blob: 926373866a5510c310936c0d6cc52140a335f645 [file] [log] [blame]
* fs/logfs/logfs.h
* As should be obvious for Linux kernel code, license is GPLv2
* Copyright (c) 2005-2008 Joern Engel <>
* Private header for logfs.
#undef __CHECK_ENDIAN__
#define __CHECK_ENDIAN__
#include <linux/btree.h>
#include <linux/crc32.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/mempool.h>
#include <linux/pagemap.h>
#include <linux/mtd/mtd.h>
#include "logfs_abi.h"
#define LOGFS_DEBUG_SUPER (0x0001)
#define LOGFS_DEBUG_SEGMENT (0x0002)
#define LOGFS_DEBUG_JOURNAL (0x0004)
#define LOGFS_DEBUG_DIR (0x0008)
#define LOGFS_DEBUG_FILE (0x0010)
#define LOGFS_DEBUG_INODE (0x0020)
#define LOGFS_DEBUG_READWRITE (0x0040)
#define LOGFS_DEBUG_GC (0x0080)
#define LOGFS_DEBUG_GC_NOISY (0x0100)
#define LOGFS_DEBUG_ALIASES (0x0200)
#define LOGFS_DEBUG_BLOCKMOVE (0x0400)
#define LOGFS_DEBUG_ALL (0xffffffff)
#define LOGFS_DEBUG (0x01)
* To enable specific log messages, simply define LOGFS_DEBUG to match any
* or all of the above.
#define LOGFS_DEBUG (0)
#define log_cond(cond, fmt, arg...) do { \
if (cond) \
printk(KERN_DEBUG fmt, ##arg); \
} while (0)
#define log_super(fmt, arg...) \
log_cond(LOGFS_DEBUG & LOGFS_DEBUG_SUPER, fmt, ##arg)
#define log_segment(fmt, arg...) \
log_cond(LOGFS_DEBUG & LOGFS_DEBUG_SEGMENT, fmt, ##arg)
#define log_journal(fmt, arg...) \
log_cond(LOGFS_DEBUG & LOGFS_DEBUG_JOURNAL, fmt, ##arg)
#define log_dir(fmt, arg...) \
log_cond(LOGFS_DEBUG & LOGFS_DEBUG_DIR, fmt, ##arg)
#define log_file(fmt, arg...) \
log_cond(LOGFS_DEBUG & LOGFS_DEBUG_FILE, fmt, ##arg)
#define log_inode(fmt, arg...) \
log_cond(LOGFS_DEBUG & LOGFS_DEBUG_INODE, fmt, ##arg)
#define log_readwrite(fmt, arg...) \
#define log_gc(fmt, arg...) \
log_cond(LOGFS_DEBUG & LOGFS_DEBUG_GC, fmt, ##arg)
#define log_gc_noisy(fmt, arg...) \
log_cond(LOGFS_DEBUG & LOGFS_DEBUG_GC_NOISY, fmt, ##arg)
#define log_aliases(fmt, arg...) \
log_cond(LOGFS_DEBUG & LOGFS_DEBUG_ALIASES, fmt, ##arg)
#define log_blockmove(fmt, arg...) \
#define PG_pre_locked PG_owner_priv_1
#define PagePreLocked(page) test_bit(PG_pre_locked, &(page)->flags)
#define SetPagePreLocked(page) set_bit(PG_pre_locked, &(page)->flags)
#define ClearPagePreLocked(page) clear_bit(PG_pre_locked, &(page)->flags)
/* FIXME: This should really be somewhere in the 64bit area. */
#define LOGFS_LINK_MAX (1<<30)
/* Read-only filesystem */
#define LOGFS_SB_FLAG_RO 0x0001
#define LOGFS_SB_FLAG_DIRTY 0x0002
#define LOGFS_SB_FLAG_OBJ_ALIAS 0x0004
/* Write Control Flags */
#define WF_LOCK 0x01 /* take write lock */
#define WF_WRITE 0x02 /* write block */
#define WF_DELETE 0x04 /* delete old block */
typedef u8 __bitwise level_t;
typedef u8 __bitwise gc_level_t;
#define LEVEL(level) ((__force level_t)(level))
#define GC_LEVEL(gc_level) ((__force gc_level_t)(gc_level))
#define SUBLEVEL(level) ( (void)((level) == LEVEL(1)), \
(__force level_t)((__force u8)(level) - 1) )
* struct logfs_area - area management information
* @a_sb: the superblock this area belongs to
* @a_is_open: 1 if the area is currently open, else 0
* @a_segno: segment number of area
* @a_written_bytes: number of bytes already written back
* @a_used_bytes: number of used bytes
* @a_ops: area operations (either journal or ostore)
* @a_erase_count: erase count
* @a_level: GC level
struct logfs_area { /* a segment open for writing */
struct super_block *a_sb;
int a_is_open;
u32 a_segno;
u32 a_written_bytes;
u32 a_used_bytes;
const struct logfs_area_ops *a_ops;
u32 a_erase_count;
gc_level_t a_level;
* struct logfs_area_ops - area operations
* @get_free_segment: fill area->ofs with the offset of a free segment
* @get_erase_count: fill area->erase_count (needs area->ofs)
* @erase_segment: erase and setup segment
