blob: 2b332bb55acf75b4cce5bafb9dc5110538e47428 [file] [log] [blame]
/*
* Copyright (C) 2007 Ben Skeggs.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial
* portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "drmP.h"
#include "drm.h"
#include "nouveau_drv.h"
#include "nouveau_grctx.h"
struct nouveau_channel *
nv40_graph_channel(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
uint32_t inst;
int i;
inst = nv_rd32(dev, NV40_PGRAPH_CTXCTL_CUR);
if (!(inst & NV40_PGRAPH_CTXCTL_CUR_LOADED))
return NULL;
inst = (inst & NV40_PGRAPH_CTXCTL_CUR_INSTANCE) << 4;
for (i = 0; i < dev_priv->engine.fifo.channels; i++) {
struct nouveau_channel *chan = dev_priv->fifos[i];
if (chan && chan->ramin_grctx &&
chan->ramin_grctx->instance == inst)
return chan;
}
return NULL;
}
int
nv40_graph_create_context(struct nouveau_channel *chan)
{
struct drm_device *dev = chan->dev;
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_pgraph_engine *pgraph = &dev_priv->engine.graph;
int ret;
ret = nouveau_gpuobj_new_ref(dev, chan, NULL, 0, pgraph->grctx_size,
16, NVOBJ_FLAG_ZERO_ALLOC,
&chan->ramin_grctx);
if (ret)
return ret;
/* Initialise default context values */
dev_priv->engine.instmem.prepare_access(dev, true);
if (!pgraph->ctxprog) {
struct nouveau_grctx ctx = {};
ctx.dev = chan->dev;
ctx.mode = NOUVEAU_GRCTX_VALS;
ctx.data = chan->ramin_grctx->gpuobj;
nv40_grctx_init(&ctx);
} else {
nouveau_grctx_vals_load(dev, chan->ramin_grctx->gpuobj);
}
nv_wo32(dev, chan->ramin_grctx->gpuobj, 0,
chan->ramin_grctx->gpuobj->im_pramin->start);
dev_priv->engine.instmem.finish_access(dev);
return 0;
}
void
nv40_graph_destroy_context(struct nouveau_channel *chan)
{
nouveau_gpuobj_ref_del(chan->dev, &chan->ramin_grctx);
}
static int
nv40_graph_transfer_context(struct drm_device *dev, uint32_t inst, int save)
{
uint32_t old_cp, tv = 1000, tmp;
int i;
old_cp = nv_rd32(dev, NV20_PGRAPH_CHANNEL_CTX_POINTER);
nv_wr32(dev, NV20_PGRAPH_CHANNEL_CTX_POINTER, inst);
tmp = nv_rd32(dev, NV40_PGRAPH_CTXCTL_0310);
tmp |= save ? NV40_PGRAPH_CTXCTL_0310_XFER_SAVE :
NV40_PGRAPH_CTXCTL_0310_XFER_LOAD;
nv_wr32(dev, NV40_PGRAPH_CTXCTL_0310, tmp);
tmp = nv_rd32(dev, NV40_PGRAPH_CTXCTL_0304);
tmp |= NV40_PGRAPH_CTXCTL_0304_XFER_CTX;
nv_wr32(dev, NV40_PGRAPH_CTXCTL_0304, tmp);
nouveau_wait_for_idle(dev);
for (i = 0; i < tv; i++) {
if (nv_rd32(dev, NV40_PGRAPH_CTXCTL_030C) == 0)
break;
}
nv_wr32(dev, NV20_PGRAPH_CHANNEL_CTX_POINTER, old_cp);
if (i == tv) {
uint32_t ucstat = nv_rd32(dev, NV40_PGRAPH_CTXCTL_UCODE_STAT);
NV_ERROR(dev, "Failed: Instance=0x%08x Save=%d\n", inst, save);
NV_ERROR(dev, "IP: 0x%02x, Opcode: 0x%08x\n",
ucstat >> NV40_PGRAPH_CTXCTL_UCODE_STAT_IP_SHIFT,
ucstat & NV40_PGRAPH_CTXCTL_UCODE_STAT_OP_MASK);
NV_ERROR(dev, "0x40030C = 0x%08x\n",
nv_rd32(dev, NV40_PGRAPH_CTXCTL_030C));
return -EBUSY;
}
return 0;
}
/* Restore the context for a specific channel into PGRAPH */
int
nv40_graph_load_context(struct nouveau_channel *chan)
{
struct drm_device *dev = chan->dev;
uint32_t inst;
int ret;
if (!chan->ramin_grctx)
return -EINVAL;
inst = chan->ramin_grctx->instance >> 4;
ret = nv40_graph_transfer_context(dev, inst, 0);
if (ret)
return ret;
/* 0x40032C, no idea of it's exact function. Could simply be a
* record of the currently active PGRAPH context. It's currently
* unknown as to what bit 24 does. The nv ddx has it set, so we will
* set it here too.
