blob: 63203acef812211cb17788454116fcbe77debdd7 [file] [log] [blame]
/*
* SuperH Mobile LCDC Framebuffer
*
* Copyright (c) 2008 Magnus Damm
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#include <linux/atomic.h>
#include <linux/backlight.h>
#include <linux/clk.h>
#include <linux/console.h>
#include <linux/ctype.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/gpio.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/ioctl.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <linux/videodev2.h>
#include <linux/vmalloc.h>
#include <video/sh_mobile_lcdc.h>
#include <video/sh_mobile_meram.h>
#include "sh_mobile_lcdcfb.h"
/* ----------------------------------------------------------------------------
* Overlay register definitions
*/
#define LDBCR 0xb00
#define LDBCR_UPC(n) (1 << ((n) + 16))
#define LDBCR_UPF(n) (1 << ((n) + 8))
#define LDBCR_UPD(n) (1 << ((n) + 0))
#define LDBnBSIFR(n) (0xb20 + (n) * 0x20 + 0x00)
#define LDBBSIFR_EN (1 << 31)
#define LDBBSIFR_VS (1 << 29)
#define LDBBSIFR_BRSEL (1 << 28)
#define LDBBSIFR_MX (1 << 27)
#define LDBBSIFR_MY (1 << 26)
#define LDBBSIFR_CV3 (3 << 24)
#define LDBBSIFR_CV2 (2 << 24)
#define LDBBSIFR_CV1 (1 << 24)
#define LDBBSIFR_CV0 (0 << 24)
#define LDBBSIFR_CV_MASK (3 << 24)
#define LDBBSIFR_LAY_MASK (0xff << 16)
#define LDBBSIFR_LAY_SHIFT 16
#define LDBBSIFR_ROP3_MASK (0xff << 16)
#define LDBBSIFR_ROP3_SHIFT 16
#define LDBBSIFR_AL_PL8 (3 << 14)
#define LDBBSIFR_AL_PL1 (2 << 14)
#define LDBBSIFR_AL_PK (1 << 14)
#define LDBBSIFR_AL_1 (0 << 14)
#define LDBBSIFR_AL_MASK (3 << 14)
#define LDBBSIFR_SWPL (1 << 10)
#define LDBBSIFR_SWPW (1 << 9)
#define LDBBSIFR_SWPB (1 << 8)
#define LDBBSIFR_RY (1 << 7)
#define LDBBSIFR_CHRR_420 (2 << 0)
#define LDBBSIFR_CHRR_422 (1 << 0)
#define LDBBSIFR_CHRR_444 (0 << 0)
#define LDBBSIFR_RPKF_ARGB32 (0x00 << 0)
#define LDBBSIFR_RPKF_RGB16 (0x03 << 0)
#define LDBBSIFR_RPKF_RGB24 (0x0b << 0)
#define LDBBSIFR_RPKF_MASK (0x1f << 0)
#define LDBnBSSZR(n) (0xb20 + (n) * 0x20 + 0x04)
#define LDBBSSZR_BVSS_MASK (0xfff << 16)
#define LDBBSSZR_BVSS_SHIFT 16
#define LDBBSSZR_BHSS_MASK (0xfff << 0)
#define LDBBSSZR_BHSS_SHIFT 0
#define LDBnBLOCR(n) (0xb20 + (n) * 0x20 + 0x08)
#define LDBBLOCR_CVLC_MASK (0xfff << 16)
#define LDBBLOCR_CVLC_SHIFT 16
#define LDBBLOCR_CHLC_MASK (0xfff << 0)
#define LDBBLOCR_CHLC_SHIFT 0
#define LDBnBSMWR(n) (0xb20 + (n) * 0x20 + 0x0c)
#define LDBBSMWR_BSMWA_MASK (0xffff << 16)
#define LDBBSMWR_BSMWA_SHIFT 16
#define LDBBSMWR_BSMW_MASK (0xffff << 0)
#define LDBBSMWR_BSMW_SHIFT 0
#define LDBnBSAYR(n) (0xb20 + (n) * 0x20 + 0x10)
#define LDBBSAYR_FG1A_MASK (0xff << 24)
#define LDBBSAYR_FG1A_SHIFT 24
#define LDBBSAYR_FG1R_MASK (0xff << 16)
#define LDBBSAYR_FG1R_SHIFT 16
#define LDBBSAYR_FG1G_MASK (0xff << 8)
#define LDBBSAYR_FG1G_SHIFT 8
#define LDBBSAYR_FG1B_MASK (0xff << 0)
#define LDBBSAYR_FG1B_SHIFT 0
#define LDBnBSACR(n) (0xb20 + (n) * 0x20 + 0x14)
#define LDBBSACR_FG2A_MASK (0xff << 24)
#define LDBBSACR_FG2A_SHIFT 24
#define LDBBSACR_FG2R_MASK (0xff << 16)
#define LDBBSACR_FG2R_SHIFT 16
#define LDBBSACR_FG2G_MASK (0xff << 8)
#define LDBBSACR_FG2G_SHIFT 8
#define LDBBSACR_FG2B_MASK (0xff << 0)
#define LDBBSACR_FG2B_SHIFT 0
#define LDBnBSAAR(n) (0xb20 + (n) * 0x20 + 0x18)
#define LDBBSAAR_AP_MASK (0xff << 24)
#define LDBBSAAR_AP_SHIFT 24
#define LDBBSAAR_R_MASK (0xff << 16)
#define LDBBSAAR_R_SHIFT 16
#define LDBBSAAR_GY_MASK (0xff << 8)
#define LDBBSAAR_GY_SHIFT 8
#define LDBBSAAR_B_MASK (0xff << 0)
#define LDBBSAAR_B_SHIFT 0
#define LDBnBPPCR(n) (0xb20 + (n) * 0x20 + 0x1c)
#define LDBBPPCR_AP_MASK (0xff << 24)
#define LDBBPPCR_AP_SHIFT 24
#define LDBBPPCR_R_MASK (0xff << 16)
#define LDBBPPCR_R_SHIFT 16
#define LDBBPPCR_GY_MASK (0xff << 8)
#define LDBBPPCR_GY_SHIFT 8
#define LDBBPPCR_B_MASK (0xff << 0)
#define LDBBPPCR_B_SHIFT 0
#define LDBnBBGCL(n) (0xb10 + (n) * 0x04)
#define LDBBBGCL_BGA_MASK (0xff << 24)
#define LDBBBGCL_BGA_SHIFT 24
#define LDBBBGCL_BGR_MASK (0xff << 16)
#define LDBBBGCL_BGR_SHIFT 16
#define LDBBBGCL_BGG_MASK (0xff << 8)
#define LDBBBGCL_BGG_SHIFT 8
#define LDBBBGCL_BGB_MASK (0xff << 0)
#define LDBBBGCL_BGB_SHIFT 0
#define SIDE_B_OFFSET 0x1000
#define MIRROR_OFFSET 0x2000
#define MAX_XRES 1920
#define MAX_YRES 1080
enum sh_mobile_lcdc_overlay_mode {
LCDC_OVERLAY_BLEND,
LCDC_OVERLAY_ROP3,
};
/*
* struct sh_mobile_lcdc_overlay - LCDC display overlay
*
* @channel: LCDC channel this overlay belongs to
* @cfg: Overlay configuration
* @info: Frame buffer device
* @index: Overlay index (0-3)
* @base: Overlay registers base address
* @enabled: True if the overlay is enabled
* @mode: Overlay blending mode (alpha blend or ROP3)
* @alpha: Global alpha blending value (0-255, for alpha blending mode)
* @rop3: Raster operation (for ROP3 mode)
* @fb_mem: Frame buffer virtual memory address
* @fb_size: Frame buffer size in bytes
* @dma_handle: Frame buffer DMA address
* @base_addr_y: Overlay base address (RGB or luma component)
* @base_addr_c: Overlay base address (chroma component)
* @pan_y_offset: Panning linear offset in bytes (luma component)
* @format: Current pixelf format
* @xres: Horizontal visible resolution
* @xres_virtual: Horizontal total resolution
* @yres: Vertical visible resolution
* @yres_virtual: Vertical total resolution
* @pitch: Overlay line pitch
* @pos_x: Horizontal overlay position
* @pos_y: Vertical overlay position
*/
struct sh_mobile_lcdc_overlay {
struct sh_mobile_lcdc_chan *channel;
const struct sh_mobile_lcdc_overlay_cfg *cfg;
struct fb_info *info;
unsigned int index;
unsigned long base;
bool enabled;
enum sh_mobile_lcdc_overlay_mode mode;
unsigned int alpha;
unsigned int rop3;
void *fb_mem;
unsigned long fb_size;
dma_addr_t dma_handle;
unsigned long base_addr_y;
unsigned long base_addr_c;
unsigned long pan_y_offset;
const struct sh_mobile_lcdc_format_info *format;
unsigned int xres;
unsigned int xres_virtual;
unsigned int yres;
unsigned int yres_virtual;
unsigned int pitch;
int pos_x;
int pos_y;
};
struct sh_mobile_lcdc_priv {
void __iomem *base;
int irq;
atomic_t hw_usecnt;
struct device *dev;
struct clk *dot_clk;
unsigned long lddckr;
struct sh_mobile_lcdc_chan ch[2];
struct sh_mobile_lcdc_overlay overlays[4];
struct notifier_block notifier;
int started;
int forced_fourcc; /* 2 channel LCDC must share fourcc setting */
struct sh_mobile_meram_info *meram_dev;
};
/* -----------------------------------------------------------------------------
* Registers access
*/
static unsigned long lcdc_offs_mainlcd[NR_CH_REGS] = {
[LDDCKPAT1R] = 0x400,
[LDDCKPAT2R] = 0x404,
[LDMT1R] = 0x418,
[LDMT2R] = 0x41c,
[LDMT3R] = 0x420,
[LDDFR] = 0x424,
[LDSM1R] = 0x428,
[LDSM2R] = 0x42c,
[LDSA1R] = 0x430,
[LDSA2R] = 0x434,
[LDMLSR] = 0x438,
[LDHCNR] = 0x448,
[LDHSYNR] = 0x44c,
[LDVLNR] = 0x450,
[LDVSYNR] = 0x454,
[LDPMR] = 0x460,
[LDHAJR] = 0x4a0,
};
static unsigned long lcdc_offs_sublcd[NR_CH_REGS] = {
[LDDCKPAT1R] = 0x408,
[LDDCKPAT2R] = 0x40c,
[LDMT1R] = 0x600,
[LDMT2R] = 0x604,
[LDMT3R] = 0x608,
[LDDFR] = 0x60c,
[LDSM1R] = 0x610,
[LDSM2R] = 0x614,
[LDSA1R] = 0x618,
[LDMLSR] = 0x620,
[LDHCNR] = 0x624,
[LDHSYNR] = 0x628,
[LDVLNR] = 0x62c,
[LDVSYNR] = 0x630,
[LDPMR] = 0x63c,
};
static bool banked(int reg_nr)
{
switch (reg_nr) {
case LDMT1R:
case LDMT2R:
case LDMT3R:
case LDDFR:
case LDSM1R:
case LDSA1R:
case LDSA2R:
case LDMLSR:
case LDHCNR:
case LDHSYNR:
case LDVLNR:
case LDVSYNR:
return true;
}
return false;
}
static int lcdc_chan_is_sublcd(struct sh_mobile_lcdc_chan *chan)
{
return chan->cfg->chan == LCDC_CHAN_SUBLCD;
}
static void lcdc_write_chan(struct sh_mobile_lcdc_chan *chan,
int reg_nr, unsigned long data)
{
iowrite32(data, chan->lcdc->base + chan->reg_offs[reg_nr]);
if (banked(reg_nr))