struct logfs_area_ops {
void (*get_free_segment)(struct logfs_area *area);
void (*get_erase_count)(struct logfs_area *area);
int (*erase_segment)(struct logfs_area *area);
struct logfs_super; /* forward */
* struct logfs_device_ops - device access operations
* @readpage: read one page (mm page)
* @writeseg: write one segment. may be a partial segment
* @erase: erase one segment
* @read: read from the device
* @erase: erase part of the device
* @can_write_buf: decide whether wbuf can be written to ofs
struct logfs_device_ops {
struct page *(*find_first_sb)(struct super_block *sb, u64 *ofs);
struct page *(*find_last_sb)(struct super_block *sb, u64 *ofs);
int (*write_sb)(struct super_block *sb, struct page *page);
int (*readpage)(void *_sb, struct page *page);
void (*writeseg)(struct super_block *sb, u64 ofs, size_t len);
int (*erase)(struct super_block *sb, loff_t ofs, size_t len,
int ensure_write);
int (*can_write_buf)(struct super_block *sb, u64 ofs);
void (*sync)(struct super_block *sb);
void (*put_device)(struct logfs_super *s);
* struct candidate_list - list of similar candidates
struct candidate_list {
struct rb_root rb_tree;
int count;
int maxcount;
int sort_by_ec;
* struct gc_candidate - "candidate" segment to be garbage collected next
* @list: list (either free of low)
* @segno: segment number
* @valid: number of valid bytes
* @erase_count: erase count of segment
* @dist: distance from tree root
* Candidates can be on two lists. The free list contains electees rather
* than candidates - segments that no longer contain any valid data. The
* low list contains candidates to be picked for GC. It should be kept
* short. It is not required to always pick a perfect candidate. In the
* worst case GC will have to move more data than absolutely necessary.
struct gc_candidate {
struct rb_node rb_node;
struct candidate_list *list;
u32 segno;
u32 valid;
u32 erase_count;
u8 dist;
* struct logfs_journal_entry - temporary structure used during journal scan
* @used:
* @version: normalized version
* @len: length
* @offset: offset
struct logfs_journal_entry {
int used;
s16 version;
u16 len;
u16 datalen;
u64 offset;
enum transaction_state {
CREATE_1 = 1,
* struct logfs_transaction - essential fields to support atomic dirops
* @ino: target inode
* @dir: inode of directory containing dentry
* @pos: pos of dentry in directory
struct logfs_transaction {
enum transaction_state state;
u64 ino;
u64 dir;
u64 pos;
* struct logfs_shadow - old block in the shadow of a not-yet-committed new one
* @old_ofs: offset of old block on medium
* @new_ofs: offset of new block on medium
* @ino: inode number
* @bix: block index
* @old_len: size of old block, including header
* @new_len: size of new block, including header
* @level: block level
struct logfs_shadow {
u64 old_ofs;
u64 new_ofs;
u64 ino;
u64 bix;
int old_len;
int new_len;
gc_level_t gc_level;
* struct shadow_tree
* @new: shadows where old_ofs==0, indexed by new_ofs
* @old: shadows where old_ofs!=0, indexed by old_ofs
* @segment_map: bitfield of segments containing shadows
* @no_shadowed_segment: number of segments containing shadows
struct shadow_tree {
struct btree_head64 new;
struct btree_head64 old;
struct btree_head32 segment_map;
int no_shadowed_segments;
struct object_alias_item {
struct list_head list;
__be64 val;
int child_no;
* struct logfs_block - contains any block state
* @type: indirect block or inode
* @full: number of fully populated children
* @partial: number of partially populated children
* Most blocks are directly represented by page cache pages. But when a block
* becomes dirty, is part of a transaction, contains aliases or is otherwise
* special, a struct logfs_block is allocated to track the additional state.
