blob: f31162cfdaa9762f71cafe41e0f815e92181f6fd [file] [log] [blame]
/*
* Support PCI/PCIe on PowerNV platforms
*
* Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#undef DEBUG
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/msi.h>
#include <asm/sections.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/pci-bridge.h>
#include <asm/machdep.h>
#include <asm/ppc-pci.h>
#include <asm/opal.h>
#include <asm/iommu.h>
#include <asm/tce.h>
#include <asm/abs_addr.h>
#include "powernv.h"
#include "pci.h"
struct resource_wrap {
struct list_head link;
resource_size_t size;
resource_size_t align;
struct pci_dev *dev; /* Set if it's a device */
struct pci_bus *bus; /* Set if it's a bridge */
};
static int __pe_printk(const char *level, const struct pnv_ioda_pe *pe,
struct va_format *vaf)
{
char pfix[32];
if (pe->pdev)
strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
else
sprintf(pfix, "%04x:%02x ",
pci_domain_nr(pe->pbus), pe->pbus->number);
return printk("pci %s%s: [PE# %.3d] %pV", level, pfix, pe->pe_number, vaf);
}
#define define_pe_printk_level(func, kern_level) \
static int func(const struct pnv_ioda_pe *pe, const char *fmt, ...) \
{ \
struct va_format vaf; \
va_list args; \
int r; \
\
va_start(args, fmt); \
\
vaf.fmt = fmt; \
vaf.va = &args; \
\
r = __pe_printk(kern_level, pe, &vaf); \
va_end(args); \
\
return r; \
} \
define_pe_printk_level(pe_err, KERN_ERR);
define_pe_printk_level(pe_warn, KERN_WARNING);
define_pe_printk_level(pe_info, KERN_INFO);
/* Calculate resource usage & alignment requirement of a single
* device. This will also assign all resources within the device
* for a given type starting at 0 for the biggest one and then
* assigning in decreasing order of size.
*/
static void __devinit pnv_ioda_calc_dev(struct pci_dev *dev, unsigned int flags,
resource_size_t *size,
resource_size_t *align)
{
resource_size_t start;
struct resource *r;
int i;
pr_devel(" -> CDR %s\n", pci_name(dev));
*size = *align = 0;
/* Clear the resources out and mark them all unset */
for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
r = &dev->resource[i];
if (!(r->flags & flags))
continue;
if (r->start) {
r->end -= r->start;
r->start = 0;
}
r->flags |= IORESOURCE_UNSET;
}
/* We currently keep all memory resources together, we
* will handle prefetch & 64-bit separately in the future
* but for now we stick everybody in M32
*/
start = 0;
for (;;) {
resource_size_t max_size = 0;
int max_no = -1;
/* Find next biggest resource */
for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
r = &dev->resource[i];
if (!(r->flags & IORESOURCE_UNSET) ||
!(r->flags & flags))
continue;
if (resource_size(r) > max_size) {
max_size = resource_size(r);
max_no = i;
}
}
if (max_no < 0)
break;
r = &dev->resource[max_no];
if (max_size > *align)
*align = max_size;
*size += max_size;
r->start = start;
start += max_size;
r->end = r->start + max_size - 1;
r->flags &= ~IORESOURCE_UNSET;
pr_devel(" -> R%d %016llx..%016llx\n",
max_no, r->start, r->end);
}
pr_devel(" <- CDR %s size=%llx align=%llx\n",
pci_name(dev), *size, *align);
}
/* Allocate a resource "wrap" for a given device or bridge and
* insert it at the right position in the sorted list
*/
static void __devinit pnv_ioda_add_wrap(struct list_head *list,
struct pci_bus *bus,
struct pci_dev *dev,
resource_size_t size,
resource_size_t align)
{
struct resource_wrap *w1, *w = kzalloc(sizeof(*w), GFP_KERNEL);
w->size = size;
w->align = align;
w->dev = dev;
w->bus = bus;
list_for_each_entry(w1, list, link) {
if (w1->align < align) {
list_add_tail(&w->link, &w1->link);
return;
}
}
list_add_tail(&w->link, list);
}
/* Offset device resources of a given type */
static void __devinit pnv_ioda_offset_dev(struct pci_dev *dev,
unsigned int flags,
resource_size_t offset)
{
struct resource *r;
int i;
pr_devel(" -> ODR %s [%x] +%016llx\n", pci_name(dev), flags, offset);