iowrite32(data, chan->lcdc->base + chan->reg_offs[reg_nr] +
SIDE_B_OFFSET);
}
static void lcdc_write_chan_mirror(struct sh_mobile_lcdc_chan *chan,
int reg_nr, unsigned long data)
{
iowrite32(data, chan->lcdc->base + chan->reg_offs[reg_nr] +
MIRROR_OFFSET);
}
static unsigned long lcdc_read_chan(struct sh_mobile_lcdc_chan *chan,
int reg_nr)
{
return ioread32(chan->lcdc->base + chan->reg_offs[reg_nr]);
}
static void lcdc_write_overlay(struct sh_mobile_lcdc_overlay *ovl,
int reg, unsigned long data)
{
iowrite32(data, ovl->channel->lcdc->base + reg);
iowrite32(data, ovl->channel->lcdc->base + reg + SIDE_B_OFFSET);
}
static void lcdc_write(struct sh_mobile_lcdc_priv *priv,
unsigned long reg_offs, unsigned long data)
{
iowrite32(data, priv->base + reg_offs);
}
static unsigned long lcdc_read(struct sh_mobile_lcdc_priv *priv,
unsigned long reg_offs)
{
return ioread32(priv->base + reg_offs);
}
static void lcdc_wait_bit(struct sh_mobile_lcdc_priv *priv,
unsigned long reg_offs,
unsigned long mask, unsigned long until)
{
while ((lcdc_read(priv, reg_offs) & mask) != until)
cpu_relax();
}
/* -----------------------------------------------------------------------------
* Clock management
*/
static void sh_mobile_lcdc_clk_on(struct sh_mobile_lcdc_priv *priv)
{
if (atomic_inc_and_test(&priv->hw_usecnt)) {
if (priv->dot_clk)
clk_enable(priv->dot_clk);
pm_runtime_get_sync(priv->dev);
if (priv->meram_dev && priv->meram_dev->pdev)
pm_runtime_get_sync(&priv->meram_dev->pdev->dev);
}
}
static void sh_mobile_lcdc_clk_off(struct sh_mobile_lcdc_priv *priv)
{
if (atomic_sub_return(1, &priv->hw_usecnt) == -1) {
if (priv->meram_dev && priv->meram_dev->pdev)
pm_runtime_put_sync(&priv->meram_dev->pdev->dev);
pm_runtime_put(priv->dev);
if (priv->dot_clk)
clk_disable(priv->dot_clk);
}
}
static int sh_mobile_lcdc_setup_clocks(struct sh_mobile_lcdc_priv *priv,
int clock_source)
{
struct clk *clk;
char *str;
switch (clock_source) {
case LCDC_CLK_BUS:
str = "bus_clk";
priv->lddckr = LDDCKR_ICKSEL_BUS;
break;
case LCDC_CLK_PERIPHERAL:
str = "peripheral_clk";
priv->lddckr = LDDCKR_ICKSEL_MIPI;
break;
case LCDC_CLK_EXTERNAL:
str = NULL;
priv->lddckr = LDDCKR_ICKSEL_HDMI;
break;
default:
return -EINVAL;
}
if (str == NULL)
return 0;
clk = clk_get(priv->dev, str);
if (IS_ERR(clk)) {
dev_err(priv->dev, "cannot get dot clock %s\n", str);
return PTR_ERR(clk);
}
priv->dot_clk = clk;
return 0;
}
/* -----------------------------------------------------------------------------
* Display, panel and deferred I/O
*/
static void lcdc_sys_write_index(void *handle, unsigned long data)
{
struct sh_mobile_lcdc_chan *ch = handle;
lcdc_write(ch->lcdc, _LDDWD0R, data | LDDWDxR_WDACT);
lcdc_wait_bit(ch->lcdc, _LDSR, LDSR_AS, 0);
lcdc_write(ch->lcdc, _LDDWAR, LDDWAR_WA |
(lcdc_chan_is_sublcd(ch) ? 2 : 0));
lcdc_wait_bit(ch->lcdc, _LDSR, LDSR_AS, 0);
}
static void lcdc_sys_write_data(void *handle, unsigned long data)
{
struct sh_mobile_lcdc_chan *ch = handle;
lcdc_write(ch->lcdc, _LDDWD0R, data | LDDWDxR_WDACT | LDDWDxR_RSW);
lcdc_wait_bit(ch->lcdc, _LDSR, LDSR_AS, 0);
lcdc_write(ch->lcdc, _LDDWAR, LDDWAR_WA |
(lcdc_chan_is_sublcd(ch) ? 2 : 0));
lcdc_wait_bit(ch->lcdc, _LDSR, LDSR_AS, 0);
}
static unsigned long lcdc_sys_read_data(void *handle)
{
struct sh_mobile_lcdc_chan *ch = handle;
lcdc_write(ch->lcdc, _LDDRDR, LDDRDR_RSR);
lcdc_wait_bit(ch->lcdc, _LDSR, LDSR_AS, 0);
lcdc_write(ch->lcdc, _LDDRAR, LDDRAR_RA |
(lcdc_chan_is_sublcd(ch) ? 2 : 0));
udelay(1);
lcdc_wait_bit(ch->lcdc, _LDSR, LDSR_AS, 0);
return lcdc_read(ch->lcdc, _LDDRDR) & LDDRDR_DRD_MASK;
}
static struct sh_mobile_lcdc_sys_bus_ops sh_mobile_lcdc_sys_bus_ops = {
lcdc_sys_write_index,
lcdc_sys_write_data,
lcdc_sys_read_data,
};
static int sh_mobile_lcdc_sginit(struct fb_info *info,
struct list_head *pagelist)
{
struct sh_mobile_lcdc_chan *ch = info->par;
unsigned int nr_pages_max = ch->fb_size >> PAGE_SHIFT;
struct page *page;
int nr_pages = 0;
sg_init_table(ch->sglist, nr_pages_max);
list_for_each_entry(page, pagelist, lru)
sg_set_page(&ch->sglist[nr_pages++], page, PAGE_SIZE, 0);
return nr_pages;
}
static void sh_mobile_lcdc_deferred_io(struct fb_info *info,
struct list_head *pagelist)
{
struct sh_mobile_lcdc_chan *ch = info->par;
const struct sh_mobile_lcdc_panel_cfg *panel = &ch->cfg->panel_cfg;
/* enable clocks before accessing hardware */
sh_mobile_lcdc_clk_on(ch->lcdc);
/*
* It's possible to get here without anything on the pagelist via
* sh_mobile_lcdc_deferred_io_touch() or via a userspace fsync()
* invocation. In the former case, the acceleration routines are
* stepped in to when using the framebuffer console causing the
* workqueue to be scheduled without any dirty pages on the list.
*
* Despite this, a panel update is still needed given that the
* acceleration routines have their own methods for writing in
* that still need to be updated.
*
* The fsync() and empty pagelist case could be optimized for,
* but we don't bother, as any application exhibiting such
* behaviour is fundamentally broken anyways.
*/
if (!list_empty(pagelist)) {
unsigned int nr_pages = sh_mobile_lcdc_sginit(info, pagelist);
/* trigger panel update */
dma_map_sg(ch->lcdc->dev, ch->sglist, nr_pages, DMA_TO_DEVICE);
if (panel->start_transfer)
panel->start_transfer(ch, &sh_mobile_lcdc_sys_bus_ops);
lcdc_write_chan(ch, LDSM2R, LDSM2R_OSTRG);
dma_unmap_sg(ch->lcdc->dev, ch->sglist, nr_pages,
DMA_TO_DEVICE);
} else {
if (panel->start_transfer)
panel->start_transfer(ch, &sh_mobile_lcdc_sys_bus_ops);
lcdc_write_chan(ch, LDSM2R, LDSM2R_OSTRG);
}
}
static void sh_mobile_lcdc_deferred_io_touch(struct fb_info *info)
{
struct fb_deferred_io *fbdefio = info->fbdefio;
if (fbdefio)
schedule_delayed_work(&info->deferred_work, fbdefio->delay);
}
static void sh_mobile_lcdc_display_on(struct sh_mobile_lcdc_chan *ch)
{
const struct sh_mobile_lcdc_panel_cfg *panel = &ch->cfg->panel_cfg;
if (ch->tx_dev) {
int ret;
ret = ch->tx_dev->ops->display_on(ch->tx_dev);
if (ret < 0)
return;
if (ret == SH_MOBILE_LCDC_DISPLAY_DISCONNECTED)
ch->info->state = FBINFO_STATE_SUSPENDED;
}
/* HDMI must be enabled before LCDC configuration */
if (panel->display_on)
panel->display_on();
}
static void sh_mobile_lcdc_display_off(struct sh_mobile_lcdc_chan *ch)
{
const struct sh_mobile_lcdc_panel_cfg *panel = &ch->cfg->panel_cfg;
if (panel->display_off)
panel->display_off();
if (ch->tx_dev)
ch->tx_dev->ops->display_off(ch->tx_dev);
}
static bool
sh_mobile_lcdc_must_reconfigure(struct sh_mobile_lcdc_chan *ch,
const struct fb_videomode *new_mode)
{
dev_dbg(ch->info->dev, "Old %ux%u, new %ux%u\n",
ch->display.mode.xres, ch->display.mode.yres,
new_mode->xres, new_mode->yres);
/* It can be a different monitor with an equal video-mode */
if (fb_mode_is_equal(&ch->display.mode, new_mode))
return false;
dev_dbg(ch->info->dev, "Switching %u -> %u lines\n",
ch->display.mode.yres, new_mode->yres);
ch->display.mode = *new_mode;
return true;
}
static int sh_mobile_lcdc_check_var(struct fb_var_screeninfo *var,
struct fb_info *info);
static int sh_mobile_lcdc_display_notify(struct sh_mobile_lcdc_chan *ch,
enum sh_mobile_lcdc_entity_event event,
const struct fb_videomode *mode,
const struct fb_monspecs *monspec)
{
struct fb_info *info = ch->info;
struct fb_var_screeninfo var;
int ret = 0;
switch (event) {
case SH_MOBILE_LCDC_EVENT_DISPLAY_CONNECT:
/* HDMI plug in */
if (lock_fb_info(info)) {
console_lock();
ch->display.width = monspec->max_x * 10;
ch->display.height = monspec->max_y * 10;
if (!sh_mobile_lcdc_must_reconfigure(ch, mode) &&
info->state == FBINFO_STATE_RUNNING) {
/* First activation with the default monitor.
* Just turn on, if we run a resume here, the
* logo disappears.
