blob: fa683efd00a30937e09316bdbcc58f6565773ff1 [file] [log] [blame]
/*
* ISA Plug & Play support
* Copyright (c) by Jaroslav Kysela <perex@suse.cz>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Changelog:
* 2000-01-01 Added quirks handling for buggy hardware
* Peter Denison <peterd@pnd-pc.demon.co.uk>
* 2000-06-14 Added isapnp_probe_devs() and isapnp_activate_dev()
* Christoph Hellwig <hch@infradead.org>
* 2001-06-03 Added release_region calls to correspond with
* request_region calls when a failure occurs. Also
* added KERN_* constants to printk() calls.
* 2001-11-07 Added isapnp_{,un}register_driver calls along the lines
* of the pci driver interface
* Kai Germaschewski <kai.germaschewski@gmx.de>
* 2002-06-06 Made the use of dma channel 0 configurable
* Gerald Teschl <gerald.teschl@univie.ac.at>
* 2002-10-06 Ported to PnP Layer - Adam Belay <ambx1@neo.rr.com>
*/
#include <linux/config.h>
#include <linux/version.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/isapnp.h>
#include <asm/io.h>
#if 0
#define ISAPNP_REGION_OK
#endif
#if 0
#define ISAPNP_DEBUG
#endif
int isapnp_disable; /* Disable ISA PnP */
int isapnp_rdp; /* Read Data Port */
int isapnp_reset = 1; /* reset all PnP cards (deactivate) */
int isapnp_skip_pci_scan; /* skip PCI resource scanning */
int isapnp_verbose = 1; /* verbose mode */
MODULE_AUTHOR("Jaroslav Kysela <perex@suse.cz>");
MODULE_DESCRIPTION("Generic ISA Plug & Play support");
MODULE_PARM(isapnp_disable, "i");
MODULE_PARM_DESC(isapnp_disable, "ISA Plug & Play disable");
MODULE_PARM(isapnp_rdp, "i");
MODULE_PARM_DESC(isapnp_rdp, "ISA Plug & Play read data port");
MODULE_PARM(isapnp_reset, "i");
MODULE_PARM_DESC(isapnp_reset, "ISA Plug & Play reset all cards");
MODULE_PARM(isapnp_allow_dma0, "i");
MODULE_PARM(isapnp_skip_pci_scan, "i");
MODULE_PARM_DESC(isapnp_skip_pci_scan, "ISA Plug & Play skip PCI resource scanning");
MODULE_PARM(isapnp_verbose, "i");
MODULE_PARM_DESC(isapnp_verbose, "ISA Plug & Play verbose mode");
MODULE_LICENSE("GPL");
#define _PIDXR 0x279
#define _PNPWRP 0xa79
/* short tags */
#define _STAG_PNPVERNO 0x01
#define _STAG_LOGDEVID 0x02
#define _STAG_COMPATDEVID 0x03
#define _STAG_IRQ 0x04
#define _STAG_DMA 0x05
#define _STAG_STARTDEP 0x06
#define _STAG_ENDDEP 0x07
#define _STAG_IOPORT 0x08
#define _STAG_FIXEDIO 0x09
#define _STAG_VENDOR 0x0e
#define _STAG_END 0x0f
/* long tags */
#define _LTAG_MEMRANGE 0x81
#define _LTAG_ANSISTR 0x82
#define _LTAG_UNICODESTR 0x83
#define _LTAG_VENDOR 0x84
#define _LTAG_MEM32RANGE 0x85
#define _LTAG_FIXEDMEM32RANGE 0x86
static unsigned char isapnp_checksum_value;
static DECLARE_MUTEX(isapnp_cfg_mutex);
static int isapnp_detected;
/* some prototypes */
static int isapnp_config_prepare(struct pnp_dev *dev);
extern struct pnp_protocol isapnp_card_protocol;
extern struct pnp_protocol isapnp_protocol;
static inline void write_data(unsigned char x)
{
outb(x, _PNPWRP);
}
static inline void write_address(unsigned char x)
{
outb(x, _PIDXR);
udelay(20);
}
static inline unsigned char read_data(void)
{
unsigned char val = inb(isapnp_rdp);
return val;
}
unsigned char isapnp_read_byte(unsigned char idx)
{
write_address(idx);
return read_data();
