blob: cc835bc4b223121f1259e275e72b752fadeccf5f [file] [log] [blame]
/*
* Copyright (C) 2012 ARM Ltd.
* Author: Marc Zyngier <marc.zyngier@arm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <asm/kvm_emulate.h>
#include <asm/hardware/gic.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
/*
* How the whole thing works (courtesy of Christoffer Dall):
*
* - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
* something is pending
* - VGIC pending interrupts are stored on the vgic.irq_state vgic
* bitmap (this bitmap is updated by both user land ioctls and guest
* mmio ops) and indicate the 'wire' state.
* - Every time the bitmap changes, the irq_pending_on_cpu oracle is
* recalculated
* - To calculate the oracle, we need info for each cpu from
* compute_pending_for_cpu, which considers:
* - PPI: dist->irq_state & dist->irq_enable
* - SPI: dist->irq_state & dist->irq_enable & dist->irq_spi_target
* - irq_spi_target is a 'formatted' of the GICD_ICFGR registers,
* stored on each vcpu. We only keep one bit of information per
* interrupt, making sure that only one vcpu can accept the
* interrupt.
*
* The handling of level interrupts adds some extra complexity. We
* need to track when the interrupt has been EOIed, so we can sample
* the 'line' again. This is achieve as such:
*
* - When a level interrupt in moved onto a vcpu, the corresponding
* bit in irq_active is set. As long as this bit is set, the line
* will be ignored for further interrupts. The interrupt is injected
* into the vcpu with the VGIC_LR_EOI bit set (generate a
* maintainance interrupt on EOI).
* - When the interrupt is EOIed, the maintainance interrupt fires,
* and clears the corresponding bit in irq_active. This allow the
* interrupt line to be sampled again.
*/
/* Temporary hacks, need to be provided by userspace emulation */
#define VGIC_DIST_BASE 0x2c001000
#define VGIC_DIST_SIZE 0x1000
#define VGIC_CPU_BASE 0x2c002000
#define VGIC_CPU_SIZE 0x2000
/* Virtual control interface base address */
static void __iomem *vgic_vctrl_base;
static struct device_node *vgic_node;
#define ACCESS_READ_VALUE (1 << 0)
#define ACCESS_READ_RAZ (0 << 0)
#define ACCESS_READ_MASK(x) ((x) & (1 << 0))
#define ACCESS_WRITE_IGNORED (0 << 1)
#define ACCESS_WRITE_SETBIT (1 << 1)
#define ACCESS_WRITE_CLEARBIT (2 << 1)
#define ACCESS_WRITE_VALUE (3 << 1)
#define ACCESS_WRITE_MASK(x) ((x) & (3 << 1))
static void vgic_update_state(struct kvm *kvm);
static void vgic_kick_vcpus(struct kvm *kvm);
static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
static inline int vgic_irq_is_edge(struct vgic_dist *dist, int irq)
{
return vgic_bitmap_get_irq_val(&dist->irq_cfg, 0, irq);
}
static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg, u32 offset, int mode)
{
int word_offset = offset & 3;
int shift = word_offset * 8;
u32 mask;
u32 regval;
/*
* Any alignment fault should have been delivered to the guest
* directly (ARM ARM B3.12.7 "Prioritization of aborts").