*/
info->var.width = ch->display.width;
info->var.height = ch->display.height;
sh_mobile_lcdc_display_on(ch);
} else {
/* New monitor or have to wake up */
fb_set_suspend(info, 0);
}
console_unlock();
unlock_fb_info(info);
}
break;
case SH_MOBILE_LCDC_EVENT_DISPLAY_DISCONNECT:
/* HDMI disconnect */
if (lock_fb_info(info)) {
console_lock();
fb_set_suspend(info, 1);
console_unlock();
unlock_fb_info(info);
}
break;
case SH_MOBILE_LCDC_EVENT_DISPLAY_MODE:
/* Validate a proposed new mode */
fb_videomode_to_var(&var, mode);
var.bits_per_pixel = info->var.bits_per_pixel;
var.grayscale = info->var.grayscale;
ret = sh_mobile_lcdc_check_var(&var, info);
break;
}
return ret;
}
/* -----------------------------------------------------------------------------
* Format helpers
*/
struct sh_mobile_lcdc_format_info {
u32 fourcc;
unsigned int bpp;
bool yuv;
u32 lddfr;
};
static const struct sh_mobile_lcdc_format_info sh_mobile_format_infos[] = {
{
.fourcc = V4L2_PIX_FMT_RGB565,
.bpp = 16,
.yuv = false,
.lddfr = LDDFR_PKF_RGB16,
}, {
.fourcc = V4L2_PIX_FMT_BGR24,
.bpp = 24,
.yuv = false,
.lddfr = LDDFR_PKF_RGB24,
}, {
.fourcc = V4L2_PIX_FMT_BGR32,
.bpp = 32,
.yuv = false,
.lddfr = LDDFR_PKF_ARGB32,
}, {
.fourcc = V4L2_PIX_FMT_NV12,
.bpp = 12,
.yuv = true,
.lddfr = LDDFR_CC | LDDFR_YF_420,
}, {
.fourcc = V4L2_PIX_FMT_NV21,
.bpp = 12,
.yuv = true,
.lddfr = LDDFR_CC | LDDFR_YF_420,
}, {
.fourcc = V4L2_PIX_FMT_NV16,
.bpp = 16,
.yuv = true,
.lddfr = LDDFR_CC | LDDFR_YF_422,
}, {
.fourcc = V4L2_PIX_FMT_NV61,
.bpp = 16,
.yuv = true,
.lddfr = LDDFR_CC | LDDFR_YF_422,
}, {
.fourcc = V4L2_PIX_FMT_NV24,
.bpp = 24,
.yuv = true,
.lddfr = LDDFR_CC | LDDFR_YF_444,
}, {
.fourcc = V4L2_PIX_FMT_NV42,
.bpp = 24,
.yuv = true,
.lddfr = LDDFR_CC | LDDFR_YF_444,
},
};
static const struct sh_mobile_lcdc_format_info *
sh_mobile_format_info(u32 fourcc)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(sh_mobile_format_infos); ++i) {
if (sh_mobile_format_infos[i].fourcc == fourcc)
return &sh_mobile_format_infos[i];
}
return NULL;
}
static int sh_mobile_format_fourcc(const struct fb_var_screeninfo *var)
{
if (var->grayscale > 1)
return var->grayscale;
switch (var->bits_per_pixel) {
case 16:
return V4L2_PIX_FMT_RGB565;
case 24:
return V4L2_PIX_FMT_BGR24;
case 32:
return V4L2_PIX_FMT_BGR32;
default:
return 0;
}
}
static int sh_mobile_format_is_fourcc(const struct fb_var_screeninfo *var)
{
return var->grayscale > 1;
}
/* -----------------------------------------------------------------------------
* Start, stop and IRQ
*/
static irqreturn_t sh_mobile_lcdc_irq(int irq, void *data)
{
struct sh_mobile_lcdc_priv *priv = data;
struct sh_mobile_lcdc_chan *ch;
unsigned long ldintr;
int is_sub;
int k;
/* Acknowledge interrupts and disable further VSYNC End IRQs. */
ldintr = lcdc_read(priv, _LDINTR);
lcdc_write(priv, _LDINTR, (ldintr ^ LDINTR_STATUS_MASK) & ~LDINTR_VEE);
/* figure out if this interrupt is for main or sub lcd */
is_sub = (lcdc_read(priv, _LDSR) & LDSR_MSS) ? 1 : 0;
/* wake up channel and disable clocks */
for (k = 0; k < ARRAY_SIZE(priv->ch); k++) {
ch = &priv->ch[k];
if (!ch->enabled)
continue;
/* Frame End */
if (ldintr & LDINTR_FS) {
if (is_sub == lcdc_chan_is_sublcd(ch)) {
ch->frame_end = 1;
wake_up(&ch->frame_end_wait);
sh_mobile_lcdc_clk_off(priv);
}
}
/* VSYNC End */
if (ldintr & LDINTR_VES)
complete(&ch->vsync_completion);
}
return IRQ_HANDLED;
}
static int sh_mobile_lcdc_wait_for_vsync(struct sh_mobile_lcdc_chan *ch)
{
unsigned long ldintr;
int ret;
/* Enable VSync End interrupt and be careful not to acknowledge any
* pending interrupt.
*/
ldintr = lcdc_read(ch->lcdc, _LDINTR);
ldintr |= LDINTR_VEE | LDINTR_STATUS_MASK;
lcdc_write(ch->lcdc, _LDINTR, ldintr);
ret = wait_for_completion_interruptible_timeout(&ch->vsync_completion,
msecs_to_jiffies(100));
if (!ret)
return -ETIMEDOUT;
return 0;
}
static void sh_mobile_lcdc_start_stop(struct sh_mobile_lcdc_priv *priv,
int start)
{
unsigned long tmp = lcdc_read(priv, _LDCNT2R);
int k;
/* start or stop the lcdc */
if (start)
lcdc_write(priv, _LDCNT2R, tmp | LDCNT2R_DO);
else
lcdc_write(priv, _LDCNT2R, tmp & ~LDCNT2R_DO);
/* wait until power is applied/stopped on all channels */
for (k = 0; k < ARRAY_SIZE(priv->ch); k++)
if (lcdc_read(priv, _LDCNT2R) & priv->ch[k].enabled)
while (1) {
tmp = lcdc_read_chan(&priv->ch[k], LDPMR)
& LDPMR_LPS;
if (start && tmp == LDPMR_LPS)
break;
if (!start && tmp == 0)
break;
cpu_relax();
}
if (!start)
lcdc_write(priv, _LDDCKSTPR, 1); /* stop dotclock */
}
static void sh_mobile_lcdc_geometry(struct sh_mobile_lcdc_chan *ch)
{
const struct fb_var_screeninfo *var = &ch->info->var;
const struct fb_videomode *mode = &ch->display.mode;
unsigned long h_total, hsync_pos, display_h_total;
u32 tmp;
tmp = ch->ldmt1r_value;
tmp |= (var->sync & FB_SYNC_VERT_HIGH_ACT) ? 0 : LDMT1R_VPOL;
tmp |= (var->sync & FB_SYNC_HOR_HIGH_ACT) ? 0 : LDMT1R_HPOL;
tmp |= (ch->cfg->flags & LCDC_FLAGS_DWPOL) ? LDMT1R_DWPOL : 0;
tmp |= (ch->cfg->flags & LCDC_FLAGS_DIPOL) ? LDMT1R_DIPOL : 0;
tmp |= (ch->cfg->flags & LCDC_FLAGS_DAPOL) ? LDMT1R_DAPOL : 0;
tmp |= (ch->cfg->flags & LCDC_FLAGS_HSCNT) ? LDMT1R_HSCNT : 0;
tmp |= (ch->cfg->flags & LCDC_FLAGS_DWCNT) ? LDMT1R_DWCNT : 0;
lcdc_write_chan(ch, LDMT1R, tmp);
/* setup SYS bus */
lcdc_write_chan(ch, LDMT2R, ch->cfg->sys_bus_cfg.ldmt2r);
lcdc_write_chan(ch, LDMT3R, ch->cfg->sys_bus_cfg.ldmt3r);
/* horizontal configuration */
h_total = mode->xres + mode->hsync_len + mode->left_margin
+ mode->right_margin;
tmp = h_total / 8; /* HTCN */
tmp |= (min(mode->xres, ch->xres) / 8) << 16; /* HDCN */
lcdc_write_chan(ch, LDHCNR, tmp);
hsync_pos = mode->xres + mode->right_margin;
tmp = hsync_pos / 8; /* HSYNP */
tmp |= (mode->hsync_len / 8) << 16; /* HSYNW */
lcdc_write_chan(ch, LDHSYNR, tmp);
/* vertical configuration */
tmp = mode->yres + mode->vsync_len + mode->upper_margin
+ mode->lower_margin; /* VTLN */
tmp |= min(mode->yres, ch->yres) << 16; /* VDLN */
lcdc_write_chan(ch, LDVLNR, tmp);
tmp = mode->yres + mode->lower_margin; /* VSYNP */
tmp |= mode->vsync_len << 16; /* VSYNW */
lcdc_write_chan(ch, LDVSYNR, tmp);
/* Adjust horizontal synchronisation for HDMI */
display_h_total = mode->xres + mode->hsync_len + mode->left_margin
+ mode->right_margin;
tmp = ((mode->xres & 7) << 24) | ((display_h_total & 7) << 16)
| ((mode->hsync_len & 7) << 8) | (hsync_pos & 7);
lcdc_write_chan(ch, LDHAJR, tmp);
}
static void sh_mobile_lcdc_overlay_setup(struct sh_mobile_lcdc_overlay *ovl)
{
u32 format = 0;
if (!ovl->enabled) {
lcdc_write(ovl->channel->lcdc, LDBCR, LDBCR_UPC(ovl->index));
lcdc_write_overlay(ovl, LDBnBSIFR(ovl->index), 0);
lcdc_write(ovl->channel->lcdc, LDBCR,
LDBCR_UPF(ovl->index) | LDBCR_UPD(ovl->index));
return;
}
ovl->base_addr_y = ovl->dma_handle;
ovl->base_addr_c = ovl->dma_handle
+ ovl->xres_virtual * ovl->yres_virtual;
switch (ovl->mode) {
case LCDC_OVERLAY_BLEND:
format = LDBBSIFR_EN | (ovl->alpha << LDBBSIFR_LAY_SHIFT);
break;
case LCDC_OVERLAY_ROP3:
format = LDBBSIFR_EN | LDBBSIFR_BRSEL
| (ovl->rop3 << LDBBSIFR_ROP3_SHIFT);
break;
}
switch (ovl->format->fourcc) {
case V4L2_PIX_FMT_RGB565:
case V4L2_PIX_FMT_NV21:
case V4L2_PIX_FMT_NV61:
case V4L2_PIX_FMT_NV42:
format |= LDBBSIFR_SWPL | LDBBSIFR_SWPW;
break;
case V4L2_PIX_FMT_BGR24:
case V4L2_PIX_FMT_NV12:
case V4L2_PIX_FMT_NV16:
case V4L2_PIX_FMT_NV24:
format |= LDBBSIFR_SWPL | LDBBSIFR_SWPW | LDBBSIFR_SWPB;
break;
case V4L2_PIX_FMT_BGR32:
default:
format |= LDBBSIFR_SWPL;
break;
}
switch (ovl->format->fourcc) {
case V4L2_PIX_FMT_RGB565:
format |= LDBBSIFR_AL_1 | LDBBSIFR_RY | LDBBSIFR_RPKF_RGB16;
break;
case V4L2_PIX_FMT_BGR24:
format |= LDBBSIFR_AL_1 | LDBBSIFR_RY | LDBBSIFR_RPKF_RGB24;
break;
case V4L2_PIX_FMT_BGR32:
format |= LDBBSIFR_AL_PK | LDBBSIFR_RY | LDDFR_PKF_ARGB32;
break;
case V4L2_PIX_FMT_NV12:
case V4L2_PIX_FMT_NV21:
format |= LDBBSIFR_AL_1 | LDBBSIFR_CHRR_420;
break;
case V4L2_PIX_FMT_NV16:
case V4L2_PIX_FMT_NV61:
format |= LDBBSIFR_AL_1 | LDBBSIFR_CHRR_422;
break;
case V4L2_PIX_FMT_NV24:
case V4L2_PIX_FMT_NV42:
format |= LDBBSIFR_AL_1 | LDBBSIFR_CHRR_444;
break;
}
lcdc_write(ovl->channel->lcdc, LDBCR, LDBCR_UPC(ovl->index));
lcdc_write_overlay(ovl, LDBnBSIFR(ovl->index), format);
lcdc_write_overlay(ovl, LDBnBSSZR(ovl->index),
(ovl->yres << LDBBSSZR_BVSS_SHIFT) |
(ovl->xres << LDBBSSZR_BHSS_SHIFT));
lcdc_write_overlay(ovl, LDBnBLOCR(ovl->index),
(ovl->pos_y << LDBBLOCR_CVLC_SHIFT) |
(ovl->pos_x << LDBBLOCR_CHLC_SHIFT));
lcdc_write_overlay(ovl, LDBnBSMWR(ovl->index),
ovl->pitch << LDBBSMWR_BSMW_SHIFT);
lcdc_write_overlay(ovl, LDBnBSAYR(ovl->index), ovl->base_addr_y);
lcdc_write_overlay(ovl, LDBnBSACR(ovl->index), ovl->base_addr_c);
lcdc_write(ovl->channel->lcdc, LDBCR,
LDBCR_UPF(ovl->index) | LDBCR_UPD(ovl->index));
}
/*
* __sh_mobile_lcdc_start - Configure and start the LCDC
* @priv: LCDC device
*
* Configure all enabled channels and start the LCDC device. All external
* devices (clocks, MERAM, panels, ...) are not touched by this function.