*/
nv_wr32(dev, NV20_PGRAPH_CHANNEL_CTX_POINTER, inst);
nv_wr32(dev, NV40_PGRAPH_CTXCTL_CUR,
(inst & NV40_PGRAPH_CTXCTL_CUR_INSTANCE) |
NV40_PGRAPH_CTXCTL_CUR_LOADED);
/* 0x32E0 records the instance address of the active FIFO's PGRAPH
* context. If at any time this doesn't match 0x40032C, you will
* recieve PGRAPH_INTR_CONTEXT_SWITCH
*/
nv_wr32(dev, NV40_PFIFO_GRCTX_INSTANCE, inst);
return 0;
}
int
nv40_graph_unload_context(struct drm_device *dev)
{
uint32_t inst;
int ret;
inst = nv_rd32(dev, NV40_PGRAPH_CTXCTL_CUR);
if (!(inst & NV40_PGRAPH_CTXCTL_CUR_LOADED))
return 0;
inst &= NV40_PGRAPH_CTXCTL_CUR_INSTANCE;
ret = nv40_graph_transfer_context(dev, inst, 1);
nv_wr32(dev, NV40_PGRAPH_CTXCTL_CUR, inst);
return ret;
}
/*
* G70 0x47
* G71 0x49
* NV45 0x48
* G72[M] 0x46
* G73 0x4b
* C51_G7X 0x4c
* C51 0x4e
*/
int
nv40_graph_init(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv =
(struct drm_nouveau_private *)dev->dev_private;
uint32_t vramsz, tmp;
int i, j;
nv_wr32(dev, NV03_PMC_ENABLE, nv_rd32(dev, NV03_PMC_ENABLE) &
~NV_PMC_ENABLE_PGRAPH);
nv_wr32(dev, NV03_PMC_ENABLE, nv_rd32(dev, NV03_PMC_ENABLE) |
NV_PMC_ENABLE_PGRAPH);
if (nouveau_ctxfw) {
nouveau_grctx_prog_load(dev);
dev_priv->engine.graph.grctx_size = 175 * 1024;
}
if (!dev_priv->engine.graph.ctxprog) {
struct nouveau_grctx ctx = {};
uint32_t cp[256];
ctx.dev = dev;
ctx.mode = NOUVEAU_GRCTX_PROG;
ctx.data = cp;
ctx.ctxprog_max = 256;
nv40_grctx_init(&ctx);
dev_priv->engine.graph.grctx_size = ctx.ctxvals_pos * 4;
nv_wr32(dev, NV40_PGRAPH_CTXCTL_UCODE_INDEX, 0);
for (i = 0; i < ctx.ctxprog_len; i++)
nv_wr32(dev, NV40_PGRAPH_CTXCTL_UCODE_DATA, cp[i]);
}
/* No context present currently */
nv_wr32(dev, NV40_PGRAPH_CTXCTL_CUR, 0x00000000);
nv_wr32(dev, NV03_PGRAPH_INTR , 0xFFFFFFFF);
nv_wr32(dev, NV40_PGRAPH_INTR_EN, 0xFFFFFFFF);
nv_wr32(dev, NV04_PGRAPH_DEBUG_0, 0xFFFFFFFF);
nv_wr32(dev, NV04_PGRAPH_DEBUG_0, 0x00000000);
nv_wr32(dev, NV04_PGRAPH_DEBUG_1, 0x401287c0);
nv_wr32(dev, NV04_PGRAPH_DEBUG_3, 0xe0de8055);
nv_wr32(dev, NV10_PGRAPH_DEBUG_4, 0x00008000);
nv_wr32(dev, NV04_PGRAPH_LIMIT_VIOL_PIX, 0x00be3c5f);
nv_wr32(dev, NV10_PGRAPH_CTX_CONTROL, 0x10010100);
nv_wr32(dev, NV10_PGRAPH_STATE , 0xFFFFFFFF);
j = nv_rd32(dev, 0x1540) & 0xff;
if (j) {
for (i = 0; !(j & 1); j >>= 1, i++)
;
nv_wr32(dev, 0x405000, i);
}
if (dev_priv->chipset == 0x40) {
nv_wr32(dev, 0x4009b0, 0x83280fff);
nv_wr32(dev, 0x4009b4, 0x000000a0);
} else {
nv_wr32(dev, 0x400820, 0x83280eff);