}
unsigned short isapnp_read_word(unsigned char idx)
{
unsigned short val;
val = isapnp_read_byte(idx);
val = (val << 8) + isapnp_read_byte(idx+1);
return val;
}
unsigned int isapnp_read_dword(unsigned char idx)
{
unsigned int val;
val = isapnp_read_byte(idx);
val = (val << 8) + isapnp_read_byte(idx+1);
val = (val << 8) + isapnp_read_byte(idx+2);
val = (val << 8) + isapnp_read_byte(idx+3);
return val;
}
void isapnp_write_byte(unsigned char idx, unsigned char val)
{
write_address(idx);
write_data(val);
}
void isapnp_write_word(unsigned char idx, unsigned short val)
{
isapnp_write_byte(idx, val >> 8);
isapnp_write_byte(idx+1, val);
}
void isapnp_write_dword(unsigned char idx, unsigned int val)
{
isapnp_write_byte(idx, val >> 24);
isapnp_write_byte(idx+1, val >> 16);
isapnp_write_byte(idx+2, val >> 8);
isapnp_write_byte(idx+3, val);
}
void *isapnp_alloc(long size)
{
void *result;
result = kmalloc(size, GFP_KERNEL);
if (!result)
return NULL;
memset(result, 0, size);
return result;
}
static void isapnp_key(void)
{
unsigned char code = 0x6a, msb;
int i;
mdelay(1);
write_address(0x00);
write_address(0x00);
write_address(code);
for (i = 1; i < 32; i++) {
msb = ((code & 0x01) ^ ((code & 0x02) >> 1)) << 7;
code = (code >> 1) | msb;
write_address(code);
}
}
/* place all pnp cards in wait-for-key state */
static void isapnp_wait(void)
{
isapnp_write_byte(0x02, 0x02);
}
void isapnp_wake(unsigned char csn)
{
isapnp_write_byte(0x03, csn);
}
void isapnp_device(unsigned char logdev)
{
isapnp_write_byte(0x07, logdev);
}
void isapnp_activate(unsigned char logdev)
{
isapnp_device(logdev);
isapnp_write_byte(ISAPNP_CFG_ACTIVATE, 1);
udelay(250);
}
void isapnp_deactivate(unsigned char logdev)
{
isapnp_device(logdev);
isapnp_write_byte(ISAPNP_CFG_ACTIVATE, 0);
udelay(500);
}
static void __init isapnp_peek(unsigned char *data, int bytes)
{
int i, j;
unsigned char d=0;
for (i = 1; i <= bytes; i++) {
for (j = 0; j < 20; j++) {
d = isapnp_read_byte(0x05);
if (d & 1)
break;
udelay(100);
}
if (!(d & 1)) {
if (data != NULL)
*data++ = 0xff;
continue;
}
d = isapnp_read_byte(0x04); /* PRESDI */
isapnp_checksum_value += d;
if (data != NULL)
*data++ = d;
}
}
#define RDP_STEP 32 /* minimum is 4 */
static int isapnp_next_rdp(void)
{
int rdp = isapnp_rdp;
while (rdp <= 0x3ff) {
/*
* We cannot use NE2000 probe spaces for ISAPnP or we
* will lock up machines.
*/
if ((rdp < 0x280 || rdp > 0x380) && !check_region(rdp, 1))
{
isapnp_rdp = rdp;
return 0;
}
rdp += RDP_STEP;
}
return -1;
}
/* Set read port address */
static inline void isapnp_set_rdp(void)
{
isapnp_write_byte(0x00, isapnp_rdp >> 2);
udelay(100);
}
/*
* Perform an isolation. The port selection code now tries to avoid
* "dangerous to read" ports.
*/
static int __init isapnp_isolate_rdp_select(void)
{
isapnp_wait();
isapnp_key();
/* Control: reset CSN and conditionally everything else too */
isapnp_write_byte(0x02, isapnp_reset ? 0x05 : 0x04);
mdelay(2);
isapnp_wait();
isapnp_key();
isapnp_wake(0x00);
if (isapnp_next_rdp() < 0) {
isapnp_wait();
return -1;
}
isapnp_set_rdp();
udelay(1000);
write_address(0x01);
udelay(1000);
return 0;
}
/*
* Isolate (assign uniqued CSN) to all ISA PnP devices.