*/
static void __sh_mobile_lcdc_start(struct sh_mobile_lcdc_priv *priv)
{
struct sh_mobile_lcdc_chan *ch;
unsigned long tmp;
int k, m;
/* Enable LCDC channels. Read data from external memory, avoid using the
* BEU for now.
*/
lcdc_write(priv, _LDCNT2R, priv->ch[0].enabled | priv->ch[1].enabled);
/* Stop the LCDC first and disable all interrupts. */
sh_mobile_lcdc_start_stop(priv, 0);
lcdc_write(priv, _LDINTR, 0);
/* Configure power supply, dot clocks and start them. */
tmp = priv->lddckr;
for (k = 0; k < ARRAY_SIZE(priv->ch); k++) {
ch = &priv->ch[k];
if (!ch->enabled)
continue;
/* Power supply */
lcdc_write_chan(ch, LDPMR, 0);
m = ch->cfg->clock_divider;
if (!m)
continue;
/* FIXME: sh7724 can only use 42, 48, 54 and 60 for the divider
* denominator.
*/
lcdc_write_chan(ch, LDDCKPAT1R, 0);
lcdc_write_chan(ch, LDDCKPAT2R, (1 << (m/2)) - 1);
if (m == 1)
m = LDDCKR_MOSEL;
tmp |= m << (lcdc_chan_is_sublcd(ch) ? 8 : 0);
}
lcdc_write(priv, _LDDCKR, tmp);
lcdc_write(priv, _LDDCKSTPR, 0);
lcdc_wait_bit(priv, _LDDCKSTPR, ~0, 0);
/* Setup geometry, format, frame buffer memory and operation mode. */
for (k = 0; k < ARRAY_SIZE(priv->ch); k++) {
ch = &priv->ch[k];
if (!ch->enabled)
continue;
sh_mobile_lcdc_geometry(ch);
tmp = ch->format->lddfr;
if (ch->format->yuv) {
switch (ch->colorspace) {
case V4L2_COLORSPACE_REC709:
tmp |= LDDFR_CF1;
break;
case V4L2_COLORSPACE_JPEG:
tmp |= LDDFR_CF0;
break;
}
}
lcdc_write_chan(ch, LDDFR, tmp);
lcdc_write_chan(ch, LDMLSR, ch->line_size);
lcdc_write_chan(ch, LDSA1R, ch->base_addr_y);
if (ch->format->yuv)
lcdc_write_chan(ch, LDSA2R, ch->base_addr_c);
/* When using deferred I/O mode, configure the LCDC for one-shot
* operation and enable the frame end interrupt. Otherwise use
* continuous read mode.
*/
if (ch->ldmt1r_value & LDMT1R_IFM &&
ch->cfg->sys_bus_cfg.deferred_io_msec) {
lcdc_write_chan(ch, LDSM1R, LDSM1R_OS);
lcdc_write(priv, _LDINTR, LDINTR_FE);
} else {
lcdc_write_chan(ch, LDSM1R, 0);
}
}
/* Word and long word swap. */
switch (priv->ch[0].format->fourcc) {
case V4L2_PIX_FMT_RGB565:
case V4L2_PIX_FMT_NV21:
case V4L2_PIX_FMT_NV61:
case V4L2_PIX_FMT_NV42:
tmp = LDDDSR_LS | LDDDSR_WS;
break;
case V4L2_PIX_FMT_BGR24:
case V4L2_PIX_FMT_NV12:
case V4L2_PIX_FMT_NV16:
case V4L2_PIX_FMT_NV24:
tmp = LDDDSR_LS | LDDDSR_WS | LDDDSR_BS;
break;
case V4L2_PIX_FMT_BGR32:
default:
tmp = LDDDSR_LS;
break;
}
lcdc_write(priv, _LDDDSR, tmp);
/* Enable the display output. */
lcdc_write(priv, _LDCNT1R, LDCNT1R_DE);
sh_mobile_lcdc_start_stop(priv, 1);
priv->started = 1;
}
static int sh_mobile_lcdc_start(struct sh_mobile_lcdc_priv *priv)
{
struct sh_mobile_meram_info *mdev = priv->meram_dev;
struct sh_mobile_lcdc_chan *ch;
unsigned long tmp;
int ret;
int k;
/* enable clocks before accessing the hardware */
for (k = 0; k < ARRAY_SIZE(priv->ch); k++) {
if (priv->ch[k].enabled)
sh_mobile_lcdc_clk_on(priv);
}
/* reset */
lcdc_write(priv, _LDCNT2R, lcdc_read(priv, _LDCNT2R) | LDCNT2R_BR);
lcdc_wait_bit(priv, _LDCNT2R, LDCNT2R_BR, 0);
for (k = 0; k < ARRAY_SIZE(priv->ch); k++) {
const struct sh_mobile_lcdc_panel_cfg *panel;
ch = &priv->ch[k];
if (!ch->enabled)
continue;
panel = &ch->cfg->panel_cfg;
if (panel->setup_sys) {
ret = panel->setup_sys(ch, &sh_mobile_lcdc_sys_bus_ops);
if (ret)
return ret;
}
}
/* Compute frame buffer base address and pitch for each channel. */
for (k = 0; k < ARRAY_SIZE(priv->ch); k++) {
int pixelformat;
void *cache;
ch = &priv->ch[k];
if (!ch->enabled)
continue;
ch->base_addr_y = ch->dma_handle;
ch->base_addr_c = ch->dma_handle
+ ch->xres_virtual * ch->yres_virtual;
ch->line_size = ch->pitch;
/* Enable MERAM if possible. */
if (mdev == NULL || ch->cfg->meram_cfg == NULL)
continue;
/* Free the allocated MERAM cache. */
if (ch->cache) {
sh_mobile_meram_cache_free(mdev, ch->cache);
ch->cache = NULL;
}
switch (ch->format->fourcc) {
case V4L2_PIX_FMT_NV12:
case V4L2_PIX_FMT_NV21:
case V4L2_PIX_FMT_NV16:
case V4L2_PIX_FMT_NV61:
pixelformat = SH_MOBILE_MERAM_PF_NV;
break;
case V4L2_PIX_FMT_NV24:
case V4L2_PIX_FMT_NV42:
pixelformat = SH_MOBILE_MERAM_PF_NV24;
break;
case V4L2_PIX_FMT_RGB565:
case V4L2_PIX_FMT_BGR24:
case V4L2_PIX_FMT_BGR32:
default:
pixelformat = SH_MOBILE_MERAM_PF_RGB;
break;
}
cache = sh_mobile_meram_cache_alloc(mdev, ch->cfg->meram_cfg,
ch->pitch, ch->yres, pixelformat,
&ch->line_size);
if (!IS_ERR(cache)) {
sh_mobile_meram_cache_update(mdev, cache,
ch->base_addr_y, ch->base_addr_c,
&ch->base_addr_y, &ch->base_addr_c);
ch->cache = cache;
}
}
for (k = 0; k < ARRAY_SIZE(priv->overlays); ++k) {
struct sh_mobile_lcdc_overlay *ovl = &priv->overlays[k];
sh_mobile_lcdc_overlay_setup(ovl);
}
/* Start the LCDC. */
__sh_mobile_lcdc_start(priv);
/* Setup deferred I/O, tell the board code to enable the panels, and
* turn backlight on.
*/
for (k = 0; k < ARRAY_SIZE(priv->ch); k++) {
ch = &priv->ch[k];
if (!ch->enabled)
continue;
tmp = ch->cfg->sys_bus_cfg.deferred_io_msec;
if (ch->ldmt1r_value & LDMT1R_IFM && tmp) {
ch->defio.deferred_io = sh_mobile_lcdc_deferred_io;
ch->defio.delay = msecs_to_jiffies(tmp);
ch->info->fbdefio = &ch->defio;
fb_deferred_io_init(ch->info);
}
sh_mobile_lcdc_display_on(ch);
if (ch->bl) {
ch->bl->props.power = FB_BLANK_UNBLANK;
backlight_update_status(ch->bl);
}
}
return 0;
}
static void sh_mobile_lcdc_stop(struct sh_mobile_lcdc_priv *priv)
{
struct sh_mobile_lcdc_chan *ch;
int k;
/* clean up deferred io and ask board code to disable panel */
for (k = 0; k < ARRAY_SIZE(priv->ch); k++) {
ch = &priv->ch[k];
if (!ch->enabled)
continue;
/* deferred io mode:
* flush frame, and wait for frame end interrupt
* clean up deferred io and enable clock
*/
if (ch->info && ch->info->fbdefio) {
ch->frame_end = 0;
schedule_delayed_work(&ch->info->deferred_work, 0);
wait_event(ch->frame_end_wait, ch->frame_end);
fb_deferred_io_cleanup(ch->info);
ch->info->fbdefio = NULL;
sh_mobile_lcdc_clk_on(priv);
}
if (ch->bl) {
ch->bl->props.power = FB_BLANK_POWERDOWN;
backlight_update_status(ch->bl);
}
sh_mobile_lcdc_display_off(ch);
/* Free the MERAM cache. */
if (ch->cache) {
sh_mobile_meram_cache_free(priv->meram_dev, ch->cache);
ch->cache = 0;
}
}
/* stop the lcdc */
if (priv->started) {
sh_mobile_lcdc_start_stop(priv, 0);
priv->started = 0;
}
/* stop clocks */
for (k = 0; k < ARRAY_SIZE(priv->ch); k++)
if (priv->ch[k].enabled)
sh_mobile_lcdc_clk_off(priv);
}
static int __sh_mobile_lcdc_check_var(struct fb_var_screeninfo *var,
struct fb_info *info)
{
if (var->xres > MAX_XRES || var->yres > MAX_YRES)
return -EINVAL;
/* Make sure the virtual resolution is at least as big as the visible
* resolution.