*/
mask = (~0U) >> (word_offset * 8);
if (reg)
regval = *reg;
else {
BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
regval = 0;
}
if (mmio->mmio.is_write) {
u32 data = (*((u32 *)mmio->mmio.data) & mask) << shift;
switch (ACCESS_WRITE_MASK(mode)) {
case ACCESS_WRITE_IGNORED:
return;
case ACCESS_WRITE_SETBIT:
regval |= data;
break;
case ACCESS_WRITE_CLEARBIT:
regval &= ~data;
break;
case ACCESS_WRITE_VALUE:
regval = (regval & ~(mask << shift)) | data;
break;
}
*reg = regval;
} else {
switch (ACCESS_READ_MASK(mode)) {
case ACCESS_READ_RAZ:
regval = 0;
/* fall through */
case ACCESS_READ_VALUE:
*((u32 *)mmio->mmio.data) = (regval >> shift) & mask;
}
}
}
static void handle_mmio_misc(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio, u32 offset)
{
u32 reg;
u32 u32off = offset & 3;
switch (offset & ~3) {
case 0: /* CTLR */
reg = vcpu->kvm->arch.vgic.enabled;
vgic_reg_access(mmio, &reg, u32off,
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
if (mmio->mmio.is_write) {
vcpu->kvm->arch.vgic.enabled = reg & 1;
vgic_update_state(vcpu->kvm);
}
break;
case 4: /* TYPER */
reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
reg |= (VGIC_NR_IRQS >> 5) - 1;
vgic_reg_access(mmio, &reg, u32off,
ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
break;
case 8: /* IIDR */
reg = 0x4B00043B;
vgic_reg_access(mmio, &reg, u32off,
ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
break;
}
}
static void handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio, u32 offset)
{
vgic_reg_access(mmio, NULL, offset,
ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
}
static void handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio, u32 offset)
{
u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
vcpu->vcpu_id, offset);
vgic_reg_access(mmio, reg, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
if (mmio->mmio.is_write)
vgic_update_state(vcpu->kvm);
}
static void handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio, u32 offset)
{
u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
vcpu->vcpu_id, offset);
vgic_reg_access(mmio, reg, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
if (mmio->mmio.is_write) {
if (offset < 4) /* Force SGI enabled */
*reg |= 0xffff;
vgic_update_state(vcpu->kvm);
}
}
static void handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio, u32 offset)
{
u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
vcpu->vcpu_id, offset);
vgic_reg_access(mmio, reg, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
if (mmio->mmio.is_write)
vgic_update_state(vcpu->kvm);
}
static void handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio, u32 offset)
{
u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
vcpu->vcpu_id, offset);
vgic_reg_access(mmio, reg, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
if (mmio->mmio.is_write)
vgic_update_state(vcpu->kvm);
}
static void handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio, u32 offset)
{
u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
vcpu->vcpu_id, offset);
vgic_reg_access(mmio, reg, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
}
static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
{
struct vgic_dist *dist = &kvm->arch.vgic;
struct kvm_vcpu *vcpu;
int i, c;
unsigned long *bmap;
u32 val = 0;
BUG_ON(irq & 3);
BUG_ON(irq < 32);
irq -= 32;
kvm_for_each_vcpu(c, vcpu, kvm) {
bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
for (i = 0; i < 4; i++)
if (test_bit(irq + i, bmap))
val |= 1 << (c + i * 8);
}
return val;
}
static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
{
struct vgic_dist *dist = &kvm->arch.vgic;
struct kvm_vcpu *vcpu;
int i, c;
unsigned long *bmap;
u32 target;
BUG_ON(irq & 3);
BUG_ON(irq < 32);
irq -= 32;
/*
* Pick the LSB in each byte. This ensure we only target one
* single vcpu per IRQ. If the byte is null, assume we target
* CPU0.
*/
for (i = 0; i < 32; i += 8) {
target = ffs(val & (0xffU << i));
val &= ~(0xffU << i);
val |= 1 << (target ? (target - 1) : i);
}
kvm_for_each_vcpu(c, vcpu, kvm) {
bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