*/
static int __init isapnp_isolate(void)
{
unsigned char checksum = 0x6a;
unsigned char chksum = 0x00;
unsigned char bit = 0x00;
int data;
int csn = 0;
int i;
int iteration = 1;
isapnp_rdp = 0x213;
if (isapnp_isolate_rdp_select() < 0)
return -1;
while (1) {
for (i = 1; i <= 64; i++) {
data = read_data() << 8;
udelay(250);
data = data | read_data();
udelay(250);
if (data == 0x55aa)
bit = 0x01;
checksum = ((((checksum ^ (checksum >> 1)) & 0x01) ^ bit) << 7) | (checksum >> 1);
bit = 0x00;
}
for (i = 65; i <= 72; i++) {
data = read_data() << 8;
udelay(250);
data = data | read_data();
udelay(250);
if (data == 0x55aa)
chksum |= (1 << (i - 65));
}
if (checksum != 0x00 && checksum == chksum) {
csn++;
isapnp_write_byte(0x06, csn);
udelay(250);
iteration++;
isapnp_wake(0x00);
isapnp_set_rdp();
udelay(1000);
write_address(0x01);
udelay(1000);
goto __next;
}
if (iteration == 1) {
isapnp_rdp += RDP_STEP;
if (isapnp_isolate_rdp_select() < 0)
return -1;
} else if (iteration > 1) {
break;
}
__next:
checksum = 0x6a;
chksum = 0x00;
bit = 0x00;
}
isapnp_wait();
return csn;
}
/*
* Read one tag from stream.
*/
static int __init isapnp_read_tag(unsigned char *type, unsigned short *size)
{
unsigned char tag, tmp[2];
isapnp_peek(&tag, 1);
if (tag == 0) /* invalid tag */
return -1;
if (tag & 0x80) { /* large item */
*type = tag;
isapnp_peek(tmp, 2);
*size = (tmp[1] << 8) | tmp[0];
} else {
*type = (tag >> 3) & 0x0f;
*size = tag & 0x07;
}
#if 0
printk(KERN_DEBUG "tag = 0x%x, type = 0x%x, size = %i\n", tag, *type, *size);
#endif
if (type == 0) /* wrong type */
return -1;
if (*type == 0xff && *size == 0xffff) /* probably invalid data */
return -1;
return 0;
}
/*
* Skip specified number of bytes from stream.
*/
static void __init isapnp_skip_bytes(int count)
{
isapnp_peek(NULL, count);
}
/*
* Parse EISA id.
*/
static void isapnp_parse_id(struct pnp_dev * dev, unsigned short vendor, unsigned short device)
{
struct pnp_id * id = isapnp_alloc(sizeof(struct pnp_id));
if (!id)
return;
if (!dev)
return;
sprintf(id->id, "%c%c%c%x%x%x%x",
'A' + ((vendor >> 2) & 0x3f) - 1,
'A' + (((vendor & 3) << 3) | ((vendor >> 13) & 7)) - 1,
'A' + ((vendor >> 8) & 0x1f) - 1,
(device >> 4) & 0x0f,
device & 0x0f,
(device >> 12) & 0x0f,
(device >> 8) & 0x0f);
pnp_add_id(id, dev);
}
/*
* Parse logical device tag.
*/
static struct pnp_dev * __init isapnp_parse_device(struct pnp_card *card, int size, int number)
{
unsigned char tmp[6];
struct pnp_dev *dev;
isapnp_peek(tmp, size);
dev = isapnp_alloc(sizeof(struct pnp_dev));
if (!dev)
return NULL;
dev->number = number;
isapnp_parse_id(dev, (tmp[1] << 8) | tmp[0], (tmp[3] << 8) | tmp[2]);
dev->regs = tmp[4];
dev->card = card;
if (size > 5)
dev->regs |= tmp[5] << 8;
dev->protocol = &isapnp_protocol;
return dev;
}
/*
* Add IRQ resource to resources list.
*/
static void __init isapnp_add_irq_resource(struct pnp_dev *dev,
int depnum, int size)
{
unsigned char tmp[3];
struct pnp_irq *irq;
isapnp_peek(tmp, size);
irq = isapnp_alloc(sizeof(struct pnp_irq));
if (!irq)
return;
irq->map = (tmp[1] << 8) | tmp[0];
if (size > 2)
irq->flags = tmp[2];
else
irq->flags = IORESOURCE_IRQ_HIGHEDGE;
pnp_add_irq_resource(dev, depnum, irq);
return;
}
/*
* Add DMA resource to resources list.