*/
if (var->xres_virtual < var->xres)
var->xres_virtual = var->xres;
if (var->yres_virtual < var->yres)
var->yres_virtual = var->yres;
if (sh_mobile_format_is_fourcc(var)) {
const struct sh_mobile_lcdc_format_info *format;
format = sh_mobile_format_info(var->grayscale);
if (format == NULL)
return -EINVAL;
var->bits_per_pixel = format->bpp;
/* Default to RGB and JPEG color-spaces for RGB and YUV formats
* respectively.
*/
if (!format->yuv)
var->colorspace = V4L2_COLORSPACE_SRGB;
else if (var->colorspace != V4L2_COLORSPACE_REC709)
var->colorspace = V4L2_COLORSPACE_JPEG;
} else {
if (var->bits_per_pixel <= 16) { /* RGB 565 */
var->bits_per_pixel = 16;
var->red.offset = 11;
var->red.length = 5;
var->green.offset = 5;
var->green.length = 6;
var->blue.offset = 0;
var->blue.length = 5;
var->transp.offset = 0;
var->transp.length = 0;
} else if (var->bits_per_pixel <= 24) { /* RGB 888 */
var->bits_per_pixel = 24;
var->red.offset = 16;
var->red.length = 8;
var->green.offset = 8;
var->green.length = 8;
var->blue.offset = 0;
var->blue.length = 8;
var->transp.offset = 0;
var->transp.length = 0;
} else if (var->bits_per_pixel <= 32) { /* RGBA 888 */
var->bits_per_pixel = 32;
var->red.offset = 16;
var->red.length = 8;
var->green.offset = 8;
var->green.length = 8;
var->blue.offset = 0;
var->blue.length = 8;
var->transp.offset = 24;
var->transp.length = 8;
} else
return -EINVAL;
var->red.msb_right = 0;
var->green.msb_right = 0;
var->blue.msb_right = 0;
var->transp.msb_right = 0;
}
/* Make sure we don't exceed our allocated memory. */
if (var->xres_virtual * var->yres_virtual * var->bits_per_pixel / 8 >
info->fix.smem_len)
return -EINVAL;
return 0;
}
/* -----------------------------------------------------------------------------
* Frame buffer operations - Overlays
*/
static ssize_t
overlay_alpha_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct fb_info *info = dev_get_drvdata(dev);
struct sh_mobile_lcdc_overlay *ovl = info->par;
return scnprintf(buf, PAGE_SIZE, "%u\n", ovl->alpha);
}
static ssize_t
overlay_alpha_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct fb_info *info = dev_get_drvdata(dev);
struct sh_mobile_lcdc_overlay *ovl = info->par;
unsigned int alpha;
char *endp;
alpha = simple_strtoul(buf, &endp, 10);
if (isspace(*endp))
endp++;
if (endp - buf != count)
return -EINVAL;
if (alpha > 255)
return -EINVAL;
if (ovl->alpha != alpha) {
ovl->alpha = alpha;
if (ovl->mode == LCDC_OVERLAY_BLEND && ovl->enabled)
sh_mobile_lcdc_overlay_setup(ovl);
}
return count;
}
static ssize_t
overlay_mode_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct fb_info *info = dev_get_drvdata(dev);
struct sh_mobile_lcdc_overlay *ovl = info->par;
return scnprintf(buf, PAGE_SIZE, "%u\n", ovl->mode);
}
static ssize_t
overlay_mode_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct fb_info *info = dev_get_drvdata(dev);
struct sh_mobile_lcdc_overlay *ovl = info->par;
unsigned int mode;
char *endp;
mode = simple_strtoul(buf, &endp, 10);
if (isspace(*endp))
endp++;
if (endp - buf != count)
return -EINVAL;
if (mode != LCDC_OVERLAY_BLEND && mode != LCDC_OVERLAY_ROP3)
return -EINVAL;
if (ovl->mode != mode) {
ovl->mode = mode;
if (ovl->enabled)
sh_mobile_lcdc_overlay_setup(ovl);
}
return count;
}
static ssize_t
overlay_position_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct fb_info *info = dev_get_drvdata(dev);
struct sh_mobile_lcdc_overlay *ovl = info->par;
return scnprintf(buf, PAGE_SIZE, "%d,%d\n", ovl->pos_x, ovl->pos_y);
}
static ssize_t
overlay_position_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct fb_info *info = dev_get_drvdata(dev);
struct sh_mobile_lcdc_overlay *ovl = info->par;
char *endp;
int pos_x;
int pos_y;
pos_x = simple_strtol(buf, &endp, 10);
if (*endp != ',')
return -EINVAL;
pos_y = simple_strtol(endp + 1, &endp, 10);
if (isspace(*endp))
endp++;
if (endp - buf != count)
return -EINVAL;
if (ovl->pos_x != pos_x || ovl->pos_y != pos_y) {
ovl->pos_x = pos_x;
ovl->pos_y = pos_y;
if (ovl->enabled)
sh_mobile_lcdc_overlay_setup(ovl);
}
return count;
}
static ssize_t
overlay_rop3_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct fb_info *info = dev_get_drvdata(dev);
struct sh_mobile_lcdc_overlay *ovl = info->par;
return scnprintf(buf, PAGE_SIZE, "%u\n", ovl->rop3);
}
static ssize_t
overlay_rop3_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct fb_info *info = dev_get_drvdata(dev);
struct sh_mobile_lcdc_overlay *ovl = info->par;
unsigned int rop3;
char *endp;
rop3 = !!simple_strtoul(buf, &endp, 10);
if (isspace(*endp))
endp++;
if (endp - buf != count)
return -EINVAL;
if (rop3 > 255)
return -EINVAL;
if (ovl->rop3 != rop3) {
ovl->rop3 = rop3;
if (ovl->mode == LCDC_OVERLAY_ROP3 && ovl->enabled)
sh_mobile_lcdc_overlay_setup(ovl);
}
return count;
}
static const struct device_attribute overlay_sysfs_attrs[] = {
__ATTR(ovl_alpha, S_IRUGO|S_IWUSR,
overlay_alpha_show, overlay_alpha_store),
__ATTR(ovl_mode, S_IRUGO|S_IWUSR,
overlay_mode_show, overlay_mode_store),
__ATTR(ovl_position, S_IRUGO|S_IWUSR,
overlay_position_show, overlay_position_store),
__ATTR(ovl_rop3, S_IRUGO|S_IWUSR,
overlay_rop3_show, overlay_rop3_store),
};
static const struct fb_fix_screeninfo sh_mobile_lcdc_overlay_fix = {
.id = "SH Mobile LCDC",
.type = FB_TYPE_PACKED_PIXELS,
.visual = FB_VISUAL_TRUECOLOR,
.accel = FB_ACCEL_NONE,
.xpanstep = 1,
.ypanstep = 1,
.ywrapstep = 0,
.capabilities = FB_CAP_FOURCC,
};
static int sh_mobile_lcdc_overlay_pan(struct fb_var_screeninfo *var,
struct fb_info *info)
{
struct sh_mobile_lcdc_overlay *ovl = info->par;
unsigned long base_addr_y;
unsigned long base_addr_c;
unsigned long y_offset;
unsigned long c_offset;
if (!ovl->format->yuv) {
y_offset = (var->yoffset * ovl->xres_virtual + var->xoffset)
* ovl->format->bpp / 8;
c_offset = 0;
} else {
unsigned int xsub = ovl->format->bpp < 24 ? 2 : 1;
unsigned int ysub = ovl->format->bpp < 16 ? 2 : 1;
y_offset = var->yoffset * ovl->xres_virtual + var->xoffset;
c_offset = var->yoffset / ysub * ovl->xres_virtual * 2 / xsub
+ var->xoffset * 2 / xsub;
}
/* If the Y offset hasn't changed, the C offset hasn't either. There's
* nothing to do in that case.
*/
if (y_offset == ovl->pan_y_offset)
return 0;
/* Set the source address for the next refresh */
base_addr_y = ovl->dma_handle + y_offset;
base_addr_c = ovl->dma_handle + ovl->xres_virtual * ovl->yres_virtual
+ c_offset;
ovl->base_addr_y = base_addr_y;
ovl->base_addr_c = base_addr_c;
ovl->pan_y_offset = y_offset;
lcdc_write(ovl->channel->lcdc, LDBCR, LDBCR_UPC(ovl->index));
lcdc_write_overlay(ovl, LDBnBSAYR(ovl->index), ovl->base_addr_y);
lcdc_write_overlay(ovl, LDBnBSACR(ovl->index), ovl->base_addr_c);
lcdc_write(ovl->channel->lcdc, LDBCR,
LDBCR_UPF(ovl->index) | LDBCR_UPD(ovl->index));
return 0;
}
static int sh_mobile_lcdc_overlay_ioctl(struct fb_info *info, unsigned int cmd,
unsigned long arg)
{
struct sh_mobile_lcdc_overlay *ovl = info->par;
switch (cmd) {
case FBIO_WAITFORVSYNC:
return sh_mobile_lcdc_wait_for_vsync(ovl->channel);
default:
return -ENOIOCTLCMD;
}
}
static int sh_mobile_lcdc_overlay_check_var(struct fb_var_screeninfo *var,
struct fb_info *info)
{
return __sh_mobile_lcdc_check_var(var, info);
}
static int sh_mobile_lcdc_overlay_set_par(struct fb_info *info)
{
struct sh_mobile_lcdc_overlay *ovl = info->par;
ovl->format =
sh_mobile_format_info(sh_mobile_format_fourcc(&info->var));
ovl->xres = info->var.xres;
ovl->xres_virtual = info->var.xres_virtual;
ovl->yres = info->var.yres;
ovl->yres_virtual = info->var.yres_virtual;
if (ovl->format->yuv)
ovl->pitch = info->var.xres_virtual;
else
ovl->pitch = info->var.xres_virtual * ovl->format->bpp / 8;
sh_mobile_lcdc_overlay_setup(ovl);
info->fix.line_length = ovl->pitch;
if (sh_mobile_format_is_fourcc(&info->var)) {
info->fix.type = FB_TYPE_FOURCC;
info->fix.visual = FB_VISUAL_FOURCC;
} else {
info->fix.type = FB_TYPE_PACKED_PIXELS;
info->fix.visual = FB_VISUAL_TRUECOLOR;
}
return 0;
}
/* Overlay blanking. Disable the overlay when blanked. */
static int sh_mobile_lcdc_overlay_blank(int blank, struct fb_info *info)
{
struct sh_mobile_lcdc_overlay *ovl = info->par;
ovl->enabled = !blank;
sh_mobile_lcdc_overlay_setup(ovl);
/* Prevent the backlight from receiving a blanking event by returning
* a non-zero value.