for (i = 0; i < 4; i++) {
if (val & (1 << (c + i * 8)))
set_bit(irq + i, bmap);
else
clear_bit(irq + i, bmap);
}
}
}
static void handle_mmio_target_reg(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio, u32 offset)
{
u32 reg;
/* We treat the banked interrupts targets as read-only */
if (offset < 32) {
u32 roreg = 1 << vcpu->vcpu_id;
roreg |= roreg << 8;
roreg |= roreg << 16;
vgic_reg_access(mmio, &roreg, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
return;
}
reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
vgic_reg_access(mmio, &reg, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
if (mmio->mmio.is_write) {
vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
vgic_update_state(vcpu->kvm);
}
}
static u32 vgic_cfg_expand(u16 val)
{
u32 res = 0;
int i;
for (i = 0; i < 16; i++)
res |= (val >> i) << (2 * i + 1);
return res;
}
static u16 vgic_cfg_compress(u32 val)
{
u16 res = 0;
int i;
for (i = 0; i < 16; i++)
res |= (val >> (i * 2 + 1)) << i;
return res;
}
/*
* The distributor uses 2 bits per IRQ for the CFG register, but the
* LSB is always 0. As such, we only keep the upper bit, and use the
* two above functions to compress/expand the bits
*/
static void handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio, u32 offset)
{
u32 val;
u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
vcpu->vcpu_id, offset >> 1);
if (offset & 2)
val = *reg >> 16;
else
val = *reg & 0xffff;
val = vgic_cfg_expand(val);
vgic_reg_access(mmio, &val, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
if (mmio->mmio.is_write) {
if (offset < 4) {
*reg = ~0U; /* Force PPIs/SGIs to 1 */
return;
}
val = vgic_cfg_compress(val);
if (offset & 2) {
*reg &= 0xffff;
*reg |= val << 16;
} else {
*reg &= 0xffff << 16;
*reg |= val;
}
}
}
static void handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio, u32 offset)
{
u32 reg;
vgic_reg_access(mmio, &reg, offset,
ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
if (mmio->mmio.is_write) {
vgic_dispatch_sgi(vcpu, reg);
vgic_update_state(vcpu->kvm);
}
}
/* All this should be handled by kvm_bus_io_*()... FIXME!!! */
struct mmio_range {
unsigned long base;
unsigned long len;
void (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
u32 offset);
};
static const struct mmio_range vgic_ranges[] = {
{ /* CTRL, TYPER, IIDR */
.base = 0,
.len = 12,
.handle_mmio = handle_mmio_misc,
},
{ /* IGROUPRn */
.base = 0x80,
.len = VGIC_NR_IRQS / 8,
.handle_mmio = handle_mmio_raz_wi,
},
{ /* ISENABLERn */
.base = 0x100,
.len = VGIC_NR_IRQS / 8,
.handle_mmio = handle_mmio_set_enable_reg,
},
{ /* ICENABLERn */
.base = 0x180,
.len = VGIC_NR_IRQS / 8,
.handle_mmio = handle_mmio_clear_enable_reg,
},
{ /* ISPENDRn */
.base = 0x200,
.len = VGIC_NR_IRQS / 8,
.handle_mmio = handle_mmio_set_pending_reg,
},
{ /* ICPENDRn */
.base = 0x280,
.len = VGIC_NR_IRQS / 8,
.handle_mmio = handle_mmio_clear_pending_reg,
},
{ /* ISACTIVERn */
.base = 0x300,
.len = VGIC_NR_IRQS / 8,
.handle_mmio = handle_mmio_raz_wi,
},
{ /* ICACTIVERn */
.base = 0x380,
.len = VGIC_NR_IRQS / 8,
.handle_mmio = handle_mmio_raz_wi,
},
{ /* IPRIORITYRn */
.base = 0x400,
.len = VGIC_NR_IRQS,
.handle_mmio = handle_mmio_priority_reg,
},
{ /* ITARGETSRn */
.base = 0x800,
.len = VGIC_NR_IRQS,
.handle_mmio = handle_mmio_target_reg,
},
{ /* ICFGRn */
.base = 0xC00,
.len = VGIC_NR_IRQS / 4,
.handle_mmio = handle_mmio_cfg_reg,
},
{ /* SGIRn */
.base = 0xF00,
.len = 4,
.handle_mmio = handle_mmio_sgi_reg,
},
{}
};
static const
struct mmio_range *find_matching_range(const struct mmio_range *ranges,
struct kvm_exit_mmio *mmio,
unsigned long base)
{
const struct mmio_range *r = ranges;
unsigned long addr = mmio->mmio.phys_addr - base;
while (r->len) {
if (addr >= r->base &&
(addr + mmio->mmio.len) <= (r->base + r->len))
return r;
r++;
}
return NULL;
}
/**
* vgic_handle_mmio - handle an in-kernel MMIO access
* @vcpu: pointer to the vcpu performing the access
* @mmio: pointer to the data describing the access
*
* returns KVM_EXIT_UNKNOWN if the MMIO access has been performed
* in kernel space, and KVM_EXIT_MMIO if it needs to be emulated
* in user space.