*/
static void __init isapnp_add_dma_resource(struct pnp_dev *dev,
int depnum, int size)
{
unsigned char tmp[2];
struct pnp_dma *dma;
isapnp_peek(tmp, size);
dma = isapnp_alloc(sizeof(struct pnp_dma));
if (!dma)
return;
dma->map = tmp[0];
dma->flags = tmp[1];
pnp_add_dma_resource(dev, depnum, dma);
return;
}
/*
* Add port resource to resources list.
*/
static void __init isapnp_add_port_resource(struct pnp_dev *dev,
int depnum, int size)
{
unsigned char tmp[7];
struct pnp_port *port;
isapnp_peek(tmp, size);
port = isapnp_alloc(sizeof(struct pnp_port));
if (!port)
return;
port->min = (tmp[2] << 8) | tmp[1];
port->max = (tmp[4] << 8) | tmp[3];
port->align = tmp[5];
port->size = tmp[6];
port->flags = tmp[0] ? PNP_PORT_FLAG_16BITADDR : 0;
pnp_add_port_resource(dev,depnum,port);
return;
}
/*
* Add fixed port resource to resources list.
*/
static void __init isapnp_add_fixed_port_resource(struct pnp_dev *dev,
int depnum, int size)
{
unsigned char tmp[3];
struct pnp_port *port;
isapnp_peek(tmp, size);
port = isapnp_alloc(sizeof(struct pnp_port));
if (!port)
return;
port->min = port->max = (tmp[1] << 8) | tmp[0];
port->size = tmp[2];
port->align = 0;
port->flags = PNP_PORT_FLAG_FIXED;
pnp_add_port_resource(dev,depnum,port);
return;
}
/*
* Add memory resource to resources list.
*/
static void __init isapnp_add_mem_resource(struct pnp_dev *dev,
int depnum, int size)
{
unsigned char tmp[9];
struct pnp_mem *mem;
isapnp_peek(tmp, size);
mem = isapnp_alloc(sizeof(struct pnp_mem));
if (!mem)
return;
mem->min = ((tmp[2] << 8) | tmp[1]) << 8;
mem->max = ((tmp[4] << 8) | tmp[3]) << 8;
mem->align = (tmp[6] << 8) | tmp[5];
mem->size = ((tmp[8] << 8) | tmp[7]) << 8;
mem->flags = tmp[0];
pnp_add_mem_resource(dev,depnum,mem);
return;
}
/*
* Add 32-bit memory resource to resources list.
*/
static void __init isapnp_add_mem32_resource(struct pnp_dev *dev,
int depnum, int size)
{
unsigned char tmp[17];
struct pnp_mem32 *mem32;
isapnp_peek(tmp, size);
mem32 = isapnp_alloc(sizeof(struct pnp_mem32));
if (!mem32)
return;
memcpy(mem32->data, tmp, 17);
pnp_add_mem32_resource(dev,depnum,mem32);
}
/*
* Add 32-bit fixed memory resource to resources list.
*/
static void __init isapnp_add_fixed_mem32_resource(struct pnp_dev *dev,
int depnum, int size)
{
unsigned char tmp[17];
struct pnp_mem32 *mem32;
isapnp_peek(tmp, size);
mem32 = isapnp_alloc(sizeof(struct pnp_mem32));
if (!mem32)
return;
memcpy(mem32->data, tmp, 17);
pnp_add_mem32_resource(dev,depnum,mem32);
}
/*
* Parse card name for ISA PnP device.
*/
static void __init
isapnp_parse_name(char *name, unsigned int name_max, unsigned short *size)
{
if (name[0] == '\0') {
unsigned short size1 = *size >= name_max ? (name_max - 1) : *size;
isapnp_peek(name, size1);
name[size1] = '\0';
*size -= size1;
/* clean whitespace from end of string */
while (size1 > 0 && name[--size1] == ' ')
name[size1] = '\0';
}
}
/*
* Parse resource map for logical device.