nv_wr32(dev, 0x400824, 0x000000a0);
}
switch (dev_priv->chipset) {
case 0x40:
case 0x45:
nv_wr32(dev, 0x4009b8, 0x0078e366);
nv_wr32(dev, 0x4009bc, 0x0000014c);
break;
case 0x41:
case 0x42: /* pciid also 0x00Cx */
/* case 0x0120: XXX (pciid) */
nv_wr32(dev, 0x400828, 0x007596ff);
nv_wr32(dev, 0x40082c, 0x00000108);
break;
case 0x43:
nv_wr32(dev, 0x400828, 0x0072cb77);
nv_wr32(dev, 0x40082c, 0x00000108);
break;
case 0x44:
case 0x46: /* G72 */
case 0x4a:
case 0x4c: /* G7x-based C51 */
case 0x4e:
nv_wr32(dev, 0x400860, 0);
nv_wr32(dev, 0x400864, 0);
break;
case 0x47: /* G70 */
case 0x49: /* G71 */
case 0x4b: /* G73 */
nv_wr32(dev, 0x400828, 0x07830610);
nv_wr32(dev, 0x40082c, 0x0000016A);
break;
default:
break;
}
nv_wr32(dev, 0x400b38, 0x2ffff800);
nv_wr32(dev, 0x400b3c, 0x00006000);
/* copy tile info from PFB */
switch (dev_priv->chipset) {
case 0x40: /* vanilla NV40 */
for (i = 0; i < NV10_PFB_TILE__SIZE; i++) {
tmp = nv_rd32(dev, NV10_PFB_TILE(i));
nv_wr32(dev, NV40_PGRAPH_TILE0(i), tmp);
nv_wr32(dev, NV40_PGRAPH_TILE1(i), tmp);
tmp = nv_rd32(dev, NV10_PFB_TLIMIT(i));
nv_wr32(dev, NV40_PGRAPH_TLIMIT0(i), tmp);
nv_wr32(dev, NV40_PGRAPH_TLIMIT1(i), tmp);
tmp = nv_rd32(dev, NV10_PFB_TSIZE(i));
nv_wr32(dev, NV40_PGRAPH_TSIZE0(i), tmp);
nv_wr32(dev, NV40_PGRAPH_TSIZE1(i), tmp);
tmp = nv_rd32(dev, NV10_PFB_TSTATUS(i));
nv_wr32(dev, NV40_PGRAPH_TSTATUS0(i), tmp);
nv_wr32(dev, NV40_PGRAPH_TSTATUS1(i), tmp);
}
break;
case 0x44:
case 0x4a:
case 0x4e: /* NV44-based cores don't have 0x406900? */
for (i = 0; i < NV40_PFB_TILE__SIZE_0; i++) {
tmp = nv_rd32(dev, NV40_PFB_TILE(i));
nv_wr32(dev, NV40_PGRAPH_TILE0(i), tmp);
tmp = nv_rd32(dev, NV40_PFB_TLIMIT(i));
nv_wr32(dev, NV40_PGRAPH_TLIMIT0(i), tmp);
tmp = nv_rd32(dev, NV40_PFB_TSIZE(i));
nv_wr32(dev, NV40_PGRAPH_TSIZE0(i), tmp);
tmp = nv_rd32(dev, NV40_PFB_TSTATUS(i));
nv_wr32(dev, NV40_PGRAPH_TSTATUS0(i), tmp);
}
break;
case 0x46:
case 0x47:
case 0x49:
case 0x4b: /* G7X-based cores */
for (i = 0; i < NV40_PFB_TILE__SIZE_1; i++) {
tmp = nv_rd32(dev, NV40_PFB_TILE(i));
nv_wr32(dev, NV47_PGRAPH_TILE0(i), tmp);
nv_wr32(dev, NV40_PGRAPH_TILE1(i), tmp);
tmp = nv_rd32(dev, NV40_PFB_TLIMIT(i));
nv_wr32(dev, NV47_PGRAPH_TLIMIT0(i), tmp);
nv_wr32(dev, NV40_PGRAPH_TLIMIT1(i), tmp);
tmp = nv_rd32(dev, NV40_PFB_TSIZE(i));
nv_wr32(dev, NV47_PGRAPH_TSIZE0(i), tmp);
nv_wr32(dev, NV40_PGRAPH_TSIZE1(i), tmp);
tmp = nv_rd32(dev, NV40_PFB_TSTATUS(i));
nv_wr32(dev, NV47_PGRAPH_TSTATUS0(i), tmp);