*/
int vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run, struct kvm_exit_mmio *mmio)
{
const struct mmio_range *range;
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
unsigned long base = dist->vgic_dist_base;
if (!irqchip_in_kernel(vcpu->kvm) ||
mmio->mmio.phys_addr < base ||
(mmio->mmio.phys_addr + mmio->mmio.len) > (base + dist->vgic_dist_size))
return KVM_EXIT_MMIO;
range = find_matching_range(vgic_ranges, mmio, base);
if (unlikely(!range || !range->handle_mmio)) {
pr_warn("Unhandled access %d %08llx %d\n",
mmio->mmio.is_write, mmio->mmio.phys_addr, mmio->mmio.len);
return KVM_EXIT_MMIO;
}
spin_lock(&vcpu->kvm->arch.vgic.lock);
kvm_debug("emulating %d %08llx %d\n", mmio->mmio.is_write,
mmio->mmio.phys_addr, mmio->mmio.len);
range->handle_mmio(vcpu, mmio, mmio->mmio.phys_addr - range->base - base);
run->mmio = mmio->mmio;
kvm_handle_mmio_return(vcpu, run);
spin_unlock(&vcpu->kvm->arch.vgic.lock);
vgic_kick_vcpus(vcpu->kvm);
return KVM_EXIT_UNKNOWN;
}
static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
{
struct kvm *kvm = vcpu->kvm;
struct vgic_dist *dist = &kvm->arch.vgic;
int nrcpus = atomic_read(&kvm->online_vcpus);
u8 target_cpus;
int sgi, mode, c, vcpu_id;
vcpu_id = vcpu->vcpu_id;
sgi = reg & 0xf;
target_cpus = (reg >> 16) & 0xff;
mode = (reg >> 24) & 3;
switch (mode) {
case 0:
if (!target_cpus)
return;
case 1:
target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
break;
case 2:
target_cpus = 1 << vcpu_id;
break;
}
kvm_for_each_vcpu(c, vcpu, kvm) {
if (target_cpus & 1) {
/* Flag the SGI as pending */
vgic_bitmap_set_irq_val(&dist->irq_state, c, sgi, 1);
dist->irq_sgi_sources[c][sgi] |= 1 << vcpu_id;
kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
}
target_cpus >>= 1;
}
}
static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
unsigned long *pending, *enabled, *pend;
int vcpu_id;
vcpu_id = vcpu->vcpu_id;
pend = vcpu->arch.vgic_cpu.pending;
pending = vgic_bitmap_get_cpu_map(&dist->irq_state, vcpu_id);
enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
bitmap_and(pend, pending, enabled, 32);
pending = vgic_bitmap_get_shared_map(&dist->irq_state);
enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
bitmap_and(pend + 1, pending, enabled, VGIC_NR_SHARED_IRQS);
bitmap_and(pend + 1, pend + 1,
vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
VGIC_NR_SHARED_IRQS);
return (find_first_bit(pend, VGIC_NR_IRQS) < VGIC_NR_IRQS);
}
/*
* Update the interrupt state and determine which CPUs have pending
* interrupts. Must be called with distributor lock held.
*/
static void vgic_update_state(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
struct kvm_vcpu *vcpu;
int c;
if (!dist->enabled) {
set_bit(0, &dist->irq_pending_on_cpu);
return;
}
kvm_for_each_vcpu(c, vcpu, kvm) {
if (compute_pending_for_cpu(vcpu)) {
pr_debug("CPU%d has pending interrupts\n", c);
set_bit(1 << c, &dist->irq_pending_on_cpu);
}
}
}
/*
* Queue an interrupt to a CPU virtual interface. Return 0 on success,
* or 1 if it wasn't possible to queue it.