*/
return 1;
}
static int
sh_mobile_lcdc_overlay_mmap(struct fb_info *info, struct vm_area_struct *vma)
{
struct sh_mobile_lcdc_overlay *ovl = info->par;
return dma_mmap_coherent(ovl->channel->lcdc->dev, vma, ovl->fb_mem,
ovl->dma_handle, ovl->fb_size);
}
static struct fb_ops sh_mobile_lcdc_overlay_ops = {
.owner = THIS_MODULE,
.fb_read = fb_sys_read,
.fb_write = fb_sys_write,
.fb_fillrect = sys_fillrect,
.fb_copyarea = sys_copyarea,
.fb_imageblit = sys_imageblit,
.fb_blank = sh_mobile_lcdc_overlay_blank,
.fb_pan_display = sh_mobile_lcdc_overlay_pan,
.fb_ioctl = sh_mobile_lcdc_overlay_ioctl,
.fb_check_var = sh_mobile_lcdc_overlay_check_var,
.fb_set_par = sh_mobile_lcdc_overlay_set_par,
.fb_mmap = sh_mobile_lcdc_overlay_mmap,
};
static void
sh_mobile_lcdc_overlay_fb_unregister(struct sh_mobile_lcdc_overlay *ovl)
{
struct fb_info *info = ovl->info;
if (info == NULL || info->dev == NULL)
return;
unregister_framebuffer(ovl->info);
}
static int
sh_mobile_lcdc_overlay_fb_register(struct sh_mobile_lcdc_overlay *ovl)
{
struct sh_mobile_lcdc_priv *lcdc = ovl->channel->lcdc;
struct fb_info *info = ovl->info;
unsigned int i;
int ret;
if (info == NULL)
return 0;
ret = register_framebuffer(info);
if (ret < 0)
return ret;
dev_info(lcdc->dev, "registered %s/overlay %u as %dx%d %dbpp.\n",
dev_name(lcdc->dev), ovl->index, info->var.xres,
info->var.yres, info->var.bits_per_pixel);
for (i = 0; i < ARRAY_SIZE(overlay_sysfs_attrs); ++i) {
ret = device_create_file(info->dev, &overlay_sysfs_attrs[i]);
if (ret < 0)
return ret;
}
return 0;
}
static void
sh_mobile_lcdc_overlay_fb_cleanup(struct sh_mobile_lcdc_overlay *ovl)
{
struct fb_info *info = ovl->info;
if (info == NULL || info->device == NULL)
return;
framebuffer_release(info);
}
static int
sh_mobile_lcdc_overlay_fb_init(struct sh_mobile_lcdc_overlay *ovl)
{
struct sh_mobile_lcdc_priv *priv = ovl->channel->lcdc;
struct fb_var_screeninfo *var;
struct fb_info *info;
/* Allocate and initialize the frame buffer device. */
info = framebuffer_alloc(0, priv->dev);
if (info == NULL) {
dev_err(priv->dev, "unable to allocate fb_info\n");
return -ENOMEM;
}
ovl->info = info;
info->flags = FBINFO_FLAG_DEFAULT;
info->fbops = &sh_mobile_lcdc_overlay_ops;
info->device = priv->dev;
info->screen_base = ovl->fb_mem;
info->par = ovl;
/* Initialize fixed screen information. Restrict pan to 2 lines steps
* for NV12 and NV21.
*/
info->fix = sh_mobile_lcdc_overlay_fix;
snprintf(info->fix.id, sizeof(info->fix.id),
"SH Mobile LCDC Overlay %u", ovl->index);
info->fix.smem_start = ovl->dma_handle;
info->fix.smem_len = ovl->fb_size;
info->fix.line_length = ovl->pitch;
if (ovl->format->yuv)
info->fix.visual = FB_VISUAL_FOURCC;
else
info->fix.visual = FB_VISUAL_TRUECOLOR;
switch (ovl->format->fourcc) {
case V4L2_PIX_FMT_NV12:
case V4L2_PIX_FMT_NV21:
info->fix.ypanstep = 2;
case V4L2_PIX_FMT_NV16:
case V4L2_PIX_FMT_NV61:
info->fix.xpanstep = 2;
}
/* Initialize variable screen information. */
var = &info->var;
memset(var, 0, sizeof(*var));
var->xres = ovl->xres;
var->yres = ovl->yres;
var->xres_virtual = ovl->xres_virtual;
var->yres_virtual = ovl->yres_virtual;
var->activate = FB_ACTIVATE_NOW;
/* Use the legacy API by default for RGB formats, and the FOURCC API
* for YUV formats.
*/
if (!ovl->format->yuv)
var->bits_per_pixel = ovl->format->bpp;
else
var->grayscale = ovl->format->fourcc;
return sh_mobile_lcdc_overlay_check_var(var, info);
}
/* -----------------------------------------------------------------------------
* Frame buffer operations - main frame buffer
*/
static int sh_mobile_lcdc_setcolreg(u_int regno,
u_int red, u_int green, u_int blue,
u_int transp, struct fb_info *info)
{
u32 *palette = info->pseudo_palette;
if (regno >= PALETTE_NR)
return -EINVAL;
/* only FB_VISUAL_TRUECOLOR supported */
red >>= 16 - info->var.red.length;
green >>= 16 - info->var.green.length;
blue >>= 16 - info->var.blue.length;
transp >>= 16 - info->var.transp.length;
palette[regno] = (red << info->var.red.offset) |
(green << info->var.green.offset) |
(blue << info->var.blue.offset) |
(transp << info->var.transp.offset);
return 0;
}
static const struct fb_fix_screeninfo sh_mobile_lcdc_fix = {
.id = "SH Mobile LCDC",
.type = FB_TYPE_PACKED_PIXELS,
.visual = FB_VISUAL_TRUECOLOR,
.accel = FB_ACCEL_NONE,
.xpanstep = 1,
.ypanstep = 1,
.ywrapstep = 0,
.capabilities = FB_CAP_FOURCC,
};
static void sh_mobile_lcdc_fillrect(struct fb_info *info,
const struct fb_fillrect *rect)
{
sys_fillrect(info, rect);
sh_mobile_lcdc_deferred_io_touch(info);
}
static void sh_mobile_lcdc_copyarea(struct fb_info *info,
const struct fb_copyarea *area)
{
sys_copyarea(info, area);
sh_mobile_lcdc_deferred_io_touch(info);
}
static void sh_mobile_lcdc_imageblit(struct fb_info *info,
const struct fb_image *image)
{
sys_imageblit(info, image);
sh_mobile_lcdc_deferred_io_touch(info);
}
static int sh_mobile_lcdc_pan(struct fb_var_screeninfo *var,
struct fb_info *info)
{
struct sh_mobile_lcdc_chan *ch = info->par;
struct sh_mobile_lcdc_priv *priv = ch->lcdc;
unsigned long ldrcntr;
unsigned long base_addr_y, base_addr_c;
unsigned long y_offset;
unsigned long c_offset;
if (!ch->format->yuv) {
y_offset = (var->yoffset * ch->xres_virtual + var->xoffset)
* ch->format->bpp / 8;
c_offset = 0;
} else {
unsigned int xsub = ch->format->bpp < 24 ? 2 : 1;
unsigned int ysub = ch->format->bpp < 16 ? 2 : 1;
y_offset = var->yoffset * ch->xres_virtual + var->xoffset;
c_offset = var->yoffset / ysub * ch->xres_virtual * 2 / xsub
+ var->xoffset * 2 / xsub;
}
/* If the Y offset hasn't changed, the C offset hasn't either. There's
* nothing to do in that case.
*/
if (y_offset == ch->pan_y_offset)
return 0;
/* Set the source address for the next refresh */
base_addr_y = ch->dma_handle + y_offset;
base_addr_c = ch->dma_handle + ch->xres_virtual * ch->yres_virtual
+ c_offset;
if (ch->cache)
sh_mobile_meram_cache_update(priv->meram_dev, ch->cache,
base_addr_y, base_addr_c,
&base_addr_y, &base_addr_c);
ch->base_addr_y = base_addr_y;
ch->base_addr_c = base_addr_c;
ch->pan_y_offset = y_offset;
lcdc_write_chan_mirror(ch, LDSA1R, base_addr_y);
if (ch->format->yuv)
lcdc_write_chan_mirror(ch, LDSA2R, base_addr_c);
ldrcntr = lcdc_read(priv, _LDRCNTR);
if (lcdc_chan_is_sublcd(ch))
lcdc_write(ch->lcdc, _LDRCNTR, ldrcntr ^ LDRCNTR_SRS);
else
lcdc_write(ch->lcdc, _LDRCNTR, ldrcntr ^ LDRCNTR_MRS);
sh_mobile_lcdc_deferred_io_touch(info);
return 0;
}
static int sh_mobile_lcdc_ioctl(struct fb_info *info, unsigned int cmd,
unsigned long arg)
{
struct sh_mobile_lcdc_chan *ch = info->par;
int retval;
switch (cmd) {
case FBIO_WAITFORVSYNC:
retval = sh_mobile_lcdc_wait_for_vsync(ch);
break;
default:
retval = -ENOIOCTLCMD;
break;
}
return retval;
}
static void sh_mobile_fb_reconfig(struct fb_info *info)
{
struct sh_mobile_lcdc_chan *ch = info->par;
struct fb_var_screeninfo var;
struct fb_videomode mode;
struct fb_event event;
int evnt = FB_EVENT_MODE_CHANGE_ALL;
if (ch->use_count > 1 || (ch->use_count == 1 && !info->fbcon_par))
/* More framebuffer users are active */
return;
fb_var_to_videomode(&mode, &info->var);
if (fb_mode_is_equal(&ch->display.mode, &mode))
return;
/* Display has been re-plugged, framebuffer is free now, reconfigure */
var = info->var;
fb_videomode_to_var(&var, &ch->display.mode);
var.width = ch->display.width;
var.height = ch->display.height;
var.activate = FB_ACTIVATE_NOW;
if (fb_set_var(info, &var) < 0)
/* Couldn't reconfigure, hopefully, can continue as before */
return;
/*
* fb_set_var() calls the notifier change internally, only if
* FBINFO_MISC_USEREVENT flag is set. Since we do not want to fake a
* user event, we have to call the chain ourselves.
*/
event.info = info;
event.data = &ch->display.mode;
fb_notifier_call_chain(evnt, &event);
}
/*
* Locking: both .fb_release() and .fb_open() are called with info->lock held if
* user == 1, or with console sem held, if user == 0.