for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
r = &dev->resource[i];
if (r->flags & flags) {
dev->resource[i].start += offset;
dev->resource[i].end += offset;
}
}
pr_devel(" <- ODR %s [%x] +%016llx\n", pci_name(dev), flags, offset);
}
/* Offset bus resources (& all children) of a given type */
static void __devinit pnv_ioda_offset_bus(struct pci_bus *bus,
unsigned int flags,
resource_size_t offset)
{
struct resource *r;
struct pci_dev *dev;
struct pci_bus *cbus;
int i;
pr_devel(" -> OBR %s [%x] +%016llx\n",
bus->self ? pci_name(bus->self) : "root", flags, offset);
for (i = 0; i < 2; i++) {
r = bus->resource[i];
if (r && (r->flags & flags)) {
bus->resource[i]->start += offset;
bus->resource[i]->end += offset;
}
}
list_for_each_entry(dev, &bus->devices, bus_list)
pnv_ioda_offset_dev(dev, flags, offset);
list_for_each_entry(cbus, &bus->children, node)
pnv_ioda_offset_bus(cbus, flags, offset);
pr_devel(" <- OBR %s [%x]\n",
bus->self ? pci_name(bus->self) : "root", flags);
}
/* This is the guts of our IODA resource allocation. This is called
* recursively for each bus in the system. It calculates all the
* necessary size and requirements for children and assign them
* resources such that:
*
* - Each function fits in it's own contiguous set of IO/M32
* segment
*
* - All segments behind a P2P bridge are contiguous and obey
* alignment constraints of those bridges
*/
static void __devinit pnv_ioda_calc_bus(struct pci_bus *bus, unsigned int flags,
resource_size_t *size,
resource_size_t *align)
{
struct pci_controller *hose = pci_bus_to_host(bus);
struct pnv_phb *phb = hose->private_data;
resource_size_t dev_size, dev_align, start;
resource_size_t min_align, min_balign;
struct pci_dev *cdev;
struct pci_bus *cbus;
struct list_head head;
struct resource_wrap *w;
unsigned int bres;
*size = *align = 0;
pr_devel("-> CBR %s [%x]\n",
bus->self ? pci_name(bus->self) : "root", flags);
/* Calculate alignment requirements based on the type
* of resource we are working on
*/
if (flags & IORESOURCE_IO) {
bres = 0;
min_align = phb->ioda.io_segsize;
min_balign = 0x1000;
} else {
bres = 1;
min_align = phb->ioda.m32_segsize;
min_balign = 0x100000;
}
/* Gather all our children resources ordered by alignment */
INIT_LIST_HEAD(&head);
/* - Busses */
list_for_each_entry(cbus, &bus->children, node) {
pnv_ioda_calc_bus(cbus, flags, &dev_size, &dev_align);
pnv_ioda_add_wrap(&head, cbus, NULL, dev_size, dev_align);
}
/* - Devices */
list_for_each_entry(cdev, &bus->devices, bus_list) {
pnv_ioda_calc_dev(cdev, flags, &dev_size, &dev_align);
/* Align them to segment size */
if (dev_align < min_align)
dev_align = min_align;
pnv_ioda_add_wrap(&head, NULL, cdev, dev_size, dev_align);
}
if (list_empty(&head))
goto empty;
/* Now we can do two things: assign offsets to them within that
* level and get our total alignment & size requirements. The
* assignment algorithm is going to be uber-trivial for now, we
* can try to be smarter later at filling out holes.
*/
start = bus->self ? 0 : bus->resource[bres]->start;
/* Don't hand out IO 0 */
if ((flags & IORESOURCE_IO) && !bus->self)
start += 0x1000;
while(!list_empty(&head)) {
w = list_first_entry(&head, struct resource_wrap, link);
list_del(&w->link);
if (w->size) {
if (start) {
start = ALIGN(start, w->align);
if (w->dev)
pnv_ioda_offset_dev(w->dev,flags,start);
else if (w->bus)
pnv_ioda_offset_bus(w->bus,flags,start);
}
if (w->align > *align)
*align = w->align;
}
start += w->size;
kfree(w);
}
*size = start;
/* Align and setup bridge resources */
*align = max_t(resource_size_t, *align,
max_t(resource_size_t, min_align, min_balign));
*size = ALIGN(*size,
max_t(resource_size_t, min_align, min_balign));
empty:
/* Only setup P2P's, not the PHB itself */
if (bus->self) {
WARN_ON(bus->resource[bres] == NULL);
bus->resource[bres]->start = 0;
