cntl_port );
outb( 0x82, SCSI_Cntl_port ); /* Bus Enable + Select */
outb( adapter_mask | (1 << current_SC->target), SCSI_Data_NoACK_port );
/* Stop arbitration and enable parity */
outb( 0x10 | PARITY_MASK, TMC_Cntl_port );
#if DEBUG_RACE
in_interrupt_flag = 0;
#endif
return;
} else if (current_SC->SCp.phase & in_selection) {
status = inb( SCSI_Status_port );
if (!(status & 0x01)) {
/* Try again, for slow devices */
if (fdomain_select( current_SC->target )) {
#if EVERY_ACCESS
printk( " SFAIL " );
#endif
my_done( DID_NO_CONNECT << 16 );
return;
} else {
#if EVERY_ACCESS
printk( " AltSel " );
#endif
/* Stop arbitration and enable parity */
outb( 0x10 | PARITY_MASK, TMC_Cntl_port );
}
}
current_SC->SCp.phase = in_other;
outb( 0x90 | FIFO_COUNT, Interrupt_Cntl_port );
outb( 0x80, SCSI_Cntl_port );
#if DEBUG_RACE
in_interrupt_flag = 0;
#endif
return;
}
/* current_SC->SCp.phase == in_other: this is the body of the routine */
status = inb( SCSI_Status_port );
if (status & 0x10) { /* REQ */
switch (status & 0x0e) {
case 0x08: /* COMMAND OUT */
outb( current_SC->cmnd[current_SC->SCp.sent_command++],
Write_SCSI_Data_port );
#if EVERY_ACCESS
printk( "CMD = %x,",
current_SC->cmnd[ current_SC->SCp.sent_command - 1] );
#endif
break;
case 0x00: /* DATA OUT -- tmc18c50 only */
if (chip != tmc1800 && !current_SC->SCp.have_data_in) {
current_SC->SCp.have_data_in = -1;
outb( 0xd0 | PARITY_MASK, TMC_Cntl_port );
}
break;
case 0x04: /* DATA IN -- tmc18c50 only */
if (chip != tmc1800 && !current_SC->SCp.have_data_in) {
current_SC->SCp.have_data_in = 1;
outb( 0x90 | PARITY_MASK, TMC_Cntl_port );
}
break;
case 0x0c: /* STATUS IN */
current_SC->SCp.Status = inb( Read_SCSI_Data_port );
#if EVERY_ACCESS
printk( "Status = %x, ", current_SC->SCp.Status );
#endif
#if ERRORS_ONLY
if (current_SC->SCp.Status && current_SC->SCp.Status != 2) {
printk( "Future Domain: target = %d, command = %x, "
"Status = %x\n",
current_SC->target, current_SC->cmnd[0],
current_SC->SCp.Status );
}
#endif
break;
case 0x0a: /* MESSAGE OUT */
outb( MESSAGE_REJECT, Write_SCSI_Data_port ); /* Reject */
break;
case 0x0e: /* MESSAGE IN */
current_SC->SCp.Message = inb( Read_SCSI_Data_port );
#if EVERY_ACCESS
printk( "Message = %x, ", current_SC->SCp.Message );
#endif
if (!current_SC->SCp.Message) ++done;
#if DEBUG_MESSAGES || EVERY_ACCESS
if (current_SC->SCp.Message) {
printk( "Future Domain: Message = %x\n",
current_SC->SCp.Message );
}
#endif
break;
}
}
if (chip == tmc1800
&& !current_SC->SCp.have_data_in
&& (current_SC->SCp.sent_command
>= COMMAND_SIZE( current_SC->cmnd[ 0 ] ))) {
/* We have to get the FIFO direction
correct, so I've made a table based
on the SCSI Standard of which commands
appear to require a DATA OUT phase.