*/
static int sh_mobile_lcdc_release(struct fb_info *info, int user)
{
struct sh_mobile_lcdc_chan *ch = info->par;
mutex_lock(&ch->open_lock);
dev_dbg(info->dev, "%s(): %d users\n", __func__, ch->use_count);
ch->use_count--;
/* Nothing to reconfigure, when called from fbcon */
if (user) {
console_lock();
sh_mobile_fb_reconfig(info);
console_unlock();
}
mutex_unlock(&ch->open_lock);
return 0;
}
static int sh_mobile_lcdc_open(struct fb_info *info, int user)
{
struct sh_mobile_lcdc_chan *ch = info->par;
mutex_lock(&ch->open_lock);
ch->use_count++;
dev_dbg(info->dev, "%s(): %d users\n", __func__, ch->use_count);
mutex_unlock(&ch->open_lock);
return 0;
}
static int sh_mobile_lcdc_check_var(struct fb_var_screeninfo *var,
struct fb_info *info)
{
struct sh_mobile_lcdc_chan *ch = info->par;
struct sh_mobile_lcdc_priv *p = ch->lcdc;
unsigned int best_dist = (unsigned int)-1;
unsigned int best_xres = 0;
unsigned int best_yres = 0;
unsigned int i;
int ret;
/* If board code provides us with a list of available modes, make sure
* we use one of them. Find the mode closest to the requested one. The
* distance between two modes is defined as the size of the
* non-overlapping parts of the two rectangles.
*/
for (i = 0; i < ch->cfg->num_modes; ++i) {
const struct fb_videomode *mode = &ch->cfg->lcd_modes[i];
unsigned int dist;
/* We can only round up. */
if (var->xres > mode->xres || var->yres > mode->yres)
continue;
dist = var->xres * var->yres + mode->xres * mode->yres
- 2 * min(var->xres, mode->xres)
* min(var->yres, mode->yres);
if (dist < best_dist) {
best_xres = mode->xres;
best_yres = mode->yres;
best_dist = dist;
}
}
/* If no available mode can be used, return an error. */
if (ch->cfg->num_modes != 0) {
if (best_dist == (unsigned int)-1)
return -EINVAL;
var->xres = best_xres;
var->yres = best_yres;
}
ret = __sh_mobile_lcdc_check_var(var, info);
if (ret < 0)
return ret;
/* only accept the forced_fourcc for dual channel configurations */
if (p->forced_fourcc &&
p->forced_fourcc != sh_mobile_format_fourcc(var))
return -EINVAL;
return 0;
}
static int sh_mobile_lcdc_set_par(struct fb_info *info)
{
struct sh_mobile_lcdc_chan *ch = info->par;
int ret;
sh_mobile_lcdc_stop(ch->lcdc);
ch->format = sh_mobile_format_info(sh_mobile_format_fourcc(&info->var));
ch->colorspace = info->var.colorspace;
ch->xres = info->var.xres;
ch->xres_virtual = info->var.xres_virtual;
ch->yres = info->var.yres;
ch->yres_virtual = info->var.yres_virtual;
if (ch->format->yuv)
ch->pitch = info->var.xres_virtual;
else
ch->pitch = info->var.xres_virtual * ch->format->bpp / 8;
ret = sh_mobile_lcdc_start(ch->lcdc);
if (ret < 0)
dev_err(info->dev, "%s: unable to restart LCDC\n", __func__);
info->fix.line_length = ch->pitch;
if (sh_mobile_format_is_fourcc(&info->var)) {
info->fix.type = FB_TYPE_FOURCC;
info->fix.visual = FB_VISUAL_FOURCC;
} else {
info->fix.type = FB_TYPE_PACKED_PIXELS;
info->fix.visual = FB_VISUAL_TRUECOLOR;
}
return ret;
}
/*
* Screen blanking. Behavior is as follows:
* FB_BLANK_UNBLANK: screen unblanked, clocks enabled
* FB_BLANK_NORMAL: screen blanked, clocks enabled
* FB_BLANK_VSYNC,
* FB_BLANK_HSYNC,
* FB_BLANK_POWEROFF: screen blanked, clocks disabled
*/
static int sh_mobile_lcdc_blank(int blank, struct fb_info *info)
{
struct sh_mobile_lcdc_chan *ch = info->par;
struct sh_mobile_lcdc_priv *p = ch->lcdc;
/* blank the screen? */
if (blank > FB_BLANK_UNBLANK && ch->blank_status == FB_BLANK_UNBLANK) {
struct fb_fillrect rect = {
.width = ch->xres,
.height = ch->yres,
};
sh_mobile_lcdc_fillrect(info, &rect);
}
/* turn clocks on? */
if (blank <= FB_BLANK_NORMAL && ch->blank_status > FB_BLANK_NORMAL) {
sh_mobile_lcdc_clk_on(p);
}
/* turn clocks off? */
if (blank > FB_BLANK_NORMAL && ch->blank_status <= FB_BLANK_NORMAL) {
/* make sure the screen is updated with the black fill before
* switching the clocks off. one vsync is not enough since
* blanking may occur in the middle of a refresh. deferred io
* mode will reenable the clocks and update the screen in time,
* so it does not need this. */
if (!info->fbdefio) {
sh_mobile_lcdc_wait_for_vsync(ch);
sh_mobile_lcdc_wait_for_vsync(ch);
}
sh_mobile_lcdc_clk_off(p);
}
ch->blank_status = blank;
return 0;
}
static int
sh_mobile_lcdc_mmap(struct fb_info *info, struct vm_area_struct *vma)
{
struct sh_mobile_lcdc_chan *ch = info->par;
return dma_mmap_coherent(ch->lcdc->dev, vma, ch->fb_mem,
ch->dma_handle, ch->fb_size);
}
static struct fb_ops sh_mobile_lcdc_ops = {
.owner = THIS_MODULE,
.fb_setcolreg = sh_mobile_lcdc_setcolreg,
.fb_read = fb_sys_read,
.fb_write = fb_sys_write,
.fb_fillrect = sh_mobile_lcdc_fillrect,
.fb_copyarea = sh_mobile_lcdc_copyarea,
.fb_imageblit = sh_mobile_lcdc_imageblit,
.fb_blank = sh_mobile_lcdc_blank,
.fb_pan_display = sh_mobile_lcdc_pan,
.fb_ioctl = sh_mobile_lcdc_ioctl,
.fb_open = sh_mobile_lcdc_open,
.fb_release = sh_mobile_lcdc_release,
.fb_check_var = sh_mobile_lcdc_check_var,
.fb_set_par = sh_mobile_lcdc_set_par,
.fb_mmap = sh_mobile_lcdc_mmap,
};
static void
sh_mobile_lcdc_channel_fb_unregister(struct sh_mobile_lcdc_chan *ch)
{
if (ch->info && ch->info->dev)
unregister_framebuffer(ch->info);
}
static int
sh_mobile_lcdc_channel_fb_register(struct sh_mobile_lcdc_chan *ch)
{
struct fb_info *info = ch->info;
int ret;
if (info->fbdefio) {
ch->sglist = vmalloc(sizeof(struct scatterlist) *
ch->fb_size >> PAGE_SHIFT);
if (!ch->sglist) {
dev_err(ch->lcdc->dev, "cannot allocate sglist\n");
return -ENOMEM;
}
}
info->bl_dev = ch->bl;
ret = register_framebuffer(info);
if (ret < 0)
return ret;
dev_info(ch->lcdc->dev, "registered %s/%s as %dx%d %dbpp.\n",
dev_name(ch->lcdc->dev), (ch->cfg->chan == LCDC_CHAN_MAINLCD) ?
"mainlcd" : "sublcd", info->var.xres, info->var.yres,
info->var.bits_per_pixel);
/* deferred io mode: disable clock to save power */
if (info->fbdefio || info->state == FBINFO_STATE_SUSPENDED)
sh_mobile_lcdc_clk_off(ch->lcdc);
return ret;
}
static void
sh_mobile_lcdc_channel_fb_cleanup(struct sh_mobile_lcdc_chan *ch)
{
struct fb_info *info = ch->info;
if (!info || !info->device)
return;
if (ch->sglist)
vfree(ch->sglist);
fb_dealloc_cmap(&info->cmap);
framebuffer_release(info);
}
static int
sh_mobile_lcdc_channel_fb_init(struct sh_mobile_lcdc_chan *ch,
const struct fb_videomode *modes,
unsigned int num_modes)
{
struct sh_mobile_lcdc_priv *priv = ch->lcdc;
struct fb_var_screeninfo *var;
struct fb_info *info;
int ret;
/* Allocate and initialize the frame buffer device. Create the modes
* list and allocate the color map.
*/
info = framebuffer_alloc(0, priv->dev);
if (info == NULL) {
dev_err(priv->dev, "unable to allocate fb_info\n");
return -ENOMEM;
}
ch->info = info;
info->flags = FBINFO_FLAG_DEFAULT;
info->fbops = &sh_mobile_lcdc_ops;
info->device = priv->dev;
info->screen_base = ch->fb_mem;
info->pseudo_palette = &ch->pseudo_palette;
info->par = ch;
fb_videomode_to_modelist(modes, num_modes, &info->modelist);
ret = fb_alloc_cmap(&info->cmap, PALETTE_NR, 0);
if (ret < 0) {
dev_err(priv->dev, "unable to allocate cmap\n");
return ret;
}
/* Initialize fixed screen information. Restrict pan to 2 lines steps
* for NV12 and NV21.
*/
info->fix = sh_mobile_lcdc_fix;
info->fix.smem_start = ch->dma_handle;
info->fix.smem_len = ch->fb_size;
info->fix.line_length = ch->pitch;
if (ch->format->yuv)
info->fix.visual = FB_VISUAL_FOURCC;
else
info->fix.visual = FB_VISUAL_TRUECOLOR;
switch (ch->format->fourcc) {
case V4L2_PIX_FMT_NV12:
case V4L2_PIX_FMT_NV21:
info->fix.ypanstep = 2;
case V4L2_PIX_FMT_NV16:
case V4L2_PIX_FMT_NV61:
info->fix.xpanstep = 2;
}
/* Initialize variable screen information using the first mode as
* default.
*/
var = &info->var;
fb_videomode_to_var(var, modes);
var->width = ch->display.width;
var->height = ch->display.height;
var->xres_virtual = ch->xres_virtual;
var->yres_virtual = ch->yres_virtual;
var->activate = FB_ACTIVATE_NOW;
/* Use the legacy API by default for RGB formats, and the FOURCC API
* for YUV formats.