bus->resource[bres]->flags = (*size) ? flags : 0;
bus->resource[bres]->end = (*size) ? (*size - 1) : 0;
/* Clear prefetch bus resources for now */
bus->resource[2]->flags = 0;
}
pr_devel("<- CBR %s [%x] *size=%016llx *align=%016llx\n",
bus->self ? pci_name(bus->self) : "root", flags,*size,*align);
}
static struct pci_dn *pnv_ioda_get_pdn(struct pci_dev *dev)
{
struct device_node *np;
np = pci_device_to_OF_node(dev);
if (!np)
return NULL;
return PCI_DN(np);
}
static void __devinit pnv_ioda_setup_pe_segments(struct pci_dev *dev)
{
struct pci_controller *hose = pci_bus_to_host(dev->bus);
struct pnv_phb *phb = hose->private_data;
struct pci_dn *pdn = pnv_ioda_get_pdn(dev);
unsigned int pe, i;
resource_size_t pos;
struct resource io_res;
struct resource m32_res;
struct pci_bus_region region;
int rc;
/* Anything not referenced in the device-tree gets PE#0 */
pe = pdn ? pdn->pe_number : 0;
/* Calculate the device min/max */
io_res.start = m32_res.start = (resource_size_t)-1;
io_res.end = m32_res.end = 0;
io_res.flags = IORESOURCE_IO;
m32_res.flags = IORESOURCE_MEM;
for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
struct resource *r = NULL;
if (dev->resource[i].flags & IORESOURCE_IO)
r = &io_res;
if (dev->resource[i].flags & IORESOURCE_MEM)
r = &m32_res;
if (!r)
continue;
if (dev->resource[i].start < r->start)
r->start = dev->resource[i].start;
if (dev->resource[i].end > r->end)
r->end = dev->resource[i].end;
}
/* Setup IO segments */
if (io_res.start < io_res.end) {
pcibios_resource_to_bus(dev, &region, &io_res);
pos = region.start;
i = pos / phb->ioda.io_segsize;
while(i < phb->ioda.total_pe && pos <= region.end) {
if (phb->ioda.io_segmap[i]) {
pr_err("%s: Trying to use IO seg #%d which is"
" already used by PE# %d\n",
pci_name(dev), i,
phb->ioda.io_segmap[i]);
/* XXX DO SOMETHING TO DISABLE DEVICE ? */
break;
}
phb->ioda.io_segmap[i] = pe;
rc = opal_pci_map_pe_mmio_window(phb->opal_id, pe,
OPAL_IO_WINDOW_TYPE,
0, i);
if (rc != OPAL_SUCCESS) {
pr_err("%s: OPAL error %d setting up mapping"
" for IO seg# %d\n",
pci_name(dev), rc, i);
/* XXX DO SOMETHING TO DISABLE DEVICE ? */
break;
}
pos += phb->ioda.io_segsize;
i++;
};
}
/* Setup M32 segments */
if (m32_res.start < m32_res.end) {
pcibios_resource_to_bus(dev, &region, &m32_res);
pos = region.start;
i = pos / phb->ioda.m32_segsize;
while(i < phb->ioda.total_pe && pos <= region.end) {
if (phb->ioda.m32_segmap[i]) {
pr_err("%s: Trying to use M32 seg #%d which is"
" already used by PE# %d\n",
pci_name(dev), i,
phb->ioda.m32_segmap[i]);
/* XXX DO SOMETHING TO DISABLE DEVICE ? */
break;
}
phb->ioda.m32_segmap[i] = pe;
rc = opal_pci_map_pe_mmio_window(phb->opal_id, pe,
OPAL_M32_WINDOW_TYPE,
0, i);
if (rc != OPAL_SUCCESS) {
pr_err("%s: OPAL error %d setting up mapping"
" for M32 seg# %d\n",
pci_name(dev), rc, i);
/* XXX DO SOMETHING TO DISABLE DEVICE ? */
break;
}
pos += phb->ioda.m32_segsize;
i++;
}
}
}
/* Check if a resource still fits in the total IO or M32 range
* for a given PHB
*/
static int __devinit pnv_ioda_resource_fit(struct pci_controller *hose,
struct resource *r)
{
struct resource *bounds;
if (r->flags & IORESOURCE_IO)
bounds = &hose->io_resource;
else if (r->flags & IORESOURCE_MEM)
bounds = &hose->mem_resources[0];
else
return 1;
if (r->start >= bounds->start && r->end <= bounds->end)
return 1;
r->flags = 0;
return 0;
}
static void __devinit pnv_ioda_update_resources(struct pci_bus *bus)
{
struct pci_controller *hose = pci_bus_to_host(bus);
struct pci_bus *cbus;
struct pci_dev *cdev;
unsigned int i;
/* We used to clear all device enables here. However it looks like
* clearing MEM enable causes Obsidian (IPR SCS) to go bonkers,
* and shoot fatal errors to the PHB which in turns fences itself
* and we can't recover from that ... yet. So for now, let's leave
* the enables as-is and hope for the best.