*/
static int vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
int lr, is_level;
/* Sanitize the input... */
BUG_ON(sgi_source_id & ~7);
BUG_ON(sgi_source_id && irq > 15);
BUG_ON(irq >= VGIC_NR_IRQS);
kvm_debug("Queue IRQ%d\n", irq);
lr = vgic_cpu->vgic_irq_lr_map[irq];
is_level = !vgic_irq_is_edge(dist, irq);
/* Do we have an active interrupt for the same CPUID? */
if (lr != LR_EMPTY &&
(vgic_cpu->vgic_lr[lr] & VGIC_LR_PHYSID_CPUID) == (sgi_source_id << 10)) {
kvm_debug("LR%d piggyback for IRQ%d %x\n", lr, irq, vgic_cpu->vgic_lr[lr]);
BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
vgic_cpu->vgic_lr[lr] |= VGIC_LR_PENDING_BIT;
if (is_level)
vgic_cpu->vgic_lr[lr] |= VGIC_LR_EOI;
return 0;
}
/* Try to use another LR for this interrupt */
lr = find_first_bit((unsigned long *)vgic_cpu->vgic_elrsr,
vgic_cpu->nr_lr);
if (lr >= vgic_cpu->nr_lr)
return 1;
kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
vgic_cpu->vgic_lr[lr] = (VGIC_LR_PENDING_BIT | (sgi_source_id << 10) | irq);
if (is_level)
vgic_cpu->vgic_lr[lr] |= VGIC_LR_EOI;
vgic_cpu->vgic_irq_lr_map[irq] = lr;
clear_bit(lr, (unsigned long *)vgic_cpu->vgic_elrsr);
set_bit(lr, vgic_cpu->lr_used);
return 0;
}
/*
* Fill the list registers with pending interrupts before running the
* guest.
*/
static void __kvm_vgic_sync_to_cpu(struct kvm_vcpu *vcpu)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
unsigned long *pending;
int i, c, vcpu_id;
int overflow = 0;
vcpu_id = vcpu->vcpu_id;
/*
* We may not have any pending interrupt, or the interrupts
* may have been serviced from another vcpu. In all cases,
* move along.
*/
if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
goto epilog;
}
/* SGIs */
pending = vgic_bitmap_get_cpu_map(&dist->irq_state, vcpu_id);
for_each_set_bit(i, vgic_cpu->pending, 16) {
unsigned long sources;
pr_debug("SGI%d on CPU%d\n", i, vcpu_id);
sources = dist->irq_sgi_sources[vcpu_id][i];
for_each_set_bit(c, &sources, 8) {
if (vgic_queue_irq(vcpu, c, i)) {
overflow = 1;
continue;
}
sources &= ~(1 << c);
}
if (!sources)
clear_bit(i, pending);
dist->irq_sgi_sources[vcpu_id][i] = sources;
}
/* PPIs */
for_each_set_bit_from(i, vgic_cpu->pending, 32) {
if (vgic_queue_irq(vcpu, 0, i)) {
overflow = 1;
continue;
}
clear_bit(i, pending);
}
/* SPIs */
pending = vgic_bitmap_get_shared_map(&dist->irq_state);
for_each_set_bit_from(i, vgic_cpu->pending, VGIC_NR_IRQS) {
if (vgic_bitmap_get_irq_val(&dist->irq_active, 0, i))
continue; /* level interrupt, already queued */
if (vgic_queue_irq(vcpu, 0, i)) {
overflow = 1;
continue;
}
/* Immediate clear on edge, set active on level */
if (vgic_irq_is_edge(dist, i))
clear_bit(i - 32, pending);
else
vgic_bitmap_set_irq_val(&dist->irq_active, 0, i, 1);
}
epilog:
if (overflow)
vgic_cpu->vgic_hcr |= VGIC_HCR_UIE;
else {
vgic_cpu->vgic_hcr &= ~VGIC_HCR_UIE;
/*
* We're about to run this VCPU, and we've consumed
* everything the distributor had in store for
* us. Claim we don't have anything pending. We'll
* adjust that if needed while exiting.
*/
clear_bit(1 << vcpu_id, &dist->irq_pending_on_cpu);
}
}
/*
* Sync back the VGIC state after a guest run.