*/
static int __init isapnp_create_device(struct pnp_card *card,
unsigned short size)
{
int number = 0, skip = 0, depnum = 0, dependent = 0, compat = 0;
unsigned char type, tmp[17];
struct pnp_dev *dev;
if ((dev = isapnp_parse_device(card, size, number++)) == NULL)
return 1;
if (pnp_build_resource(dev, 0) == NULL)
return 1;
pnpc_add_device(card,dev);
while (1) {
if (isapnp_read_tag(&type, &size)<0)
return 1;
if (skip && type != _STAG_LOGDEVID && type != _STAG_END)
goto __skip;
switch (type) {
case _STAG_LOGDEVID:
if (size >= 5 && size <= 6) {
isapnp_config_prepare(dev);
if ((dev = isapnp_parse_device(card, size, number++)) == NULL)
return 1;
pnp_build_resource(dev,0);
pnpc_add_device(card,dev);
size = 0;
skip = 0;
} else {
skip = 1;
}
dependent = 0;
depnum = 0;
compat = 0;
break;
case _STAG_COMPATDEVID:
if (size == 4 && compat < DEVICE_COUNT_COMPATIBLE) {
isapnp_peek(tmp, 4);
isapnp_parse_id(dev,(tmp[1] << 8) | tmp[0], (tmp[3] << 8) | tmp[2]);
compat++;
size = 0;
}
break;
case _STAG_IRQ:
if (size < 2 || size > 3)
goto __skip;
isapnp_add_irq_resource(dev, depnum, size);
size = 0;
break;
case _STAG_DMA:
if (size != 2)
goto __skip;
isapnp_add_dma_resource(dev, depnum, size);
size = 0;
break;
case _STAG_STARTDEP:
if (size > 1)
goto __skip;
dependent = 0x100 | PNP_RES_PRIORITY_ACCEPTABLE;
if (size > 0) {
isapnp_peek(tmp, size);
dependent = 0x100 | tmp[0];
size = 0;
}
pnp_build_resource(dev,dependent);
depnum = pnp_get_max_depnum(dev);
break;
case _STAG_ENDDEP:
if (size != 0)
goto __skip;
dependent = 0;
depnum = 0;
break;
case _STAG_IOPORT:
if (size != 7)
goto __skip;
isapnp_add_port_resource(dev, depnum, size);
size = 0;
break;
case _STAG_FIXEDIO:
if (size != 3)
goto __skip;
isapnp_add_fixed_port_resource(dev, depnum, size);
size = 0;
break;
case _STAG_VENDOR:
break;
case _LTAG_MEMRANGE:
if (size != 9)
goto __skip;
isapnp_add_mem_resource(dev, depnum, size);
size = 0;
break;
case _LTAG_ANSISTR:
isapnp_parse_name(dev->name, sizeof(dev->name), &size);
break;
case _LTAG_UNICODESTR:
/* silently ignore */
/* who use unicode for hardware identification? */
break;
case _LTAG_VENDOR:
break;
case _LTAG_MEM32RANGE:
if (size != 17)
goto __skip;
isapnp_add_mem32_resource(dev, depnum, size);
size = 0;
break;
case _LTAG_FIXEDMEM32RANGE:
if (size != 17)
goto __skip;
isapnp_add_fixed_mem32_resource(dev, depnum, size);
size = 0;
break;
case _STAG_END:
if (size > 0)
isapnp_skip_bytes(size);
isapnp_config_prepare(dev);
return 1;
default:
printk(KERN_ERR "isapnp: unexpected or unknown tag type 0x%x for logical device %i (device %i), ignored\n", type, dev->number, card->number);
}
__skip:
if (size > 0)
isapnp_skip_bytes(size);
}
isapnp_config_prepare(dev);
return 0;
}
/*
* Parse resource map for ISA PnP card.
*/
static void __init isapnp_parse_resource_map(struct pnp_card *card)
{
unsigned char type, tmp[17];
unsigned short size;
while (1) {
if (isapnp_read_tag(&type, &size)<0)
return;
switch (type) {
case _STAG_PNPVERNO:
if (size != 2)
goto __skip;
isapnp_peek(tmp, 2);
card->pnpver = tmp[0];
card->productver = tmp[1];
size = 0;
break;
case _STAG_LOGDEVID:
if (size >= 5 && size <= 6) {
if (isapnp_create_device(card, size)==1)
return;
size = 0;
}
break;
case _STAG_VENDOR:
break;
case _LTAG_ANSISTR:
isapnp_parse_name(card->name, sizeof(card->name), &size);
break;
case _LTAG_UNICODESTR:
/* silently ignore */
/* who use unicode for hardware identification? */
break;
case _LTAG_VENDOR:
break;
case _STAG_END:
if (size > 0)
isapnp_skip_bytes(size);
return;
default:
printk(KERN_ERR "isapnp: unexpected or unknown tag type 0x%x for device %i, ignored\n", type, card->number);
}
__skip:
if (size > 0)
isapnp_skip_bytes(size);
}
}
/*
* Compute ISA PnP checksum for first eight bytes.