* Inodes are very similar to indirect blocks, so they can also get one of
* these structures added when appropriate.
#define BLOCK_INDIRECT 1 /* Indirect block */
#define BLOCK_INODE 2 /* Inode */
struct logfs_block_ops;
struct logfs_block {
struct list_head alias_list;
struct list_head item_list;
struct super_block *sb;
u64 ino;
u64 bix;
level_t level;
struct page *page;
struct inode *inode;
struct logfs_transaction *ta;
unsigned long alias_map[LOGFS_BLOCK_FACTOR / BITS_PER_LONG];
struct logfs_block_ops *ops;
int full;
int partial;
int reserved_bytes;
typedef int write_alias_t(struct super_block *sb, u64 ino, u64 bix,
level_t level, int child_no, __be64 val);
struct logfs_block_ops {
void (*write_block)(struct logfs_block *block);
void (*free_block)(struct super_block *sb, struct logfs_block*block);
int (*write_alias)(struct super_block *sb,
struct logfs_block *block,
write_alias_t *write_one_alias);
struct logfs_super {
struct mtd_info *s_mtd; /* underlying device */
struct block_device *s_bdev; /* underlying device */
const struct logfs_device_ops *s_devops;/* device access */
struct inode *s_master_inode; /* inode file */
struct inode *s_segfile_inode; /* segment file */
struct inode *s_mapping_inode; /* device mapping */
atomic_t s_pending_writes; /* outstanting bios */
long s_flags;
mempool_t *s_btree_pool; /* for btree nodes */
mempool_t *s_alias_pool; /* aliases in segment.c */
u64 s_feature_incompat;
u64 s_feature_ro_compat;
u64 s_feature_compat;
u64 s_feature_flags;
u64 s_sb_ofs[2];
struct page *s_erase_page; /* for dev_bdev.c */
/* alias.c fields */
struct btree_head32 s_segment_alias; /* remapped segments */
int s_no_object_aliases;
struct list_head s_object_alias; /* remapped objects */
struct btree_head128 s_object_alias_tree; /* remapped objects */
struct mutex s_object_alias_mutex;
/* dir.c fields */
struct mutex s_dirop_mutex; /* for creat/unlink/rename */
u64 s_victim_ino; /* used for atomic dir-ops */
u64 s_rename_dir; /* source directory ino */
u64 s_rename_pos; /* position of source dd */
/* gc.c fields */
long s_segsize; /* size of a segment */
int s_segshift; /* log2 of segment size */
long s_segmask; /* 1 << s_segshift - 1 */
long s_no_segs; /* segments on device */
long s_no_journal_segs; /* segments used for journal */
long s_no_blocks; /* blocks per segment */
long s_writesize; /* minimum write size */
int s_writeshift; /* log2 of write size */
u64 s_size; /* filesystem size */
struct logfs_area *s_area[LOGFS_NO_AREAS]; /* open segment array */
u64 s_gec; /* global erase count */
u64 s_wl_gec_ostore; /* time of last wl event */
u64 s_wl_gec_journal; /* time of last wl event */
u64 s_sweeper; /* current sweeper pos */
u8 s_ifile_levels; /* max level of ifile */
u8 s_iblock_levels; /* max level of regular files */
u8 s_data_levels; /* # of segments to leaf block*/
u8 s_total_levels; /* sum of above three */
struct btree_head32 s_cand_tree; /* all candidates */
struct candidate_list s_free_list; /* 100% free segments */
struct candidate_list s_reserve_list; /* Bad segment reserve */
struct candidate_list s_low_list[LOGFS_NO_AREAS];/* good candidates */
struct candidate_list s_ec_list; /* wear level candidates */
struct btree_head32 s_reserved_segments;/* sb, journal, bad, etc. */
/* inode.c fields */
u64 s_last_ino; /* highest ino used */
long s_inos_till_wrap;
u32 s_generation; /* i_generation for new files */
struct list_head s_freeing_list; /* inodes being freed */
/* journal.c fields */
struct mutex s_journal_mutex;
void *s_je; /* journal entry to compress */
void *s_compressed_je; /* block to write to journal */
u32 s_journal_seg[LOGFS_JOURNAL_SEGS]; /* journal segments */
u32 s_journal_ec[LOGFS_JOURNAL_SEGS]; /* journal erasecounts */
u64 s_last_version;
struct logfs_area *s_journal_area; /* open journal segment */
__be64 s_je_array[MAX_JOURNAL_ENTRIES];
int s_no_je;
int s_sum_index; /* for the 12 summaries */
struct shadow_tree s_shadow_tree;
int s_je_fill; /* index of current je */
/* readwrite.c fields */
struct mutex s_write_mutex;
int s_lock_count;
mempool_t *s_block_pool; /* struct logfs_block pool */
mempool_t *s_shadow_pool; /* struct logfs_shadow pool */
struct list_head s_writeback_list; /* writeback pages */
* Space accounting:
* - s_used_bytes specifies space used to store valid data objects.