*/
static void __kvm_vgic_sync_from_cpu(struct kvm_vcpu *vcpu)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
int lr, pending;
/* Clear mappings for empty LRs */
for_each_set_bit(lr, (unsigned long *)vgic_cpu->vgic_elrsr,
vgic_cpu->nr_lr) {
int irq;
if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
continue;
irq = vgic_cpu->vgic_lr[lr] & VGIC_LR_VIRTUALID;
BUG_ON(irq >= VGIC_NR_IRQS);
vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
}
/* Check if we still have something up our sleeve... */
pending = find_first_zero_bit((unsigned long *)vgic_cpu->vgic_elrsr,
vgic_cpu->nr_lr);
if (pending < vgic_cpu->nr_lr)
set_bit(1 << vcpu->vcpu_id, &dist->irq_pending_on_cpu);
}
void kvm_vgic_sync_to_cpu(struct kvm_vcpu *vcpu)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
if (!irqchip_in_kernel(vcpu->kvm))
return;
spin_lock(&dist->lock);
__kvm_vgic_sync_to_cpu(vcpu);
spin_unlock(&dist->lock);
}
void kvm_vgic_sync_from_cpu(struct kvm_vcpu *vcpu)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
if (!irqchip_in_kernel(vcpu->kvm))
return;
spin_lock(&dist->lock);
__kvm_vgic_sync_from_cpu(vcpu);
spin_unlock(&dist->lock);
}
int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
if (!irqchip_in_kernel(vcpu->kvm))
return 0;
return test_bit(1 << vcpu->vcpu_id, &dist->irq_pending_on_cpu);
}
static void vgic_kick_vcpus(struct kvm *kvm)
{
struct kvm_vcpu *vcpu;
int c;
/*
* We've injected an interrupt, time to find out who deserves
* a good kick...
*/
kvm_for_each_vcpu(c, vcpu, kvm) {
if (kvm_vgic_vcpu_pending_irq(vcpu)) {
vcpu->arch.wait_for_interrupts = 0;
kvm_vcpu_kick(vcpu);
}
}
}
int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, const struct kvm_irq_level *irq)
{
struct vgic_dist *dist = &kvm->arch.vgic;
int nrcpus = atomic_read(&kvm->online_vcpus);
int is_edge, state;
if (cpuid >= nrcpus)
return -EINVAL;
/* Only PPIs or SPIs */
if (irq->irq >= VGIC_NR_IRQS || irq->irq < 16)
return -EINVAL;
kvm_debug("Inject IRQ%d\n", irq->irq);
spin_lock(&dist->lock);
is_edge = vgic_irq_is_edge(dist, irq->irq);
state = vgic_bitmap_get_irq_val(&dist->irq_state, cpuid, irq->irq);
/*
* Inject an interrupt if:
* - level triggered and we change level
* - edge triggered and we have a rising edge
*/
if ((!is_edge && (state ^ !!irq->level)) ||
(is_edge && !state && irq->level)) {
vgic_bitmap_set_irq_val(&dist->irq_state, cpuid,
irq->irq, !!irq->level);
vgic_update_state(kvm);
}
spin_unlock(&dist->lock);
vgic_kick_vcpus(kvm);
return 0;
}
static irqreturn_t vgic_maintainance_handler(int irq, void *data)
{
struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)data;
struct vgic_dist *dist;
struct vgic_cpu *vgic_cpu;
if (WARN(!vcpu,
"VGIC interrupt on CPU %d with no vcpu\n", smp_processor_id()))
return IRQ_HANDLED;
vgic_cpu = &vcpu->arch.vgic_cpu;
dist = &vcpu->kvm->arch.vgic;
kvm_debug("MISR = %08x\n", vgic_cpu->vgic_misr);
if (vgic_cpu->vgic_misr & VGIC_MISR_EOI) {
/*
* Some level interrupts have been EOIed. Clear their
* active bit.