*/
/*
p. 94: Command for all device types
CHANGE DEFINITION 40 DATA OUT
COMPARE 39 DATA OUT
COPY 18 DATA OUT
COPY AND VERIFY 3a DATA OUT
INQUIRY 12
LOG SELECT 4c DATA OUT
LOG SENSE 4d
MODE SELECT (6) 15 DATA OUT
MODE SELECT (10) 55 DATA OUT
MODE SENSE (6) 1a
MODE SENSE (10) 5a
READ BUFFER 3c
RECEIVE DIAGNOSTIC RESULTS 1c
REQUEST SENSE 03
SEND DIAGNOSTIC 1d DATA OUT
TEST UNIT READY 00
WRITE BUFFER 3b DATA OUT
p.178: Commands for direct-access devices (not listed on p. 94)
FORMAT UNIT 04 DATA OUT
LOCK-UNLOCK CACHE 36
PRE-FETCH 34
PREVENT-ALLOW MEDIUM REMOVAL 1e
READ (6)/RECEIVE 08
READ (10) 3c
READ CAPACITY 25
READ DEFECT DATA (10) 37
READ LONG 3e
REASSIGN BLOCKS 07 DATA OUT
RELEASE 17
RESERVE 16 DATA OUT
REZERO UNIT/REWIND 01
SEARCH DATA EQUAL (10) 31 DATA OUT
SEARCH DATA HIGH (10) 30 DATA OUT
SEARCH DATA LOW (10) 32 DATA OUT
SEEK (6) 0b
SEEK (10) 2b
SET LIMITS (10) 33
START STOP UNIT 1b
SYNCHRONIZE CACHE 35
VERIFY (10) 2f
WRITE (6)/PRINT/SEND 0a DATA OUT
WRITE (10)/SEND 2a DATA OUT
WRITE AND VERIFY (10) 2e DATA OUT
WRITE LONG 3f DATA OUT
WRITE SAME 41 DATA OUT ?
p. 261: Commands for sequential-access devices (not previously listed)
ERASE 19
LOAD UNLOAD 1b
LOCATE 2b
READ BLOCK LIMITS 05
READ POSITION 34
READ REVERSE 0f
RECOVER BUFFERED DATA 14
SPACE 11
WRITE FILEMARKS 10 ?
p. 298: Commands for printer devices (not previously listed)
****** NOT SUPPORTED BY THIS DRIVER, since 0b is SEEK (6) *****
SLEW AND PRINT 0b DATA OUT -- same as seek
STOP PRINT 1b
SYNCHRONIZE BUFFER 10
p. 315: Commands for processor devices (not previously listed)
p. 321: Commands for write-once devices (not previously listed)
MEDIUM SCAN 38
READ (12) a8
SEARCH DATA EQUAL (12) b1 DATA OUT
SEARCH DATA HIGH (12) b0 DATA OUT
SEARCH DATA LOW (12) b2 DATA OUT
SET LIMITS (12) b3
VERIFY (12) af
WRITE (12) aa DATA OUT
WRITE AND VERIFY (12) ae DATA OUT
p. 332: Commands for CD-ROM devices (not previously listed)
PAUSE/RESUME 4b
PLAY AUDIO (10) 45
PLAY AUDIO (12) a5
PLAY AUDIO MSF 47
PLAY TRACK RELATIVE (10) 49
PLAY TRACK RELATIVE (12) a9
READ HEADER 44
READ SUB-CHANNEL 42
READ TOC 43
p. 370: Commands for scanner devices (not previously listed)
GET DATA BUFFER STATUS 34
GET WINDOW 25
OBJECT POSITION 31
SCAN 1b
SET WINDOW 24 DATA OUT
p. 391: Commands for optical memory devices (not listed)
ERASE (10) 2c
ERASE (12) ac
MEDIUM SCAN 38 DATA OUT
READ DEFECT DATA (12) b7
READ GENERATION 29
READ UPDATED BLOCK 2d
UPDATE BLOCK 3d DATA OUT
p. 419: Commands for medium changer devices (not listed)
EXCHANGE MEDIUM 46
INITIALIZE ELEMENT STATUS 07
MOVE MEDIUM a5
POSITION TO ELEMENT 2b
READ ELEMENT STATUS b8
REQUEST VOL. ELEMENT ADDRESS b5
SEND VOLUME TAG b6 DATA OUT
p. 454: Commands for communications devices (not listed previously)
GET MESSAGE (6) 08
GET MESSAGE (10) 28
GET MESSAGE (12) a8
*/
switch (current_SC->cmnd[0]) {
case CHANGE_DEFINITION: case COMPARE: case COPY:
case COPY_VERIFY: case LOG_SELECT: case MODE_SELECT:
case MODE_SELECT_10: case SEND_DIAGNOSTIC: case WRITE_BUFFER:
case FORMAT_UNIT: case REASSIGN_BLOCKS: case RESERVE:
case SEARCH_EQUAL: case SEARCH_HIGH: case SEARCH_LOW:
case WRITE_6: case WRITE_10: case WRITE_VERIFY:
case 0x3f: case 0x41:
case 0xb1: case 0xb0: case 0xb2:
case 0xaa: case 0xae:
case 0x24:
case 0x38: case 0x3d:
case 0xb6:
case 0xea: /* alternate number for WRITE LONG */
current_SC->SCp.have_data_in = -1;
outb( 0xd0 | PARITY_MASK, TMC_Cntl_port );
break;
case 0x00:
default:
current_SC->SCp.have_data_in = 1;
outb( 0x90 | PARITY_MASK, TMC_Cntl_port );