* - s_dirty_used_bytes is space used to store non-committed data
* objects. Those objects have already been written themselves,
* but they don't become valid until all indirect blocks up to the
* journal have been written as well.
* - s_dirty_free_bytes is space used to store the old copy of a
* replaced object, as long as the replacement is non-committed.
* In other words, it is the amount of space freed when all dirty
* blocks are written back.
* - s_free_bytes is the amount of free space available for any
* purpose.
* - s_root_reserve is the amount of free space available only to
* the root user. Non-privileged users can no longer write once
* this watermark has been reached.
* - s_speed_reserve is space which remains unused to speed up
* garbage collection performance.
* - s_dirty_pages is the space reserved for currently dirty pages.
* It is a pessimistic estimate, so some/most will get freed on
* page writeback.
* s_used_bytes + s_free_bytes + s_speed_reserve = total usable size
u64 s_free_bytes;
u64 s_used_bytes;
u64 s_dirty_free_bytes;
u64 s_dirty_used_bytes;
u64 s_root_reserve;
u64 s_speed_reserve;
u64 s_dirty_pages;
/* Bad block handling:
* - s_bad_seg_reserve is a number of segments usually kept
* free. When encountering bad blocks, the affected segment's data
* is _temporarily_ moved to a reserved segment.
* - s_bad_segments is the number of known bad segments.
u32 s_bad_seg_reserve;
u32 s_bad_segments;
* struct logfs_inode - in-memory inode
* @vfs_inode: struct inode
* @li_data: data pointers
* @li_used_bytes: number of used bytes
* @li_freeing_list: used to track inodes currently being freed
* @li_flags: inode flags
* @li_refcount: number of internal (GC-induced) references
struct logfs_inode {
struct inode vfs_inode;
u64 li_used_bytes;
struct list_head li_freeing_list;
struct logfs_block *li_block;
u32 li_flags;
u8 li_height;
int li_refcount;
#define journal_for_each(__i) for (__i = 0; __i < LOGFS_JOURNAL_SEGS; __i++)
#define for_each_area(__i) for (__i = 0; __i < LOGFS_NO_AREAS; __i++)
#define for_each_area_down(__i) for (__i = LOGFS_NO_AREAS - 1; __i >= 0; __i--)
/* compr.c */
int logfs_compress(void *in, void *out, size_t inlen, size_t outlen);
int logfs_uncompress(void *in, void *out, size_t inlen, size_t outlen);
int __init logfs_compr_init(void);
void logfs_compr_exit(void);
/* dev_bdev.c */
int logfs_get_sb_bdev(struct logfs_super *s,
struct file_system_type *type,
const char *devname);
static inline int logfs_get_sb_bdev(struct logfs_super *s,
struct file_system_type *type,
const char *devname)
return -ENODEV;
/* dev_mtd.c */
int logfs_get_sb_mtd(struct logfs_super *s, int mtdnr);
static inline int logfs_get_sb_mtd(struct logfs_super *s, int mtdnr)
return -ENODEV;
/* dir.c */
extern const struct inode_operations logfs_symlink_iops;
extern const struct inode_operations logfs_dir_iops;
extern const struct file_operations logfs_dir_fops;
int logfs_replay_journal(struct super_block *sb);
/* file.c */
extern const struct inode_operations logfs_reg_iops;
extern const struct file_operations logfs_reg_fops;
extern const struct address_space_operations logfs_reg_aops;
int logfs_readpage(struct file *file, struct page *page);
long logfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
int logfs_fsync(struct file *file, loff_t start, loff_t end, int datasync);
/* gc.c */
u32 get_best_cand(struct super_block *sb, struct candidate_list *list, u32 *ec);
void logfs_gc_pass(struct super_block *sb);
int logfs_check_areas(struct super_block *sb);
int logfs_init_gc(struct super_block *sb);
void logfs_cleanup_gc(struct super_block *sb);