*/
/* Check if bus resources fit in our IO or M32 range */
for (i = 0; bus->self && (i < 2); i++) {
struct resource *r = bus->resource[i];
if (r && !pnv_ioda_resource_fit(hose, r))
pr_err("%s: Bus %d resource %d disabled, no room\n",
pci_name(bus->self), bus->number, i);
}
/* Update self if it's not a PHB */
if (bus->self)
pci_setup_bridge(bus);
/* Update child devices */
list_for_each_entry(cdev, &bus->devices, bus_list) {
/* Check if resource fits, if not, disabled it */
for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
struct resource *r = &cdev->resource[i];
if (!pnv_ioda_resource_fit(hose, r))
pr_err("%s: Resource %d disabled, no room\n",
pci_name(cdev), i);
}
/* Assign segments */
pnv_ioda_setup_pe_segments(cdev);
/* Update HW BARs */
for (i = 0; i <= PCI_ROM_RESOURCE; i++)
pci_update_resource(cdev, i);
}
/* Update child busses */
list_for_each_entry(cbus, &bus->children, node)
pnv_ioda_update_resources(cbus);
}
static int __devinit pnv_ioda_alloc_pe(struct pnv_phb *phb)
{
unsigned long pe;
do {
pe = find_next_zero_bit(phb->ioda.pe_alloc,
phb->ioda.total_pe, 0);
if (pe >= phb->ioda.total_pe)
return IODA_INVALID_PE;
} while(test_and_set_bit(pe, phb->ioda.pe_alloc));
phb->ioda.pe_array[pe].pe_number = pe;
return pe;
}
static void __devinit pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
{
WARN_ON(phb->ioda.pe_array[pe].pdev);
memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
clear_bit(pe, phb->ioda.pe_alloc);
}
/* Currently those 2 are only used when MSIs are enabled, this will change
* but in the meantime, we need to protect them to avoid warnings
*/
#ifdef CONFIG_PCI_MSI
static struct pnv_ioda_pe * __devinit __pnv_ioda_get_one_pe(struct pci_dev *dev)
{
struct pci_controller *hose = pci_bus_to_host(dev->bus);
struct pnv_phb *phb = hose->private_data;
struct pci_dn *pdn = pnv_ioda_get_pdn(dev);
if (!pdn)
return NULL;
if (pdn->pe_number == IODA_INVALID_PE)
return NULL;
return &phb->ioda.pe_array[pdn->pe_number];
}
static struct pnv_ioda_pe * __devinit pnv_ioda_get_pe(struct pci_dev *dev)
{
struct pnv_ioda_pe *pe = __pnv_ioda_get_one_pe(dev);
while (!pe && dev->bus->self) {
dev = dev->bus->self;
pe = __pnv_ioda_get_one_pe(dev);
if (pe)
pe = pe->bus_pe;
}
return pe;
}
#endif /* CONFIG_PCI_MSI */
static int __devinit pnv_ioda_configure_pe(struct pnv_phb *phb,
struct pnv_ioda_pe *pe)
{
struct pci_dev *parent;
uint8_t bcomp, dcomp, fcomp;
long rc, rid_end, rid;
/* Bus validation ? */
if (pe->pbus) {
int count;
dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
parent = pe->pbus->self;
count = pe->pbus->subordinate - pe->pbus->secondary + 1;
switch(count) {
case 1: bcomp = OpalPciBusAll; break;
case 2: bcomp = OpalPciBus7Bits; break;
case 4: bcomp = OpalPciBus6Bits; break;
case 8: bcomp = OpalPciBus5Bits; break;
case 16: bcomp = OpalPciBus4Bits; break;
case 32: bcomp = OpalPciBus3Bits; break;
default:
pr_err("%s: Number of subordinate busses %d"
" unsupported\n",
pci_name(pe->pbus->self), count);
/* Do an exact match only */
bcomp = OpalPciBusAll;
}
rid_end = pe->rid + (count << 8);
} else {
parent = pe->pdev->bus->self;
bcomp = OpalPciBusAll;
dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
rid_end = pe->rid + 1;
}
/* Associate PE in PELT */
rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
bcomp, dcomp, fcomp, OPAL_MAP_PE);
if (rc) {
pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
return -ENXIO;
}
opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
/* Add to all parents PELT-V */
while (parent) {
struct pci_dn *pdn = pnv_ioda_get_pdn(parent);
if (pdn && pdn->pe_number != IODA_INVALID_PE) {
rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
pe->pe_number, OPAL_ADD_PE_TO_DOMAIN);
/* XXX What to do in case of error ? */
}
parent = parent->bus->self;
}
/* Setup reverse map */
for (rid = pe->rid; rid < rid_end; rid++)
phb->ioda.pe_rmap[rid] = pe->pe_number;
/* Setup one MVTs on IODA1 */
if (phb->type == PNV_PHB_IODA1) {
pe->mve_number = pe->pe_number;
rc = opal_pci_set_mve(phb->opal_id, pe->mve_number,
pe->pe_number);
if (rc) {
pe_err(pe, "OPAL error %ld setting up MVE %d\n",
rc, pe->mve_number);
pe->mve_number = -1;
} else {
rc = opal_pci_set_mve_enable(phb->opal_id,
pe->mve_number, OPAL_ENABLE_MVE);
if (rc) {
pe_err(pe, "OPAL error %ld enabling MVE %d\n",
rc, pe->mve_number);
pe->mve_number = -1;
}
}
} else if (phb->type == PNV_PHB_IODA2)
pe->mve_number = 0;
return 0;
}
static void __devinit pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
struct pnv_ioda_pe *pe)
{
struct pnv_ioda_pe *lpe;
list_for_each_entry(lpe, &phb->ioda.pe_list, link) {
if (lpe->dma_weight < pe->dma_weight) {
list_add_tail(&pe->link, &lpe->link);
return;
}
}
list_add_tail(&pe->link, &phb->ioda.pe_list);
}
static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
{
/* This is quite simplistic. The "base" weight of a device
* is 10. 0 means no DMA is to be accounted for it.