break;
}
}
if (current_SC->SCp.have_data_in == -1) { /* DATA OUT */
while ( (data_count = 0x2000 - inw( FIFO_Data_Count_port )) > 512 ) {
#if EVERY_ACCESS
printk( "DC=%d, ", data_count ) ;
#endif
if (data_count > current_SC->SCp.this_residual)
data_count = current_SC->SCp.this_residual;
if (data_count > 0) {
#if EVERY_ACCESS
printk( "%d OUT, ", data_count );
#endif
if (data_count == 1) {
outb( *current_SC->SCp.ptr++, Write_FIFO_port );
--current_SC->SCp.this_residual;
} else {
data_count >>= 1;
outsw( current_SC->SCp.ptr, data_count, Write_FIFO_port );
current_SC->SCp.ptr += 2 * data_count;
current_SC->SCp.this_residual -= 2 * data_count;
}
}
if (!current_SC->SCp.this_residual) {
if (current_SC->SCp.buffers_residual) {
--current_SC->SCp.buffers_residual;
++current_SC->SCp.buffer;
current_SC->SCp.ptr = current_SC->SCp.buffer->address;
current_SC->SCp.this_residual = current_SC->SCp.buffer->length;
} else
break;
}
}
}
if (current_SC->SCp.have_data_in == 1) { /* DATA IN */
while ((data_count = inw( FIFO_Data_Count_port )) > 0) {
#if EVERY_ACCESS
printk( "DC=%d, ", data_count );
#endif
if (data_count > current_SC->SCp.this_residual)
data_count = current_SC->SCp.this_residual;
if (data_count) {
#if EVERY_ACCESS
printk( "%d IN, ", data_count );
#endif
if (data_count == 1) {
*current_SC->SCp.ptr++ = inb( Read_FIFO_port );
--current_SC->SCp.this_residual;
} else {
data_count >>= 1; /* Number of words */
insw( current_SC->SCp.ptr, data_count, Read_FIFO_port );
current_SC->SCp.ptr += 2 * data_count;
current_SC->SCp.this_residual -= 2 * data_count;
}
}
if (!current_SC->SCp.this_residual
&& current_SC->SCp.buffers_residual) {
--current_SC->SCp.buffers_residual;
++current_SC->SCp.buffer;
current_SC->SCp.ptr = current_SC->SCp.buffer->address;
current_SC->SCp.this_residual = current_SC->SCp.buffer->length;
}
}
}
if (done) {
#if EVERY_ACCESS
printk( " ** IN DONE %d ** ", current_SC->SCp.have_data_in );
#endif
#if ERRORS_ONLY
if (current_SC->cmnd[0] == REQUEST_SENSE && !current_SC->SCp.Status) {
if ((unsigned char)(*((char *)current_SC->request_buffer+2)) & 0x0f) {
unsigned char key;
unsigned char code;
unsigned char qualifier;
key = (unsigned char)(*((char *)current_SC->request_buffer + 2))
& 0x0f;
code = (unsigned char)(*((char *)current_SC->request_buffer + 12));
qualifier = (unsigned char)(*((char *)current_SC->request_buffer
+ 13));
if (!(key == UNIT_ATTENTION && (code == 0x29 || !code))
&& !(key == NOT_READY
&& code == 0x04
&& (!qualifier || qualifier == 0x02 || qualifier == 0x01))
&& !(key == ILLEGAL_REQUEST && (code == 0x25
|| code == 0x24
|| !code)))
printk( "Future Domain: REQUEST SENSE "
"Key = %x, Code = %x, Qualifier = %x\n",
key, code, qualifier );
}
}
#endif
#if EVERY_ACCESS
printk( "BEFORE MY_DONE. . ." );
#endif
my_done( (current_SC->SCp.Status & 0xff)
| ((current_SC->SCp.Message & 0xff) << 8) | (DID_OK << 16) );
#if EVERY_ACCESS
printk( "RETURNING.\n" );
#endif
} else {
if (current_SC->SCp.phase & disconnect) {
outb( 0xd0 | FIFO_COUNT, Interrupt_Cntl_port );
outb( 0x00, SCSI_Cntl_port );
} else {
outb( 0x90 | FIFO_COUNT, Interrupt_Cntl_port );
}
}
#if DEBUG_RACE
in_interrupt_flag = 0;
#endif
return;
}
int fdomain_16x0_queue( Scsi_Cmnd * SCpnt, void (*done)(Scsi_Cmnd *))
{
if (in_command) {
panic( "Future Domain: fdomain_16x0_queue() NOT REENTRANT!\n" );
}
#if EVERY_ACCESS
printk( "queue: target = %d cmnd = 0x%02x pieces = %d size = %u\n",
SCpnt->target,
*(unsigned char *)SCpnt->cmnd,
SCpnt->use_sg,