*/
if (!ch->format->yuv)
var->bits_per_pixel = ch->format->bpp;
else
var->grayscale = ch->format->fourcc;
ret = sh_mobile_lcdc_check_var(var, info);
if (ret)
return ret;
return 0;
}
/* -----------------------------------------------------------------------------
* Backlight
*/
static int sh_mobile_lcdc_update_bl(struct backlight_device *bdev)
{
struct sh_mobile_lcdc_chan *ch = bl_get_data(bdev);
int brightness = bdev->props.brightness;
if (bdev->props.power != FB_BLANK_UNBLANK ||
bdev->props.state & (BL_CORE_SUSPENDED | BL_CORE_FBBLANK))
brightness = 0;
ch->bl_brightness = brightness;
return ch->cfg->bl_info.set_brightness(brightness);
}
static int sh_mobile_lcdc_get_brightness(struct backlight_device *bdev)
{
struct sh_mobile_lcdc_chan *ch = bl_get_data(bdev);
return ch->bl_brightness;
}
static int sh_mobile_lcdc_check_fb(struct backlight_device *bdev,
struct fb_info *info)
{
return (info->bl_dev == bdev);
}
static struct backlight_ops sh_mobile_lcdc_bl_ops = {
.options = BL_CORE_SUSPENDRESUME,
.update_status = sh_mobile_lcdc_update_bl,
.get_brightness = sh_mobile_lcdc_get_brightness,
.check_fb = sh_mobile_lcdc_check_fb,
};
static struct backlight_device *sh_mobile_lcdc_bl_probe(struct device *parent,
struct sh_mobile_lcdc_chan *ch)
{
struct backlight_device *bl;
bl = backlight_device_register(ch->cfg->bl_info.name, parent, ch,
&sh_mobile_lcdc_bl_ops, NULL);
if (IS_ERR(bl)) {
dev_err(parent, "unable to register backlight device: %ld\n",
PTR_ERR(bl));
return NULL;
}
bl->props.max_brightness = ch->cfg->bl_info.max_brightness;
bl->props.brightness = bl->props.max_brightness;
backlight_update_status(bl);
return bl;
}
static void sh_mobile_lcdc_bl_remove(struct backlight_device *bdev)
{
backlight_device_unregister(bdev);
}
/* -----------------------------------------------------------------------------
* Power management
*/
static int sh_mobile_lcdc_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
sh_mobile_lcdc_stop(platform_get_drvdata(pdev));
return 0;
}
static int sh_mobile_lcdc_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
return sh_mobile_lcdc_start(platform_get_drvdata(pdev));
}
static int sh_mobile_lcdc_runtime_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct sh_mobile_lcdc_priv *priv = platform_get_drvdata(pdev);
/* turn off LCDC hardware */
lcdc_write(priv, _LDCNT1R, 0);
return 0;
}
static int sh_mobile_lcdc_runtime_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct sh_mobile_lcdc_priv *priv = platform_get_drvdata(pdev);
__sh_mobile_lcdc_start(priv);
return 0;
}
static const struct dev_pm_ops sh_mobile_lcdc_dev_pm_ops = {
.suspend = sh_mobile_lcdc_suspend,
.resume = sh_mobile_lcdc_resume,
.runtime_suspend = sh_mobile_lcdc_runtime_suspend,
.runtime_resume = sh_mobile_lcdc_runtime_resume,
};
/* -----------------------------------------------------------------------------
* Framebuffer notifier
*/
/* locking: called with info->lock held */
static int sh_mobile_lcdc_notify(struct notifier_block *nb,
unsigned long action, void *data)
{
struct fb_event *event = data;
struct fb_info *info = event->info;
struct sh_mobile_lcdc_chan *ch = info->par;
if (&ch->lcdc->notifier != nb)
return NOTIFY_DONE;
dev_dbg(info->dev, "%s(): action = %lu, data = %p\n",
__func__, action, event->data);
switch(action) {
case FB_EVENT_SUSPEND:
sh_mobile_lcdc_display_off(ch);
sh_mobile_lcdc_stop(ch->lcdc);
break;
case FB_EVENT_RESUME:
mutex_lock(&ch->open_lock);
sh_mobile_fb_reconfig(info);
mutex_unlock(&ch->open_lock);
sh_mobile_lcdc_display_on(ch);
sh_mobile_lcdc_start(ch->lcdc);
}
return NOTIFY_OK;
}
/* -----------------------------------------------------------------------------
* Probe/remove and driver init/exit
*/
static const struct fb_videomode default_720p = {
.name = "HDMI 720p",
.xres = 1280,
.yres = 720,
.left_margin = 220,
.right_margin = 110,
.hsync_len = 40,
.upper_margin = 20,
.lower_margin = 5,
.vsync_len = 5,
.pixclock = 13468,
.refresh = 60,
.sync = FB_SYNC_VERT_HIGH_ACT | FB_SYNC_HOR_HIGH_ACT,
};
static int sh_mobile_lcdc_remove(struct platform_device *pdev)
{
struct sh_mobile_lcdc_priv *priv = platform_get_drvdata(pdev);
unsigned int i;
fb_unregister_client(&priv->notifier);
for (i = 0; i < ARRAY_SIZE(priv->overlays); i++)
sh_mobile_lcdc_overlay_fb_unregister(&priv->overlays[i]);
for (i = 0; i < ARRAY_SIZE(priv->ch); i++)
sh_mobile_lcdc_channel_fb_unregister(&priv->ch[i]);
sh_mobile_lcdc_stop(priv);
for (i = 0; i < ARRAY_SIZE(priv->overlays); i++) {
struct sh_mobile_lcdc_overlay *ovl = &priv->overlays[i];
sh_mobile_lcdc_overlay_fb_cleanup(ovl);
if (ovl->fb_mem)
dma_free_coherent(&pdev->dev, ovl->fb_size,
ovl->fb_mem, ovl->dma_handle);
}
for (i = 0; i < ARRAY_SIZE(priv->ch); i++) {
struct sh_mobile_lcdc_chan *ch = &priv->ch[i];
if (ch->tx_dev) {
ch->tx_dev->lcdc = NULL;
module_put(ch->cfg->tx_dev->dev.driver->owner);
}
sh_mobile_lcdc_channel_fb_cleanup(ch);
if (ch->fb_mem)
dma_free_coherent(&pdev->dev, ch->fb_size,
ch->fb_mem, ch->dma_handle);
}
for (i = 0; i < ARRAY_SIZE(priv->ch); i++) {
struct sh_mobile_lcdc_chan *ch = &priv->ch[i];
if (ch->bl)
sh_mobile_lcdc_bl_remove(ch->bl);
mutex_destroy(&ch->open_lock);
}
if (priv->dot_clk) {
pm_runtime_disable(&pdev->dev);
clk_put(priv->dot_clk);
}
if (priv->base)
iounmap(priv->base);
if (priv->irq)
free_irq(priv->irq, priv);
kfree(priv);
return 0;
}
static int sh_mobile_lcdc_check_interface(struct sh_mobile_lcdc_chan *ch)
{
int interface_type = ch->cfg->interface_type;
switch (interface_type) {
case RGB8:
case RGB9:
case RGB12A:
case RGB12B:
case RGB16:
case RGB18:
case RGB24:
case SYS8A:
case SYS8B:
case SYS8C:
case SYS8D:
case SYS9:
case SYS12:
case SYS16A:
case SYS16B:
case SYS16C:
case SYS18:
case SYS24:
break;
default:
return -EINVAL;
}
/* SUBLCD only supports SYS interface */
if (lcdc_chan_is_sublcd(ch)) {
if (!(interface_type & LDMT1R_IFM))
return -EINVAL;
interface_type &= ~LDMT1R_IFM;
}
ch->ldmt1r_value = interface_type;
return 0;
}
static int
sh_mobile_lcdc_overlay_init(struct sh_mobile_lcdc_overlay *ovl)
{
const struct sh_mobile_lcdc_format_info *format;
struct device *dev = ovl->channel->lcdc->dev;
int ret;
if (ovl->cfg->fourcc == 0)
return 0;
/* Validate the format. */
format = sh_mobile_format_info(ovl->cfg->fourcc);
if (format == NULL) {
dev_err(dev, "Invalid FOURCC %08x\n", ovl->cfg->fourcc);
return -EINVAL;
}
ovl->enabled = false;
ovl->mode = LCDC_OVERLAY_BLEND;
ovl->alpha = 255;
ovl->rop3 = 0;
ovl->pos_x = 0;
ovl->pos_y = 0;
/* The default Y virtual resolution is twice the panel size to allow for
* double-buffering.
*/
ovl->format = format;
ovl->xres = ovl->cfg->max_xres;
ovl->xres_virtual = ovl->xres;
ovl->yres = ovl->cfg->max_yres;
ovl->yres_virtual = ovl->yres * 2;
if (!format->yuv)
ovl->pitch = ovl->xres_virtual * format->bpp / 8;
else
ovl->pitch = ovl->xres_virtual;
/* Allocate frame buffer memory. */
ovl->fb_size = ovl->cfg->max_xres * ovl->cfg->max_yres
* format->bpp / 8 * 2;
ovl->fb_mem = dma_alloc_coherent(dev, ovl->fb_size, &ovl->dma_handle,
GFP_KERNEL);
if (!ovl->fb_mem) {
dev_err(dev, "unable to allocate buffer\n");
return -ENOMEM;
}
ret = sh_mobile_lcdc_overlay_fb_init(ovl);
if (ret < 0)
return ret;
return 0;
}
static int
sh_mobile_lcdc_channel_init(struct sh_mobile_lcdc_chan *ch)
{
const struct sh_mobile_lcdc_format_info *format;
const struct sh_mobile_lcdc_chan_cfg *cfg = ch->cfg;
struct device *dev = ch->lcdc->dev;
const struct fb_videomode *max_mode;
const struct fb_videomode *mode;
unsigned int num_modes;
unsigned int max_size;
unsigned int i;
mutex_init(&ch->open_lock);
ch->notify = sh_mobile_lcdc_display_notify;
/* Validate the format. */
format = sh_mobile_format_info(cfg->fourcc);
if (format == NULL) {
dev_err(dev, "Invalid FOURCC %08x.\n", cfg->fourcc);
return -EINVAL;
}
/* Iterate through the modes to validate them and find the highest
* resolution.
*/
max_mode = NULL;
max_size = 0;
for (i = 0, mode = cfg->lcd_modes; i < cfg->num_modes; i++, mode++) {
unsigned int size = mode->yres * mode->xres;
/* NV12/NV21 buffers must have even number of lines */
if ((cfg->fourcc == V4L2_PIX_FMT_NV12 ||
cfg->fourcc == V4L2_PIX_FMT_NV21) && (mode->yres & 0x1)) {
dev_err(dev, "yres must be multiple of 2 for "
"YCbCr420 mode.\n");
return -EINVAL;
}
if (size > max_size) {
max_mode = mode;
max_size = size;
}
}
if (!max_size)
max_size = MAX_XRES * MAX_YRES;
else
dev_dbg(dev, "Found largest videomode %ux%u\n",
max_mode->xres, max_mode->yres);
if (cfg->lcd_modes == NULL) {
mode = &default_720p;
num_modes = 1;
} else {
mode = cfg->lcd_modes;
num_modes = cfg->num_modes;
}
/* Use the first mode as default. The default Y virtual resolution is
* twice the panel size to allow for double-buffering.
*/
ch->format = format;
ch->xres = mode->xres;
ch->xres_virtual = mode->xres;
ch->yres = mode->yres;
ch->yres_virtual = mode->yres * 2;
if (!format->yuv) {
ch->colorspace = V4L2_COLORSPACE_SRGB;
ch->pitch = ch->xres_virtual * format->bpp / 8;
} else {
ch->colorspace = V4L2_COLORSPACE_REC709;
ch->pitch = ch->xres_virtual;
}
ch->display.width = cfg->panel_cfg.width;
ch->display.height = cfg->panel_cfg.height;
ch->display.mode = *mode;
/* Allocate frame buffer memory. */
ch->fb_size = max_size * format->bpp / 8 * 2;
ch->fb_mem = dma_alloc_coherent(dev, ch->fb_size, &ch->dma_handle,
GFP_KERNEL);
if (ch->fb_mem == NULL) {
dev_err(dev, "unable to allocate buffer\n");