*/
/* If it's a bridge, no DMA */
if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
return 0;
/* Reduce the weight of slow USB controllers */
if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
dev->class == PCI_CLASS_SERIAL_USB_EHCI)
return 3;
/* Increase the weight of RAID (includes Obsidian) */
if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
return 15;
/* Default */
return 10;
}
static struct pnv_ioda_pe * __devinit pnv_ioda_setup_dev_PE(struct pci_dev *dev)
{
struct pci_controller *hose = pci_bus_to_host(dev->bus);
struct pnv_phb *phb = hose->private_data;
struct pci_dn *pdn = pnv_ioda_get_pdn(dev);
struct pnv_ioda_pe *pe;
int pe_num;
if (!pdn) {
pr_err("%s: Device tree node not associated properly\n",
pci_name(dev));
return NULL;
}
if (pdn->pe_number != IODA_INVALID_PE)
return NULL;
/* PE#0 has been pre-set */
if (dev->bus->number == 0)
pe_num = 0;
else
pe_num = pnv_ioda_alloc_pe(phb);
if (pe_num == IODA_INVALID_PE) {
pr_warning("%s: Not enough PE# available, disabling device\n",
pci_name(dev));
return NULL;
}
/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
* pointer in the PE data structure, both should be destroyed at the
* same time. However, this needs to be looked at more closely again
* once we actually start removing things (Hotplug, SR-IOV, ...)
*
* At some point we want to remove the PDN completely anyways
*/
pe = &phb->ioda.pe_array[pe_num];
pci_dev_get(dev);
pdn->pcidev = dev;
pdn->pe_number = pe_num;
pe->pdev = dev;
pe->pbus = NULL;
pe->tce32_seg = -1;
pe->mve_number = -1;
pe->rid = dev->bus->number << 8 | pdn->devfn;
pe_info(pe, "Associated device to PE\n");
if (pnv_ioda_configure_pe(phb, pe)) {
/* XXX What do we do here ? */
if (pe_num)
pnv_ioda_free_pe(phb, pe_num);
pdn->pe_number = IODA_INVALID_PE;
pe->pdev = NULL;
pci_dev_put(dev);
return NULL;
}
/* Assign a DMA weight to the device */
pe->dma_weight = pnv_ioda_dma_weight(dev);
if (pe->dma_weight != 0) {
phb->ioda.dma_weight += pe->dma_weight;
phb->ioda.dma_pe_count++;
}
/* Link the PE */
pnv_ioda_link_pe_by_weight(phb, pe);
return pe;
}
static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
{
struct pci_dev *dev;
list_for_each_entry(dev, &bus->devices, bus_list) {
struct pci_dn *pdn = pnv_ioda_get_pdn(dev);
if (pdn == NULL) {
pr_warn("%s: No device node associated with device !\n",
pci_name(dev));
continue;
}
pci_dev_get(dev);
pdn->pcidev = dev;
pdn->pe_number = pe->pe_number;
pe->dma_weight += pnv_ioda_dma_weight(dev);
if (dev->subordinate)
pnv_ioda_setup_same_PE(dev->subordinate, pe);
}
}
static void __devinit pnv_ioda_setup_bus_PE(struct pci_dev *dev,
struct pnv_ioda_pe *ppe)
{
struct pci_controller *hose = pci_bus_to_host(dev->bus);
struct pnv_phb *phb = hose->private_data;
struct pci_bus *bus = dev->subordinate;
struct pnv_ioda_pe *pe;
int pe_num;
if (!bus) {
pr_warning("%s: Bridge without a subordinate bus !\n",
pci_name(dev));
return;
}
pe_num = pnv_ioda_alloc_pe(phb);
if (pe_num == IODA_INVALID_PE) {
pr_warning("%s: Not enough PE# available, disabling bus\n",
pci_name(dev));
return;
}
pe = &phb->ioda.pe_array[pe_num];
ppe->bus_pe = pe;
pe->pbus = bus;
pe->pdev = NULL;
pe->tce32_seg = -1;
pe->mve_number = -1;
pe->rid = bus->secondary << 8;
pe->dma_weight = 0;
pe_info(pe, "Secondary busses %d..%d associated with PE\n",
bus->secondary, bus->subordinate);
if (pnv_ioda_configure_pe(phb, pe)) {
/* XXX What do we do here ? */
if (pe_num)
pnv_ioda_free_pe(phb, pe_num);
pe->pbus = NULL;
return;
}
/* Associate it with all child devices */
pnv_ioda_setup_same_PE(bus, pe);
/* Account for one DMA PE if at least one DMA capable device exist
* below the bridge
*/
if (pe->dma_weight != 0) {
phb->ioda.dma_weight += pe->dma_weight;
phb->ioda.dma_pe_count++;
}
/* Link the PE */
pnv_ioda_link_pe_by_weight(phb, pe);
}
static void __devinit pnv_ioda_setup_PEs(struct pci_bus *bus)
{
struct pci_dev *dev;
struct pnv_ioda_pe *pe;
list_for_each_entry(dev, &bus->devices, bus_list) {
pe = pnv_ioda_setup_dev_PE(dev);
if (pe == NULL)
continue;
/* Leaving the PCIe domain ... single PE# */
if (dev->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
pnv_ioda_setup_bus_PE(dev, pe);
else if (dev->subordinate)
pnv_ioda_setup_PEs(dev->subordinate);
}
}
static void __devinit pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb,