SCpnt->request_bufflen );
#endif
fdomain_make_bus_idle();
current_SC = SCpnt; /* Save this for the done function */
current_SC->scsi_done = done;
/* Initialize static data */
if (current_SC->use_sg) {
current_SC->SCp.buffer =
(struct scatterlist *)current_SC->request_buffer;
current_SC->SCp.ptr = current_SC->SCp.buffer->address;
current_SC->SCp.this_residual = current_SC->SCp.buffer->length;
current_SC->SCp.buffers_residual = current_SC->use_sg - 1;
} else {
current_SC->SCp.ptr = (char *)current_SC->request_buffer;
current_SC->SCp.this_residual = current_SC->request_bufflen;
current_SC->SCp.buffer = NULL;
current_SC->SCp.buffers_residual = 0;
}
current_SC->SCp.Status = 0;
current_SC->SCp.Message = 0;
current_SC->SCp.have_data_in = 0;
current_SC->SCp.sent_command = 0;
current_SC->SCp.phase = in_arbitration;
/* Start arbitration */
outb( 0x00, Interrupt_Cntl_port );
outb( 0x00, SCSI_Cntl_port ); /* Disable data drivers */
outb( adapter_mask, SCSI_Data_NoACK_port ); /* Set our id bit */
++in_command;
outb( 0x20, Interrupt_Cntl_port );
outb( 0x14 | PARITY_MASK, TMC_Cntl_port ); /* Start arbitration */
return 0;
}
/* The following code, which simulates the old-style command function, was
taken from Tommy Thorn's aha1542.c file. This code is Copyright (C)
1992 Tommy Thorn. */
static volatile int internal_done_flag = 0;
static volatile int internal_done_errcode = 0;
static void internal_done( Scsi_Cmnd *SCpnt )
{
internal_done_errcode = SCpnt->result;
++internal_done_flag;
}
int fdomain_16x0_command( Scsi_Cmnd *SCpnt )
{
fdomain_16x0_queue( SCpnt, internal_done );
while (!internal_done_flag)
;
internal_done_flag = 0;
return internal_done_errcode;
}
/* End of code derived from Tommy Thorn's work. */
void print_info( Scsi_Cmnd *SCpnt )
{
unsigned int imr;
unsigned int irr;
unsigned int isr;
print_banner();
switch (SCpnt->SCp.phase) {
case in_arbitration: printk( "arbitration " ); break;
case in_selection: printk( "selection " ); break;
case in_other: printk( "other " ); break;
default: printk( "unknown " ); break;
}
printk( "(%d), target = %d cmnd = 0x%02x pieces = %d size = %u\n",
SCpnt->SCp.phase,
SCpnt->target,
*(unsigned char *)SCpnt->cmnd,
SCpnt->use_sg,
SCpnt->request_bufflen );
printk( "sent_command = %d, have_data_in = %d, timeout = %d\n",
SCpnt->SCp.sent_command,
SCpnt->SCp.have_data_in,
SCpnt->timeout );
#if DEBUG_RACE
printk( "in_interrupt_flag = %d\n", in_interrupt_flag );
#endif
imr = (inb( 0x0a1 ) << 8) + inb( 0x21 );
outb( 0x0a, 0xa0 );
irr = inb( 0xa0 ) << 8;
outb( 0x0a, 0x20 );
irr += inb( 0x20 );
outb( 0x0b, 0xa0 );
isr = inb( 0xa0 ) << 8;
outb( 0x0b, 0x20 );
isr += inb( 0x20 );
/* Print out interesting information */
printk( "IMR = 0x%04x", imr );
if (imr & (1 << interrupt_level))
printk( " (masked)" );
printk( ", IRR = 0x%04x, ISR = 0x%04x\n", irr, isr );
printk( "SCSI Status = 0x%02x\n", inb( SCSI_Status_port ) );
printk( "TMC Status = 0x%02x", inb( TMC_Status_port ) );
if (inb( TMC_Status_port & 1))
printk( " (interrupt)" );
printk( "\n" );
printk( "Interrupt Status = 0x%02x", inb( Interrupt_Status_port ) );
if (inb( Interrupt_Status_port ) & 0x08)
printk( " (enabled)" );
printk( "\n" );
if (chip == tmc18c50) {
printk( "FIFO Status = 0x%02x\n", inb( port_base + FIFO_Status ) );
printk( "Int. Condition = 0x%02x\n",
inb( port_base + Interrupt_Cond ) );
}
printk( "Configuration 1 = 0x%02x\n", inb( port_base + Configuration1 ) );
if (chip == tmc18c50)
printk( "Configuration 2 = 0x%02x\n",