nv_wr32(dev, NV40_PGRAPH_TSTATUS1(i), tmp);
}
break;
default: /* everything else */
for (i = 0; i < NV40_PFB_TILE__SIZE_0; i++) {
tmp = nv_rd32(dev, NV40_PFB_TILE(i));
nv_wr32(dev, NV40_PGRAPH_TILE0(i), tmp);
nv_wr32(dev, NV40_PGRAPH_TILE1(i), tmp);
tmp = nv_rd32(dev, NV40_PFB_TLIMIT(i));
nv_wr32(dev, NV40_PGRAPH_TLIMIT0(i), tmp);
nv_wr32(dev, NV40_PGRAPH_TLIMIT1(i), tmp);
tmp = nv_rd32(dev, NV40_PFB_TSIZE(i));
nv_wr32(dev, NV40_PGRAPH_TSIZE0(i), tmp);
nv_wr32(dev, NV40_PGRAPH_TSIZE1(i), tmp);
tmp = nv_rd32(dev, NV40_PFB_TSTATUS(i));
nv_wr32(dev, NV40_PGRAPH_TSTATUS0(i), tmp);
nv_wr32(dev, NV40_PGRAPH_TSTATUS1(i), tmp);
}
break;
}
/* begin RAM config */
vramsz = drm_get_resource_len(dev, 0) - 1;
switch (dev_priv->chipset) {
case 0x40:
nv_wr32(dev, 0x4009A4, nv_rd32(dev, NV04_PFB_CFG0));
nv_wr32(dev, 0x4009A8, nv_rd32(dev, NV04_PFB_CFG1));
nv_wr32(dev, 0x4069A4, nv_rd32(dev, NV04_PFB_CFG0));
nv_wr32(dev, 0x4069A8, nv_rd32(dev, NV04_PFB_CFG1));
nv_wr32(dev, 0x400820, 0);
nv_wr32(dev, 0x400824, 0);
nv_wr32(dev, 0x400864, vramsz);
nv_wr32(dev, 0x400868, vramsz);
break;
default:
switch (dev_priv->chipset) {
case 0x46:
case 0x47:
case 0x49:
case 0x4b:
nv_wr32(dev, 0x400DF0, nv_rd32(dev, NV04_PFB_CFG0));
nv_wr32(dev, 0x400DF4, nv_rd32(dev, NV04_PFB_CFG1));
break;
default:
nv_wr32(dev, 0x4009F0, nv_rd32(dev, NV04_PFB_CFG0));
nv_wr32(dev, 0x4009F4, nv_rd32(dev, NV04_PFB_CFG1));
break;
}
nv_wr32(dev, 0x4069F0, nv_rd32(dev, NV04_PFB_CFG0));
nv_wr32(dev, 0x4069F4, nv_rd32(dev, NV04_PFB_CFG1));
nv_wr32(dev, 0x400840, 0);
nv_wr32(dev, 0x400844, 0);
nv_wr32(dev, 0x4008A0, vramsz);
nv_wr32(dev, 0x4008A4, vramsz);
break;
}
return 0;
}
void nv40_graph_takedown(struct drm_device *dev)
{
nouveau_grctx_fini(dev);
}
struct nouveau_pgraph_object_class nv40_graph_grclass[] = {
{ 0x0030, false, NULL }, /* null */
{ 0x0039, false, NULL }, /* m2mf */
{ 0x004a, false, NULL }, /* gdirect */
{ 0x009f, false, NULL }, /* imageblit (nv12) */
{ 0x008a, false, NULL }, /* ifc */
{ 0x0089, false, NULL }, /* sifm */
{ 0x3089, false, NULL }, /* sifm (nv40) */
{ 0x0062, false, NULL }, /* surf2d */
{ 0x3062, false, NULL }, /* surf2d (nv40) */
{ 0x0043, false, NULL }, /* rop */
{ 0x0012, false, NULL }, /* beta1 */
{ 0x0072, false, NULL }, /* beta4 */
{ 0x0019, false, NULL }, /* cliprect */
{ 0x0044, false, NULL }, /* pattern */
{ 0x309e, false, NULL }, /* swzsurf */
{ 0x4097, false, NULL }, /* curie (nv40) */
{ 0x4497, false, NULL }, /* curie (nv44) */
{}
};