struct pci_dev *dev)
{
/* We delay DMA setup after we have assigned all PE# */
}
static void __devinit pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
struct pci_bus *bus)
{
struct pci_dev *dev;
list_for_each_entry(dev, &bus->devices, bus_list) {
set_iommu_table_base(&dev->dev, &pe->tce32_table);
if (dev->subordinate)
pnv_ioda_setup_bus_dma(pe, dev->subordinate);
}
}
static void __devinit pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
struct pnv_ioda_pe *pe,
unsigned int base,
unsigned int segs)
{
struct page *tce_mem = NULL;
const __be64 *swinvp;
struct iommu_table *tbl;
unsigned int i;
int64_t rc;
void *addr;
/* 256M DMA window, 4K TCE pages, 8 bytes TCE */
#define TCE32_TABLE_SIZE ((0x10000000 / 0x1000) * 8)
/* XXX FIXME: Handle 64-bit only DMA devices */
/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
/* XXX FIXME: Allocate multi-level tables on PHB3 */
/* We shouldn't already have a 32-bit DMA associated */
if (WARN_ON(pe->tce32_seg >= 0))
return;
/* Grab a 32-bit TCE table */
pe->tce32_seg = base;
pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
(base << 28), ((base + segs) << 28) - 1);
/* XXX Currently, we allocate one big contiguous table for the
* TCEs. We only really need one chunk per 256M of TCE space
* (ie per segment) but that's an optimization for later, it
* requires some added smarts with our get/put_tce implementation
*/
tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
get_order(TCE32_TABLE_SIZE * segs));
if (!tce_mem) {
pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
goto fail;
}
addr = page_address(tce_mem);
memset(addr, 0, TCE32_TABLE_SIZE * segs);
/* Configure HW */
for (i = 0; i < segs; i++) {
rc = opal_pci_map_pe_dma_window(phb->opal_id,
pe->pe_number,
base + i, 1,
__pa(addr) + TCE32_TABLE_SIZE * i,
TCE32_TABLE_SIZE, 0x1000);
if (rc) {
pe_err(pe, " Failed to configure 32-bit TCE table,"
" err %ld\n", rc);
goto fail;
}
}
/* Setup linux iommu table */
tbl = &pe->tce32_table;
pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
base << 28);
/* OPAL variant of P7IOC SW invalidated TCEs */
swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
if (swinvp) {
/* We need a couple more fields -- an address and a data
* to or. Since the bus is only printed out on table free
* errors, and on the first pass the data will be a relative
* bus number, print that out instead.
*/
tbl->it_busno = 0;
tbl->it_index = (unsigned long)ioremap(be64_to_cpup(swinvp), 8);
tbl->it_type = TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE
| TCE_PCI_SWINV_PAIR;
}
iommu_init_table(tbl, phb->hose->node);
if (pe->pdev)
set_iommu_table_base(&pe->pdev->dev, tbl);
else
pnv_ioda_setup_bus_dma(pe, pe->pbus);
return;
fail:
/* XXX Failure: Try to fallback to 64-bit only ? */
if (pe->tce32_seg >= 0)
pe->tce32_seg = -1;
if (tce_mem)
__free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
}
static void __devinit pnv_ioda_setup_dma(struct pnv_phb *phb)
{
struct pci_controller *hose = phb->hose;
unsigned int residual, remaining, segs, tw, base;
struct pnv_ioda_pe *pe;
/* If we have more PE# than segments available, hand out one
* per PE until we run out and let the rest fail. If not,
* then we assign at least one segment per PE, plus more based
* on the amount of devices under that PE
*/
if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
residual = 0;
else
residual = phb->ioda.tce32_count -
phb->ioda.dma_pe_count;
pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
hose->global_number, phb->ioda.tce32_count);
pr_info("PCI: %d PE# for a total weight of %d\n",
phb->ioda.dma_pe_count, phb->ioda.dma_weight);
/* Walk our PE list and configure their DMA segments, hand them
* out one base segment plus any residual segments based on
* weight
*/
remaining = phb->ioda.tce32_count;
tw = phb->ioda.dma_weight;
base = 0;
list_for_each_entry(pe, &phb->ioda.pe_list, link) {
if (!pe->dma_weight)
continue;
if (!remaining) {
pe_warn(pe, "No DMA32 resources available\n");
continue;
}
segs = 1;
if (residual) {
segs += ((pe->dma_weight * residual) + (tw / 2)) / tw;
if (segs > remaining)
segs = remaining;
}
pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
pe->dma_weight, segs);
pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
remaining -= segs;