*/
static unsigned char __init isapnp_checksum(unsigned char *data)
{
int i, j;
unsigned char checksum = 0x6a, bit, b;
for (i = 0; i < 8; i++) {
b = data[i];
for (j = 0; j < 8; j++) {
bit = 0;
if (b & (1 << j))
bit = 1;
checksum = ((((checksum ^ (checksum >> 1)) & 0x01) ^ bit) << 7) | (checksum >> 1);
}
}
return checksum;
}
/*
* Parse EISA id for ISA PnP card.
*/
static void isapnp_parse_card_id(struct pnp_card * card, unsigned short vendor, unsigned short device)
{
struct pnp_id * id = isapnp_alloc(sizeof(struct pnp_id));
if (!id)
return;
sprintf(id->id, "%c%c%c%x%x%x%x",
'A' + ((vendor >> 2) & 0x3f) - 1,
'A' + (((vendor & 3) << 3) | ((vendor >> 13) & 7)) - 1,
'A' + ((vendor >> 8) & 0x1f) - 1,
(device >> 4) & 0x0f,
device & 0x0f,
(device >> 12) & 0x0f,
(device >> 8) & 0x0f);
pnpc_add_id(id,card);
}
/*
* Build device list for all present ISA PnP devices.
*/
static int __init isapnp_build_device_list(void)
{
int csn;
unsigned char header[9], checksum;
struct pnp_card *card;
isapnp_wait();
isapnp_key();
for (csn = 1; csn <= 10; csn++) {
isapnp_wake(csn);
isapnp_peek(header, 9);
checksum = isapnp_checksum(header);
#if 0
printk(KERN_DEBUG "vendor: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
header[0], header[1], header[2], header[3],
header[4], header[5], header[6], header[7], header[8]);
printk(KERN_DEBUG "checksum = 0x%x\n", checksum);
#endif
/* Don't be strict on the checksum, here !
e.g. 'SCM SwapBox Plug and Play' has header[8]==0 (should be: b7)*/
if (header[8] == 0)
;
else if (checksum == 0x00 || checksum != header[8]) /* not valid CSN */
continue;
if ((card = isapnp_alloc(sizeof(struct pnp_card))) == NULL)
continue;
card->number = csn;
INIT_LIST_HEAD(&card->devices);
isapnp_parse_card_id(card, (header[1] << 8) | header[0], (header[3] << 8) | header[2]);
card->serial = (header[7] << 24) | (header[6] << 16) | (header[5] << 8) | header[4];
isapnp_checksum_value = 0x00;
isapnp_parse_resource_map(card);
if (isapnp_checksum_value != 0x00)
printk(KERN_ERR "isapnp: checksum for device %i is not valid (0x%x)\n", csn, isapnp_checksum_value);
card->checksum = isapnp_checksum_value;
card->protocol = &isapnp_card_protocol;
pnpc_add_card(card);
}
return 0;
}
/*
* Basic configuration routines.