/* inode.c */
extern const struct super_operations logfs_super_operations;
struct inode *logfs_iget(struct super_block *sb, ino_t ino);
struct inode *logfs_safe_iget(struct super_block *sb, ino_t ino, int *cookie);
void logfs_safe_iput(struct inode *inode, int cookie);
struct inode *logfs_new_inode(struct inode *dir, umode_t mode);
struct inode *logfs_new_meta_inode(struct super_block *sb, u64 ino);
struct inode *logfs_read_meta_inode(struct super_block *sb, u64 ino);
int logfs_init_inode_cache(void);
void logfs_destroy_inode_cache(void);
void logfs_set_blocks(struct inode *inode, u64 no);
/* these logically belong into inode.c but actually reside in readwrite.c */
int logfs_read_inode(struct inode *inode);
int __logfs_write_inode(struct inode *inode, long flags);
void logfs_evict_inode(struct inode *inode);
/* journal.c */
void logfs_write_anchor(struct super_block *sb);
int logfs_init_journal(struct super_block *sb);
void logfs_cleanup_journal(struct super_block *sb);
int write_alias_journal(struct super_block *sb, u64 ino, u64 bix,
level_t level, int child_no, __be64 val);
void do_logfs_journal_wl_pass(struct super_block *sb);
/* readwrite.c */
pgoff_t logfs_pack_index(u64 bix, level_t level);
void logfs_unpack_index(pgoff_t index, u64 *bix, level_t *level);
int logfs_inode_write(struct inode *inode, const void *buf, size_t count,
loff_t bix, long flags, struct shadow_tree *shadow_tree);
int logfs_readpage_nolock(struct page *page);
int logfs_write_buf(struct inode *inode, struct page *page, long flags);
int logfs_delete(struct inode *inode, pgoff_t index,
struct shadow_tree *shadow_tree);
int logfs_rewrite_block(struct inode *inode, u64 bix, u64 ofs,
gc_level_t gc_level, long flags);
int logfs_is_valid_block(struct super_block *sb, u64 ofs, u64 ino, u64 bix,
gc_level_t gc_level);
int logfs_truncate(struct inode *inode, u64 size);
u64 logfs_seek_hole(struct inode *inode, u64 bix);
u64 logfs_seek_data(struct inode *inode, u64 bix);
int logfs_open_segfile(struct super_block *sb);
int logfs_init_rw(struct super_block *sb);
void logfs_cleanup_rw(struct super_block *sb);
void logfs_add_transaction(struct inode *inode, struct logfs_transaction *ta);
void logfs_del_transaction(struct inode *inode, struct logfs_transaction *ta);
void logfs_write_block(struct logfs_block *block, long flags);
int logfs_write_obj_aliases_pagecache(struct super_block *sb);
void logfs_get_segment_entry(struct super_block *sb, u32 segno,
struct logfs_segment_entry *se);
void logfs_set_segment_used(struct super_block *sb, u64 ofs, int increment);
void logfs_set_segment_erased(struct super_block *sb, u32 segno, u32 ec,
gc_level_t gc_level);
void logfs_set_segment_reserved(struct super_block *sb, u32 segno);
void logfs_set_segment_unreserved(struct super_block *sb, u32 segno, u32 ec);
struct logfs_block *__alloc_block(struct super_block *sb,
u64 ino, u64 bix, level_t level);
void __free_block(struct super_block *sb, struct logfs_block *block);
void btree_write_block(struct logfs_block *block);
void initialize_block_counters(struct page *page, struct logfs_block *block,
__be64 *array, int page_is_empty);
int logfs_exist_block(struct inode *inode, u64 bix);
int get_page_reserve(struct inode *inode, struct page *page);
extern struct logfs_block_ops indirect_block_ops;
/* segment.c */
int logfs_erase_segment(struct super_block *sb, u32 ofs, int ensure_erase);
int wbuf_read(struct super_block *sb, u64 ofs, size_t len, void *buf);
int logfs_segment_read(struct inode *inode, struct page *page, u64 ofs, u64 bix,
level_t level);
int logfs_segment_write(struct inode *inode, struct page *page,