base += segs;
}
}
#ifdef CONFIG_PCI_MSI
static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
unsigned int hwirq, unsigned int is_64,
struct msi_msg *msg)
{
struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
unsigned int xive_num = hwirq - phb->msi_base;
uint64_t addr64;
uint32_t addr32, data;
int rc;
/* No PE assigned ? bail out ... no MSI for you ! */
if (pe == NULL)
return -ENXIO;
/* Check if we have an MVE */
if (pe->mve_number < 0)
return -ENXIO;
/* Assign XIVE to PE */
rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
if (rc) {
pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
pci_name(dev), rc, xive_num);
return -EIO;
}
if (is_64) {
rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
&addr64, &data);
if (rc) {
pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
pci_name(dev), rc);
return -EIO;
}
msg->address_hi = addr64 >> 32;
msg->address_lo = addr64 & 0xfffffffful;
} else {
rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
&addr32, &data);
if (rc) {
pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
pci_name(dev), rc);
return -EIO;
}
msg->address_hi = 0;
msg->address_lo = addr32;
}
msg->data = data;
pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
" address=%x_%08x data=%x PE# %d\n",
pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
msg->address_hi, msg->address_lo, data, pe->pe_number);
return 0;
}
static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
{
unsigned int bmap_size;
const __be32 *prop = of_get_property(phb->hose->dn,
"ibm,opal-msi-ranges", NULL);
if (!prop) {
/* BML Fallback */
prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
}
if (!prop)
return;
phb->msi_base = be32_to_cpup(prop);
phb->msi_count = be32_to_cpup(prop + 1);
bmap_size = BITS_TO_LONGS(phb->msi_count) * sizeof(unsigned long);
phb->msi_map = zalloc_maybe_bootmem(bmap_size, GFP_KERNEL);
if (!phb->msi_map) {
pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
phb->hose->global_number);
return;
}
phb->msi_setup = pnv_pci_ioda_msi_setup;
phb->msi32_support = 1;
pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
phb->msi_count, phb->msi_base);
}
#else
static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
#endif /* CONFIG_PCI_MSI */
/* This is the starting point of our IODA specific resource
* allocation process
*/
static void __devinit pnv_pci_ioda_fixup_phb(struct pci_controller *hose)
{
resource_size_t size, align;
struct pci_bus *child;
/* Associate PEs per functions */
pnv_ioda_setup_PEs(hose->bus);
/* Calculate all resources */
pnv_ioda_calc_bus(hose->bus, IORESOURCE_IO, &size, &align);
pnv_ioda_calc_bus(hose->bus, IORESOURCE_MEM, &size, &align);
/* Apply then to HW */
pnv_ioda_update_resources(hose->bus);
/* Setup DMA */
pnv_ioda_setup_dma(hose->private_data);
/* Configure PCI Express settings */
list_for_each_entry(child, &hose->bus->children, node) {
struct pci_dev *self = child->self;
if (!self)
continue;
pcie_bus_configure_settings(child, self->pcie_mpss);
}
}
/* Prevent enabling devices for which we couldn't properly
* assign a PE
*/
static int __devinit pnv_pci_enable_device_hook(struct pci_dev *dev)
{
struct pci_dn *pdn = pnv_ioda_get_pdn(dev);
if (!pdn || pdn->pe_number == IODA_INVALID_PE)
return -EINVAL;
return 0;
}
static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
u32 devfn)
{
return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
}
void __init pnv_pci_init_ioda1_phb(struct device_node *np)
{
struct pci_controller *hose;
static int primary = 1;
struct pnv_phb *phb;
unsigned long size, m32map_off, iomap_off, pemap_off;
const u64 *prop64;
u64 phb_id;
void *aux;
long rc;
pr_info(" Initializing IODA OPAL PHB %s\n", np->full_name);
prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
if (!prop64) {
pr_err(" Missing \"ibm,opal-phbid\" property !\n");
return;
}
phb_id = be64_to_cpup(prop64);
pr_debug(" PHB-ID : 0x%016llx\n", phb_id);
phb = alloc_bootmem(sizeof(struct pnv_phb));
if (phb) {
memset(phb, 0, sizeof(struct pnv_phb));
phb->hose = hose = pcibios_alloc_controller(np);
}
if (!phb || !phb->hose) {
pr_err("PCI: Failed to allocate PCI controller for %s\n",
np->full_name);
return;
}
spin_lock_init(&phb->lock);
/* XXX Use device-tree */
hose->first_busno = 0;
hose->last_busno = 0xff;
hose->private_data = phb;