*/
int isapnp_present(void)
{
struct pnp_card *card;
pnp_for_each_card(card) {
if (card->protocol == &isapnp_card_protocol)
return 1;
}
return 0;
}
int isapnp_cfg_begin(int csn, int logdev)
{
if (csn < 1 || csn > 10 || logdev > 10)
return -EINVAL;
MOD_INC_USE_COUNT;
down(&isapnp_cfg_mutex);
isapnp_wait();
isapnp_key();
isapnp_wake(csn);
#if 0
/* to avoid malfunction when the isapnptools package is used */
/* we must set RDP to our value again */
/* it is possible to set RDP only in the isolation phase */
/* Jens Thoms Toerring <Jens.Toerring@physik.fu-berlin.de> */
isapnp_write_byte(0x02, 0x04); /* clear CSN of card */
mdelay(2); /* is this necessary? */
isapnp_wake(csn); /* bring card into sleep state */
isapnp_wake(0); /* bring card into isolation state */
isapnp_set_rdp(); /* reset the RDP port */
udelay(1000); /* delay 1000us */
isapnp_write_byte(0x06, csn); /* reset CSN to previous value */
udelay(250); /* is this necessary? */
#endif
if (logdev >= 0)
isapnp_device(logdev);
return 0;
}
int isapnp_cfg_end(void)
{
isapnp_wait();
up(&isapnp_cfg_mutex);
MOD_DEC_USE_COUNT;
return 0;
}
static int isapnp_config_prepare(struct pnp_dev *dev)
{
int idx;
if (dev == NULL)
return -EINVAL;
if (dev->active || dev->lock_resources)
return -EBUSY;
for (idx = 0; idx < DEVICE_COUNT_IRQ; idx++) {
dev->irq_resource[idx].name = NULL;
dev->irq_resource[idx].start = -1;
dev->irq_resource[idx].end = -1;
dev->irq_resource[idx].flags = 0;
}
for (idx = 0; idx < DEVICE_COUNT_DMA; idx++) {
dev->dma_resource[idx].name = NULL;
dev->dma_resource[idx].start = -1;
dev->dma_resource[idx].end = -1;
dev->dma_resource[idx].flags = 0;
}
for (idx = 0; idx < DEVICE_COUNT_RESOURCE; idx++) {
dev->resource[idx].name = NULL;
dev->resource[idx].start = 0;
dev->resource[idx].end = 0;
dev->resource[idx].flags = 0;
}
return 0;
}
/*
* Inititialization.
*/
EXPORT_SYMBOL(isapnp_present);
EXPORT_SYMBOL(isapnp_cfg_begin);
EXPORT_SYMBOL(isapnp_cfg_end);
EXPORT_SYMBOL(isapnp_read_byte);
EXPORT_SYMBOL(isapnp_read_word);
EXPORT_SYMBOL(isapnp_read_dword);
EXPORT_SYMBOL(isapnp_write_byte);
EXPORT_SYMBOL(isapnp_write_word);
EXPORT_SYMBOL(isapnp_write_dword);
EXPORT_SYMBOL(isapnp_wake);
EXPORT_SYMBOL(isapnp_device);
static int isapnp_get_resources(struct pnp_dev *dev)
{
/* We don't need to do anything but this, the rest is taken care of */
if ((dev->resource[0].start == 0) &&
(dev->irq_resource[0].start == -1) &&
(dev->dma_resource[0].start == -1))
dev->active = 0;
else
dev->active = 1;
return 0;
}
static int isapnp_set_resources(struct pnp_dev *dev, struct pnp_cfg *cfg, char flags)
{
int tmp;
isapnp_cfg_begin(dev->card->number, dev->number);
dev->active = 1;
dev->irq_resource[0] = cfg->request.irq_resource[0];
dev->irq_resource[1] = cfg->request.irq_resource[1];
dev->dma_resource[0] = cfg->request.dma_resource[0];
dev->dma_resource[1] = cfg->request.dma_resource[1];
for (tmp = 0; tmp < 12; tmp++) {
dev->resource[tmp] = cfg->request.resource[tmp];
}
for (tmp = 0; tmp < 8 && dev->resource[tmp].flags; tmp++)
isapnp_write_word(ISAPNP_CFG_PORT+(tmp<<1), dev->resource[tmp].start);
for (tmp = 0; tmp < 2 && dev->irq_resource[tmp].flags; tmp++) {
int irq = dev->irq_resource[tmp].start;
if (irq == 2)
irq = 9;
isapnp_write_byte(ISAPNP_CFG_IRQ+(tmp<<1), irq);
}
for (tmp = 0; tmp < 2 && dev->dma_resource[tmp].flags; tmp++)
isapnp_write_byte(ISAPNP_CFG_DMA+tmp, dev->dma_resource[tmp].start);