*/
int lr, irq;
spin_lock(&dist->lock);
for_each_set_bit(lr, (unsigned long *)vgic_cpu->vgic_eisr,
vgic_cpu->nr_lr) {
irq = vgic_cpu->vgic_lr[lr] & VGIC_LR_VIRTUALID;
vgic_bitmap_set_irq_val(&dist->irq_active,
vcpu->vcpu_id, irq, 0);
vgic_cpu->vgic_lr[lr] &= ~VGIC_LR_EOI;
writel_relaxed(vgic_cpu->vgic_lr[lr],
dist->vctrl_base + GICH_LR0 + (lr << 2));
}
spin_unlock(&dist->lock);
}
if (vgic_cpu->vgic_misr & VGIC_MISR_U) {
vgic_cpu->vgic_hcr &= ~VGIC_HCR_UIE;
writel_relaxed(vgic_cpu->vgic_hcr, dist->vctrl_base + GICH_HCR);
}
return IRQ_HANDLED;
}
void kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
u32 reg;
int i;
if (!irqchip_in_kernel(vcpu->kvm))
return;
for (i = 0; i < VGIC_NR_IRQS; i++) {
if (i < 16)
vgic_bitmap_set_irq_val(&dist->irq_enabled,
vcpu->vcpu_id, i, 1);
if (i < 32)
vgic_bitmap_set_irq_val(&dist->irq_cfg,
vcpu->vcpu_id, i, 1);
vgic_cpu->vgic_irq_lr_map[i] = LR_EMPTY;
}
BUG_ON(!vcpu->kvm->arch.vgic.vctrl_base);
reg = readl_relaxed(vcpu->kvm->arch.vgic.vctrl_base + GICH_VTR);
vgic_cpu->nr_lr = (reg & 0x1f) + 1;
reg = readl_relaxed(vcpu->kvm->arch.vgic.vctrl_base + GICH_VMCR);
vgic_cpu->vgic_vmcr = reg | (0x1f << 27); /* Priority */
vgic_cpu->vgic_hcr |= VGIC_HCR_EN; /* Get the show on the road... */
}
static void vgic_init_maintainance_interrupt(void *info)
{
unsigned int *irqp = info;
enable_percpu_irq(*irqp, 0);
}
int kvm_vgic_hyp_init(void)
{
int ret;
unsigned int irq;
struct resource vctrl_res;
vgic_node = of_find_compatible_node(NULL, NULL, "arm,cortex-a15-gic");
if (!vgic_node)
return -ENODEV;
irq = irq_of_parse_and_map(vgic_node, 0);
if (!irq)
return -ENXIO;
ret = request_percpu_irq(irq, vgic_maintainance_handler,
"vgic", kvm_get_running_vcpus());
if (ret) {
kvm_err("Cannot register interrupt %d\n", irq);
return ret;
}
ret = of_address_to_resource(vgic_node, 2, &vctrl_res);
if (ret) {
kvm_err("Cannot obtain VCTRL resource\n");
goto out_free_irq;
}
vgic_vctrl_base = of_iomap(vgic_node, 2);
if (!vgic_vctrl_base) {
kvm_err("Cannot ioremap VCTRL\n");
ret = -ENOMEM;
goto out_free_irq;
}
ret = create_hyp_io_mappings(vgic_vctrl_base,
vgic_vctrl_base + resource_size(&vctrl_res),
vctrl_res.start);
if (ret) {
kvm_err("Cannot map VCTRL into hyp\n");
goto out_unmap;
}
kvm_info("%s@%llx IRQ%d\n", vgic_node->name, vctrl_res.start, irq);
on_each_cpu(vgic_init_maintainance_interrupt, &irq, 1);
return 0;
out_unmap:
iounmap(vgic_vctrl_base);
out_free_irq:
free_percpu_irq(irq, kvm_get_running_vcpus());
return ret;
}
int kvm_vgic_init(struct kvm *kvm)
{
int ret, i;
struct resource vcpu_res;
mutex_lock(&kvm->lock);
if (of_address_to_resource(vgic_node, 3, &vcpu_res)) {
kvm_err("Cannot obtain VCPU resource\n");
ret = -ENXIO;
goto out;
}
if (atomic_read(&kvm->online_vcpus) || kvm->arch.vgic.vctrl_base) {
ret = -EEXIST;
goto out;
}
spin_lock_init(&kvm->arch.vgic.lock);
kvm->arch.vgic.vctrl_base = vgic_vctrl_base;
kvm->arch.vgic.vgic_dist_base = VGIC_DIST_BASE;
kvm->arch.vgic.vgic_dist_size = VGIC_DIST_SIZE;
ret = kvm_phys_addr_ioremap(kvm, VGIC_CPU_BASE,
vcpu_res.start, VGIC_CPU_SIZE);
if (ret) {
kvm_err("Unable to remap VGIC CPU to VCPU\n");
goto out;
}
for (i = 32; i < VGIC_NR_IRQS; i += 4)
vgic_set_target_reg(kvm, 0, i);
out:
mutex_unlock(&kvm->lock);
if (!ret)
kvm_timer_init(kvm);
return ret;
}