inb( port_base + Configuration2 ) );
}
int fdomain_16x0_abort( Scsi_Cmnd *SCpnt, int code )
{
#if EVERY_ACCESS || ERRORS_ONLY || DEBUG_ABORT
printk( "Future Domain: Abort " );
#endif
cli();
if (!in_command) {
#if EVERY_ACCESS || ERRORS_ONLY
printk( " (not in command)\n" );
#endif
sti();
return 0;
} else {
#if EVERY_ACCESS || ERRORS_ONLY
printk( " code = %d\n", code );
#endif
}
#if DEBUG_ABORT
print_info( SCpnt );
#endif
fdomain_make_bus_idle();
current_SC->SCp.phase |= aborted;
current_SC->result = code ? code : DID_ABORT;
sti();
/* Aborts are not done well. . . */
my_done( code << 16 );
return 0;
}
int fdomain_16x0_reset( Scsi_Cmnd *SCpnt )
{
#if DEBUG_RESET
static int called_once = 0;
#endif
#if ERRORS_ONLY
printk( "Future Domain: SCSI Bus Reset\n" );
#endif
#if DEBUG_RESET
if (called_once) print_info( current_SC );
called_once = 1;
#endif
outb( 1, SCSI_Cntl_port );
do_pause( 2 );
outb( 0, SCSI_Cntl_port );
do_pause( 115 );
outb( 0, SCSI_Mode_Cntl_port );
outb( PARITY_MASK, TMC_Cntl_port );
/* Unless this is the very first call (i.e., SCPnt == NULL), everything
is probably hosed at this point. We will, however, try to keep
things going by informing the high-level code that we need help. */
if (SCpnt)
SCpnt->flags |= NEEDS_JUMPSTART;
return 0;
}
int fdomain_16x0_biosparam( int size, int dev, int *info_array )
{
int drive;
struct drive_info {
unsigned short cylinders;
unsigned char heads;
unsigned char sectors;
} *i;
/* NOTES:
The RAM area starts at 0x1f00 from the bios_base address.
For BIOS Version 2.0:
The drive parameter table seems to start at 0x1f30.
The first byte's purpose is not known.
Next is the cylinder, head, and sector information.
The last 4 bytes appear to be the drive's size in sectors.
The other bytes in the drive parameter table are unknown.
If anyone figures them out, please send me mail, and I will
update these notes.
Tape drives do not get placed in this table.
There is another table at 0x1fea:
If the byte is 0x01, then the SCSI ID is not in use.
If the byte is 0x18 or 0x48, then the SCSI ID is in use,
although tapes don't seem to be in this table. I haven't
seen any other numbers (in a limited sample).
0x1f2d is a drive count (i.e., not including tapes)
The table at 0x1fcc are I/O ports addresses for the various
operations. I calculate these by hand in this driver code.
For BIOS Version 3.2:
The drive parameter table starts at 0x1f70. Each entry is
0x0a bytes long. Heads are one less than we need to report.
*/
drive = MINOR(dev) / 16;
if (bios_major == 2) {
i = (struct drive_info *)( (char *)bios_base + 0x1f31 + drive * 25 );
info_array[0] = i->heads;
info_array[1] = i->sectors;
info_array[2] = i->cylinders;
} else if (bios_major == 3) { /* Appears to be the same for 3.0 and 3.2 */
i = (struct drive_info *)( (char *)bios_base + 0x1f71 + drive * 10 );
info_array[0] = i->heads + 1;
info_array[1] = i->sectors;
info_array[2] = i->cylinders;
} else {
/* How the data is stored in the RAM area is very BIOS-dependent.
Therefore, assume a version 3 layout, and check for validity. */
i = (struct drive_info *)( (char *)bios_base + 0x1f71 + drive * 10 );
info_array[0] = i->heads + 1;
info_array[1] = i->sectors;
info_array[2] = i->cylinders;
if (!info_array[0]
|| !info_array[1]
|| !info_array[2]
|| info_array[2] > 1024 /* DOS uses only 10 bits.
Should this be changed
to support larger drives?
I.e., will the controller
"do the right thing"?
*/
) {
info_array[0]
= info_array[1]
= info_array[2]
= 0;
}
}
return 0;
}