for (tmp = 0; tmp < 4 && dev->resource[tmp+8].flags; tmp++)
isapnp_write_word(ISAPNP_CFG_MEM+(tmp<<2), (dev->resource[tmp + 8].start >> 8) & 0xffff);
isapnp_activate(dev->number);
isapnp_cfg_end();
return 0;
}
static int isapnp_disable_resources(struct pnp_dev *dev)
{
if (!dev || !dev->active)
return -EINVAL;
isapnp_cfg_begin(dev->card->number, dev->number);
isapnp_deactivate(dev->number);
dev->active = 0;
isapnp_cfg_end();
return 0;
}
struct pnp_protocol isapnp_card_protocol = {
.name = "ISA Plug and Play - card",
.get = NULL,
.set = NULL,
.disable = NULL,
};
struct pnp_protocol isapnp_protocol = {
.name = "ISA Plug and Play - device",
.get = isapnp_get_resources,
.set = isapnp_set_resources,
.disable = isapnp_disable_resources,
};
int __init isapnp_init(void)
{
int cards;
struct pnp_card *card;
struct pnp_dev *dev;
if (isapnp_disable) {
isapnp_detected = 0;
printk(KERN_INFO "isapnp: ISA Plug & Play support disabled\n");
return 0;
}
#ifdef ISAPNP_REGION_OK
if (!request_region(_PIDXR, 1, "isapnp index")) {
printk(KERN_ERR "isapnp: Index Register 0x%x already used\n", _PIDXR);
return -EBUSY;
}
#endif
if (!request_region(_PNPWRP, 1, "isapnp write")) {
printk(KERN_ERR "isapnp: Write Data Register 0x%x already used\n", _PNPWRP);
#ifdef ISAPNP_REGION_OK
release_region(_PIDXR, 1);
#endif
return -EBUSY;
}
if(pnp_register_protocol(&isapnp_card_protocol)<0)
return -EBUSY;
if(pnp_register_protocol(&isapnp_protocol)<0)
return -EBUSY;
/*
* Print a message. The existing ISAPnP code is hanging machines
* so let the user know where.
*/
printk(KERN_INFO "isapnp: Scanning for PnP cards...\n");
if (isapnp_rdp >= 0x203 && isapnp_rdp <= 0x3ff) {
isapnp_rdp |= 3;
if (!request_region(isapnp_rdp, 1, "isapnp read")) {
printk(KERN_ERR "isapnp: Read Data Register 0x%x already used\n", isapnp_rdp);
#ifdef ISAPNP_REGION_OK
release_region(_PIDXR, 1);
#endif
release_region(_PNPWRP, 1);
return -EBUSY;
}
isapnp_set_rdp();
}
isapnp_detected = 1;
if (isapnp_rdp < 0x203 || isapnp_rdp > 0x3ff) {
cards = isapnp_isolate();
if (cards < 0 ||
(isapnp_rdp < 0x203 || isapnp_rdp > 0x3ff)) {
#ifdef ISAPNP_REGION_OK
release_region(_PIDXR, 1);
#endif
release_region(_PNPWRP, 1);
isapnp_detected = 0;
printk(KERN_INFO "isapnp: No Plug & Play device found\n");
return 0;
}
request_region(isapnp_rdp, 1, "isapnp read");
}
isapnp_build_device_list();
cards = 0;
protocol_for_each_card(&isapnp_protocol,card) {
cards++;
if (isapnp_verbose) {
printk(KERN_INFO "isapnp: Card '%s'\n", card->name[0]?card->name:"Unknown");
if (isapnp_verbose < 2)
continue;
pnp_card_for_each_dev(card,dev) {
printk(KERN_INFO "isapnp: Device '%s'\n", dev->name[0]?dev->name:"Unknown");
}
}
}
if (cards) {
printk(KERN_INFO "isapnp: %i Plug & Play card%s detected total\n", cards, cards>1?"s":"");
} else {
printk(KERN_INFO "isapnp: No Plug & Play card found\n");
}
isapnp_proc_init();
return 0;
}
device_initcall(isapnp_init);
/* format is: noisapnp */
static int __init isapnp_setup_disable(char *str)
{
isapnp_disable = 1;
return 1;
}
__setup("noisapnp", isapnp_setup_disable);
/* format is: isapnp=rdp,reset,skip_pci_scan,verbose */
static int __init isapnp_setup_isapnp(char *str)
{
(void)((get_option(&str,&isapnp_rdp) == 2) &&
(get_option(&str,&isapnp_reset) == 2) &&
(get_option(&str,&isapnp_skip_pci_scan) == 2) &&
(get_option(&str,&isapnp_verbose) == 2));
return 1;
}
__setup("isapnp=", isapnp_setup_isapnp);