struct logfs_shadow *shadow);
int logfs_segment_delete(struct inode *inode, struct logfs_shadow *shadow);
int logfs_load_object_aliases(struct super_block *sb,
struct logfs_obj_alias *oa, int count);
void move_page_to_btree(struct page *page);
int logfs_init_mapping(struct super_block *sb);
void logfs_sync_area(struct logfs_area *area);
void logfs_sync_segments(struct super_block *sb);
void freeseg(struct super_block *sb, u32 segno);
/* area handling */
int logfs_init_areas(struct super_block *sb);
void logfs_cleanup_areas(struct super_block *sb);
int logfs_open_area(struct logfs_area *area, size_t bytes);
int __logfs_buf_write(struct logfs_area *area, u64 ofs, void *buf, size_t len,
int use_filler);
static inline int logfs_buf_write(struct logfs_area *area, u64 ofs,
void *buf, size_t len)
return __logfs_buf_write(area, ofs, buf, len, 0);
static inline int logfs_buf_recover(struct logfs_area *area, u64 ofs,
void *buf, size_t len)
return __logfs_buf_write(area, ofs, buf, len, 1);
/* super.c */
struct page *emergency_read_begin(struct address_space *mapping, pgoff_t index);
void emergency_read_end(struct page *page);
void logfs_crash_dump(struct super_block *sb);
int logfs_statfs(struct dentry *dentry, struct kstatfs *stats);
int logfs_check_ds(struct logfs_disk_super *ds);
int logfs_write_sb(struct super_block *sb);
static inline struct logfs_super *logfs_super(struct super_block *sb)
return sb->s_fs_info;
static inline struct logfs_inode *logfs_inode(struct inode *inode)
return container_of(inode, struct logfs_inode, vfs_inode);
static inline void logfs_set_ro(struct super_block *sb)
logfs_super(sb)->s_flags |= LOGFS_SB_FLAG_RO;
#define LOGFS_BUG(sb) do { \
struct super_block *__sb = sb; \
logfs_crash_dump(__sb); \
logfs_super(__sb)->s_flags |= LOGFS_SB_FLAG_RO; \
BUG(); \
} while (0)
#define LOGFS_BUG_ON(condition, sb) \
do { if (unlikely(condition)) LOGFS_BUG((sb)); } while (0)
static inline __be32 logfs_crc32(void *data, size_t len, size_t skip)
return cpu_to_be32(crc32(~0, data+skip, len-skip));
static inline u8 logfs_type(struct inode *inode)
return (inode->i_mode >> 12) & 15;
static inline pgoff_t logfs_index(struct super_block *sb, u64 pos)
return pos >> sb->s_blocksize_bits;
static inline u64 dev_ofs(struct super_block *sb, u32 segno, u32 ofs)
return ((u64)segno << logfs_super(sb)->s_segshift) + ofs;
static inline u32 seg_no(struct super_block *sb, u64 ofs)
return ofs >> logfs_super(sb)->s_segshift;
static inline u32 seg_ofs(struct super_block *sb, u64 ofs)
return ofs & logfs_super(sb)->s_segmask;
static inline u64 seg_align(struct super_block *sb, u64 ofs)
return ofs & ~logfs_super(sb)->s_segmask;
static inline struct logfs_block *logfs_block(struct page *page)
return (void *)page->private;
static inline level_t shrink_level(gc_level_t __level)
u8 level = (__force u8)__level;
if (level >= LOGFS_MAX_LEVELS)
return (__force level_t)level;
static inline gc_level_t expand_level(u64 ino, level_t __level)
u8 level = (__force u8)__level;
if (ino == LOGFS_INO_MASTER) {
/* ifile has separate areas */
return (__force gc_level_t)level;
static inline int logfs_block_shift(struct super_block *sb, level_t level)
level = shrink_level((__force gc_level_t)level);
return (__force int)level * (sb->s_blocksize_bits - 3);
static inline u64 logfs_block_mask(struct super_block *sb, level_t level)
return ~0ull << logfs_block_shift(sb, level);
static inline struct logfs_area *get_area(struct super_block *sb,
gc_level_t gc_level)
return logfs_super(sb)->s_area[(__force u8)gc_level];
static inline void logfs_mempool_destroy(mempool_t *pool)
if (pool)