phb->opal_id = phb_id;
phb->type = PNV_PHB_IODA1;
/* Detect specific models for error handling */
if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
phb->model = PNV_PHB_MODEL_P7IOC;
else
phb->model = PNV_PHB_MODEL_UNKNOWN;
/* We parse "ranges" now since we need to deduce the register base
* from the IO base
*/
pci_process_bridge_OF_ranges(phb->hose, np, primary);
primary = 0;
/* Magic formula from Milton */
phb->regs = of_iomap(np, 0);
if (phb->regs == NULL)
pr_err(" Failed to map registers !\n");
/* XXX This is hack-a-thon. This needs to be changed so that:
* - we obtain stuff like PE# etc... from device-tree
* - we properly re-allocate M32 ourselves
* (the OFW one isn't very good)
*/
/* Initialize more IODA stuff */
phb->ioda.total_pe = 128;
phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
/* OFW Has already off top 64k of M32 space (MSI space) */
phb->ioda.m32_size += 0x10000;
phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
phb->ioda.m32_pci_base = hose->mem_resources[0].start -
hose->pci_mem_offset;
phb->ioda.io_size = hose->pci_io_size;
phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
/* Allocate aux data & arrays */
size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
m32map_off = size;
size += phb->ioda.total_pe;
iomap_off = size;
size += phb->ioda.total_pe;
pemap_off = size;
size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
aux = alloc_bootmem(size);
memset(aux, 0, size);
phb->ioda.pe_alloc = aux;
phb->ioda.m32_segmap = aux + m32map_off;
phb->ioda.io_segmap = aux + iomap_off;
phb->ioda.pe_array = aux + pemap_off;
set_bit(0, phb->ioda.pe_alloc);
INIT_LIST_HEAD(&phb->ioda.pe_list);
/* Calculate how many 32-bit TCE segments we have */
phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
/* Clear unusable m64 */
hose->mem_resources[1].flags = 0;
hose->mem_resources[1].start = 0;
hose->mem_resources[1].end = 0;
hose->mem_resources[2].flags = 0;
hose->mem_resources[2].start = 0;
hose->mem_resources[2].end = 0;
#if 0
rc = opal_pci_set_phb_mem_window(opal->phb_id,
window_type,
window_num,
starting_real_address,
starting_pci_address,
segment_size);
#endif
pr_info(" %d PE's M32: 0x%x [segment=0x%x] IO: 0x%x [segment=0x%x]\n",
phb->ioda.total_pe,
phb->ioda.m32_size, phb->ioda.m32_segsize,
phb->ioda.io_size, phb->ioda.io_segsize);
if (phb->regs) {
pr_devel(" BUID = 0x%016llx\n", in_be64(phb->regs + 0x100));
pr_devel(" PHB2_CR = 0x%016llx\n", in_be64(phb->regs + 0x160));
pr_devel(" IO_BAR = 0x%016llx\n", in_be64(phb->regs + 0x170));
pr_devel(" IO_BAMR = 0x%016llx\n", in_be64(phb->regs + 0x178));
pr_devel(" IO_SAR = 0x%016llx\n", in_be64(phb->regs + 0x180));
pr_devel(" M32_BAR = 0x%016llx\n", in_be64(phb->regs + 0x190));
pr_devel(" M32_BAMR = 0x%016llx\n", in_be64(phb->regs + 0x198));
pr_devel(" M32_SAR = 0x%016llx\n", in_be64(phb->regs + 0x1a0));
}
phb->hose->ops = &pnv_pci_ops;
/* Setup RID -> PE mapping function */
phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
/* Setup TCEs */
phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
/* Setup MSI support */
pnv_pci_init_ioda_msis(phb);
/* We set both probe_only and PCI_REASSIGN_ALL_RSRC. This is an
* odd combination which essentially means that we skip all resource
* fixups and assignments in the generic code, and do it all
* ourselves here
*/
pci_probe_only = 1;
ppc_md.pcibios_fixup_phb = pnv_pci_ioda_fixup_phb;
ppc_md.pcibios_enable_device_hook = pnv_pci_enable_device_hook;
pci_add_flags(PCI_REASSIGN_ALL_RSRC);
/* Reset IODA tables to a clean state */
rc = opal_pci_reset(phb_id, OPAL_PCI_IODA_TABLE_RESET, OPAL_ASSERT_RESET);
if (rc)
pr_warning(" OPAL Error %ld performing IODA table reset !\n", rc);
opal_pci_set_pe(phb_id, 0, 0, 7, 1, 1 , OPAL_MAP_PE);
}
void __init pnv_pci_init_ioda_hub(struct device_node *np)
{
struct device_node *phbn;
const u64 *prop64;
u64 hub_id;
pr_info("Probing IODA IO-Hub %s\n", np->full_name);
prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
if (!prop64) {
pr_err(" Missing \"ibm,opal-hubid\" property !\n");
return;
}
hub_id = be64_to_cpup(prop64);
pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
/* Count child PHBs */
for_each_child_of_node(np, phbn) {
/* Look for IODA1 PHBs */
if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
pnv_pci_init_ioda1_phb(phbn);
}
}