blob: 3a6696c544ce979a020cc60e07c509be81c5ba07 [file] [log] [blame]
#include "kvm/devices.h"
#include "kvm/pci.h"
#include "kvm/ioport.h"
#include "kvm/irq.h"
#include "kvm/util.h"
#include "kvm/kvm.h"
#include <linux/err.h>
#include <assert.h>
#define PCI_BAR_OFFSET(b) (offsetof(struct pci_device_header, bar[b]))
static u32 pci_config_address_bits;
/* This is within our PCI gap - in an unused area.
* Note this is a PCI *bus address*, is used to assign BARs etc.!
* (That's why it can still 32bit even with 64bit guests-- 64bit
* PCI isn't currently supported.)
*/
static u32 io_space_blocks = KVM_PCI_MMIO_AREA;
/*
* BARs must be naturally aligned, so enforce this in the allocator.
*/
u32 pci_get_io_space_block(u32 size)
{
u32 block = ALIGN(io_space_blocks, size);
io_space_blocks = block + size;
return block;
}
void pci__assign_irq(struct device_header *dev_hdr)
{
struct pci_device_header *pci_hdr = dev_hdr->data;
/*
* PCI supports only INTA#,B#,C#,D# per device.
*
* A#,B#,C#,D# are allowed for multifunctional devices so stick
* with A# for our single function devices.
*/
pci_hdr->irq_pin = 1;
pci_hdr->irq_line = irq__alloc_line();
}
static void *pci_config_address_ptr(u16 port)
{
unsigned long offset;
void *base;
offset = port - PCI_CONFIG_ADDRESS;
base = &pci_config_address_bits;
return base + offset;
}
static bool pci_config_address_out(struct ioport *ioport, struct kvm_cpu *vcpu, u16 port, void *data, int size)
{
void *p = pci_config_address_ptr(port);
memcpy(p, data, size);
return true;
}
static bool pci_config_address_in(struct ioport *ioport, struct kvm_cpu *vcpu, u16 port, void *data, int size)
{
void *p = pci_config_address_ptr(port);
memcpy(data, p, size);
return true;
}
static struct ioport_operations pci_config_address_ops = {
.io_in = pci_config_address_in,
.io_out = pci_config_address_out,
};
static bool pci_device_exists(u8 bus_number, u8 device_number, u8 function_number)
{
union pci_config_address pci_config_address;
pci_config_address.w = ioport__read32(&pci_config_address_bits);
if (pci_config_address.bus_number != bus_number)
return false;
if (pci_config_address.function_number != function_number)
return false;
return !IS_ERR_OR_NULL(device__find_dev(DEVICE_BUS_PCI, device_number));
}
static bool pci_config_data_out(struct ioport *ioport, struct kvm_cpu *vcpu, u16 port, void *data, int size)
{
union pci_config_address pci_config_address;
pci_config_address.w = ioport__read32(&pci_config_address_bits);
/*
* If someone accesses PCI configuration space offsets that are not
* aligned to 4 bytes, it uses ioports to signify that.
*/
pci_config_address.reg_offset = port - PCI_CONFIG_DATA;
pci__config_wr(vcpu->kvm, pci_config_address, data, size);
return true;
}
static bool pci_config_data_in(struct ioport *ioport, struct kvm_cpu *vcpu, u16 port, void *data, int size)
{
union pci_config_address pci_config_address;
pci_config_address.w = ioport__read32(&pci_config_address_bits);
/*
* If someone accesses PCI configuration space offsets that are not
* aligned to 4 bytes, it uses ioports to signify that.
*/
pci_config_address.reg_offset = port - PCI_CONFIG_DATA;
pci__config_rd(vcpu->kvm, pci_config_address, data, size);
return true;
}
static struct ioport_operations pci_config_data_ops = {
.io_in = pci_config_data_in,
.io_out = pci_config_data_out,
};
void pci__config_wr(struct kvm *kvm, union pci_config_address addr, void *data, int size)
{
u8 dev_num;
dev_num = addr.device_number;
if (pci_device_exists(0, dev_num, 0)) {
unsigned long offset;
offset = addr.w & 0xff;
if (offset < sizeof(struct pci_device_header)) {
void *p = device__find_dev(DEVICE_BUS_PCI, dev_num)->data;
struct pci_device_header *hdr = p;
u8 bar = (offset - PCI_BAR_OFFSET(0)) / (sizeof(u32));
u32 sz = cpu_to_le32(PCI_IO_SIZE);
if (bar < 6 && hdr->bar_size[bar])
sz = hdr->bar_size[bar];
/*
* If the kernel masks the BAR it would expect to find the
* size of the BAR there next time it reads from it.
* When the kernel got the size it would write the address
* back.
*/
if (*(u32 *)(p + offset)) {
/* See if kernel tries to mask one of the BARs */
if ((offset >= PCI_BAR_OFFSET(0)) &&
(offset <= PCI_BAR_OFFSET(6)) &&
(ioport__read32(data) == 0xFFFFFFFF))
memcpy(p + offset, &sz, sizeof(sz));
else
memcpy(p + offset, data, size);
}
}
}
}
void pci__config_rd(struct kvm *kvm, union pci_config_address addr, void *data, int size)
{
u8 dev_num;
dev_num = addr.device_number;
if (pci_device_exists(0, dev_num, 0)) {
unsigned long offset;
offset = addr.w & 0xff;
if (offset < sizeof(struct pci_device_header)) {
void *p = device__find_dev(DEVICE_BUS_PCI, dev_num)->data;
memcpy(data, p + offset, size);
} else {
memset(data, 0x00, size);
}
} else {
memset(data, 0xff, size);
}
}
static void pci_config_mmio_access(struct kvm_cpu *vcpu, u64 addr, u8 *data,
u32 len, u8 is_write, void *kvm)
{
union pci_config_address cfg_addr;
addr -= KVM_PCI_CFG_AREA;
cfg_addr.w = (u32)addr;
cfg_addr.enable_bit = 1;
if (is_write)
pci__config_wr(kvm, cfg_addr, data, len);
else
pci__config_rd(kvm, cfg_addr, data, len);
}
struct pci_device_header *pci__find_dev(u8 dev_num)
{
struct device_header *hdr = device__find_dev(DEVICE_BUS_PCI, dev_num);
if (IS_ERR_OR_NULL(hdr))
return NULL;
return hdr->data;
}
int pci__init(struct kvm *kvm)
{
int r;
r = ioport__register(kvm, PCI_CONFIG_DATA + 0, &pci_config_data_ops, 4, NULL);
if (r < 0)
return r;
r = ioport__register(kvm, PCI_CONFIG_ADDRESS + 0, &pci_config_address_ops, 4, NULL);
if (r < 0)
goto err_unregister_data;
r = kvm__register_mmio(kvm, KVM_PCI_CFG_AREA, PCI_CFG_SIZE, false,
pci_config_mmio_access, kvm);
if (r < 0)
goto err_unregister_addr;
return 0;
err_unregister_addr:
ioport__unregister(kvm, PCI_CONFIG_ADDRESS);
err_unregister_data:
ioport__unregister(kvm, PCI_CONFIG_DATA);
return r;
}
dev_base_init(pci__init);
int pci__exit(struct kvm *kvm)
{
ioport__unregister(kvm, PCI_CONFIG_DATA);
ioport__unregister(kvm, PCI_CONFIG_ADDRESS);
return 0;
}
dev_base_exit(pci__exit);